首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Aim The sequential break‐up of Gondwana is thought to be a dominant process in the establishment of shared biota across landmasses of the Southern Hemisphere. Yet similar distributions are shared by taxa whose radiations clearly post‐date the Gondwanan break‐up. Thus, determining the contribution of vicariance versus dispersal to seemingly Gondwanan biota is complex. The southern freshwater crayfishes (family Parastacidae) are distributed on Australia and New Guinea, South America, Madagascar and New Zealand and are unlikely to have dispersed via oceans, owing to strict freshwater limitations. We test the hypotheses that the break‐up of Gondwana has led to (1) a predominately east–west (((Australia, New Zealand: 80 Ma) Madagascar: 160–121 Ma) South America: 165–140 Ma), or (2) a southern (((Australia, South America: 52–35 Ma) New Zealand: 80 Ma) Madagascar: 160–121 Ma) pattern for parastacid crayfish. Further, we examine the evidence for a complete drowning of New Zealand and subsequent colonization by freshwater crayfish. Location Southern Hemisphere. Methods The evolutionary relationships among the 15 genera of Parastacidae were reconstructed using mitochondrial [16S, cytochrome c oxidase subunit I (COI)] and nuclear (18S, 28S) sequence data and maximum likelihood and Bayesian methods of phylogenetic reconstruction. A Bayesian (multidivtime ) molecular dating method using six fossil calibrations and phylogenetic inference was used to estimate divergence time among crayfish clades on Gondwanan landmasses. Results The South American crayfish are monophyletic and a sister group to all other southern crayfish. Australian crayfish are not monophyletic, with two Tasmanian genera, Spinastacoides and Ombrastacoides, forming a clade with New Zealand and Malagasy crayfish (both monophyletic). Divergence of crayfish among southern landmasses is estimated to have occurred around the Late Jurassic to Early Cretaceous (109–178 Ma). Main conclusions The estimated phylogenetic relationships and time of divergence among the Southern Hemisphere crayfishes were consistent with an east–west pattern of Gondwanan divergence. The divergence between Australia and New Zealand (109–160 Ma) pre‐dated the rifting at around 80 Ma, suggesting that these lineages were established prior to the break‐up. Owing to the age of the New Zealand crayfish, we reject the hypothesis that there was a complete drowning of New Zealand crayfish habitat.  相似文献   

2.
Aim  The flowering plant family Proteaceae is putatively of Gondwanan age, with modern and fossil lineages found on all southern continents. Here we test whether the present distribution of Proteaceae can be explained by vicariance caused by the break-up of Gondwana.
Location  Africa, especially southern Africa, Australia, New Zealand, South America, New Caledonia, New Guinea, Southeast Asia, Sulawesi, Tasmania.
Methods  We obtained chloroplast DNA sequence data from the rbc L gene, the rbc L- atp B spacer, and the atp B gene from leaf samples of forty-five genera collected from the field and from living collections. We analysed these data using Bayesian phylogenetic and molecular dating methods, with five carefully selected fossil calibration points to obtain age estimates for the nodes within the family.
Results  Four of eight trans-continental disjunctions of sister groups within our sample of the Proteaceae post-date the break-up of Gondwana. These involve independent lineages, two with an Africa-Australia disjunction, one with an Africa–South America disjunction, and one with a New Zealand–Australasia disjunction. The date of the radiation of the bird-pollinated Embothriinae corresponds approximately to the hypothesized date of origin of nectar-feeding birds in Australia.
Main conclusions  The findings suggest that disjunct distributions in Proteaceae result from both Gondwanan vicariance and transoceanic dispersal. Our results imply that ancestors of some taxa dispersed across oceans rather than rafting with Gondwanan fragments as previously thought. This finding agrees with other studies of Gondwanan plants in dating the divergence of Australian, New Zealand and New Caledonian taxa in the Eocene, consistent with the existence of a shared, ancestral Eocene flora but contrary to a vicariance scenario based on accepted geological knowledge.  相似文献   

3.
We use approximately 1900bp of mitochondrial (ND2) and nuclear (c-mos and Rag-1) DNA sequence data to recover phylogenetic relationships among 58 species and 26 genera of Eugongylus group scincid lizards from New Caledonia, Lord Howe Island, New Zealand, Australia and New Guinea. Taxon sampling for New Caledonian forms was nearly complete. We find that the endemic skink genera occurring on New Caledonia, New Zealand and Lord Howe Island, which make up the Gondwanan continental block Tasmantis, form a monophyletic group. Within this group New Zealand and New Zealand+Lord Howe Island form monophyletic clades. These clades are nested within the radiation of skinks in New Caledonia. All of the New Caledonian genera are monophyletic, except Lioscincus. The Australian and New Guinean species form a largely unresolved polytomy with the Tasmantis clade. New Caledonian representatives of the more widespread genera Emoia and Cryptoblepharus are more closely related to the non-Tasmantis taxa than to the endemic New Caledonian genera. Using ND2 sequences and the calibration estimated for the agamid Laudakia, we estimate that the diversification of the Tasmantis lineage began at least 12.7 million years ago. However, using combined ND2 and c-mos data and the calibration estimated for pygopod lizards suggests the lineage is 35.4-40.74 million years old. Our results support the hypothesis that skinks colonized Tasmantis by over-water dispersal initially to New Caledonia, then to Lord Howe Island, and finally to New Zealand.  相似文献   

4.
Aim Biogeographers have long been intrigued by New Zealand’s biota due to its unique combination of typical ‘continental’ and ‘island’ characteristics. The New Zealand plateau rifted from the former supercontinent Gondwana c. 80 Ma, and has been isolated from other land masses ever since. Therefore, the flora and fauna of New Zealand include lineages that are Gondwanan in origin, but also include a very large number of endemics. In this study, we analyse the evolutionary relationships of three genera of mite harvestmen (Arachnida, Opiliones, Cyphophthalmi) endemic to New Zealand, both to each other and to their temperate Gondwanan relatives found in Australia, Chile, Sri Lanka and South Africa. Location New Zealand (North Island, South Island and Stewart Island). Methods A total of 94 specimens of the family Pettalidae in the suborder Cyphophthalmi were studied, representing 31 species and subspecies belonging to three endemic genera from New Zealand (Aoraki, Neopurcellia and Rakaia) plus six other members of the family from Chile, South Africa, Sri Lanka and Australia. The phylogeny of these taxa was constructed using morphological and molecular data from five nuclear and mitochondrial genes (18S rRNA, 28S rRNA, 16S rRNA, cytochrome c oxidase subunit I and histone H3, totalling c. 5 kb), which were analysed using dynamic as well as static homology under a variety of optimality criteria. Results The results showed that each of the three New Zealand cyphophthalmid genera is monophyletic, and occupies a distinct geographical region within the archipelago, grossly corresponding to palaeogeographical regions. All three genera of New Zealand mite harvestmen fall within the family Pettalidae with a classic temperate Gondwanan distribution, but they do not render any other genera paraphyletic. Main conclusions Our study shows that New Zealand’s three genera of mite harvestmen are unequivocally related to other members of the temperate Gondwanan family Pettalidae. Monophyly of each genus contradicts the idea of recent dispersal to New Zealand. Within New Zealand, striking biogeographical patterns are apparent in this group of short‐range endemics, particularly in the South Island. These patterns are interpreted in the light of New Zealand’s turbulent geological history and present‐day patterns of forest cover.  相似文献   

5.
East meets west: biogeology of the Campbell Plateau   总被引:1,自引:0,他引:1  
The New Zealand Subantarctic Islands, emergent remnants of the Campbell Plateau, were given World Heritage status in 1998 in recognition of their importance to global biodiversity. We describe the flora and fauna of these islands and discuss the results of recent phylogenetic analyses. Part of the New Zealand Subantarctic biota appears to be relictual and to be derived from west Gondwana. The relictual element is characterized by genera endemic to the Campbell Plateau that show relationships with taxa of the southern South Island, New Zealand, southern South America, and the north Pacific. In contrast, a younger, east Gondwanan element is composed of species that are either taxonomically identical to widespread mainland species, or endemic species with close New Zealand relatives. Area cladograms support the inclusion of the southern South Island, New Zealand and Macquarie Island (although this is separate geologically) as parts of the Campbell Plateau, but suggest the Chatham Rise and Torlesse terranes of the eastern South Island, New Zealand were originally parts of east Gondwana. East and west Antarctica acted as independent plates during the breakup of Gondwana, and were separated by oceanic crust until a compressive phase sutured them along the trace of the trans‐Antarctic mountains during the early Tertiary. The Campbell Plateau microcontinent was connected to west Antarctica until its separation at 80 Mya, contemporaneous with the separation of the southern portion of the Melanesian rift from east Gondwana. Presently the Campbell Plateau is joined to the Melanesian Rift along the Alpine Fault. Cenozoic plate tectonic reconstructions place the Campbell Plateau adjacent to the Melanesian Rift throughout the rift–drift phase, relative motion being confined to strike–slip movement over the last 20 Myr. Our synthesis of phylogenetic and plate tectonic evidence suggests that the Alpine Fault is the most recent development of a much older extensional rift/basin boundary originally separating west and east Gondwana. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86 , 95–115.  相似文献   

6.
Gondwanan biogeography has fascinated zoologists and botanists for over a century, but most biogeographical work has used continent-scale areas as analytical units. More finely resolved patterns, as can be obtained from small invertebrates with limited dispersal abilities, will be obscured in those studies. A common case is treating Australia as a single biogeographical region. In the present study, the necessity of splitting Australia into multiple microareas is demonstrated using centipedes as an example. The lithobiomorph centipede Paralamyctes is distributed on fragments of Gondwana, with species in southern Africa, Madagascar, southern India, Patagonia, eastern Australia, and New Zealand. A cladogram for Paralamyctes is based on morphology and sequences for four molecular markers for 30 terminals that sample 20 of 26 known ingroup species and four outgroups. Analysis with direct optimization across a range of indel costs and transversion : transition cost ratios identifies two main clades: Paralamyctes ( Paralamyctes ) unites species from southern Africa, Madagascar, tropical and warm temperate Australia, and New Zealand. The other group includes the temperate Australian/New Zealand Paralamyctes ( Haasiella ) and Paralamyctes ( Thingathinga ) and a Chilean clade. Subtree analysis finds that different parts of Australia have closest affinities to other Gondwanan fragments, and some of these relationships (such as that between north Queensland and New Zealand) are based on taxonomically stable clades. Area delimitation for large continental fragments should use sufficiently fine resolution to test the 'monophyly' of those fragments and attempt to eliminate spurious geographical paralogy.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 65–78.  相似文献   

7.
The Southern Hemisphere has traditionally been considered as having a fundamentally vicariant history. The common trans-Pacific disjunctions are usually explained by the sequential breakup of the supercontinent Gondwana during the last 165 million years, causing successive division of an ancestral biota. However, recent biogeographic studies, based on molecular estimates and more accurate paleogeographic reconstructions, indicate that dispersal may have been more important than traditionally assumed. We examined the relative roles played by vicariance and dispersal in shaping Southern Hemisphere biotas by analyzing a large data set of 54 animal and 19 plant phylogenies, including marsupials, ratites, and southern beeches (1,393 terminals). Parsimony-based tree fitting in conjunction with permutation tests was used to examine to what extent Southern Hemisphere biogeographic patterns fit the breakup sequence of Gondwana and to identify concordant dispersal patterns. Consistent with other studies, the animal data are congruent with the geological sequence of Gondwana breakup: (Africa(New Zealand(southern South America, Australia))). Trans-Antarctic dispersal (Australia <--> southern South America) is also significantly more frequent than any other dispersal event in animals, which may be explained by the long period of geological contact between Australia and South America via Antarctica. In contrast, the dominant pattern in plants, (southern South America(Australia, New Zealand)), is better explained by dispersal, particularly the prevalence of trans-Tasman dispersal between New Zealand and Australia. Our results also confirm the hybrid origin of the South American biota: there has been surprisingly little biotic exchange between the northern tropical and the southern temperate regions of South America, especially for animals.  相似文献   

8.
Aim  To describe New Zealand's historical terrestrial biogeography and place this history in a wider Southern Hemisphere context.
Location  New Zealand.
Methods  The analysis is based primarily on literature on the distributions and relationships of New Zealand's terrestrial flora and fauna.
Results  New Zealand is shown to have a biota that has broad relationships, primarily around the cool Southern Hemisphere, as well as with New Caledonia to the north. There are hints of ancient Gondwanan taxa, although the long-argued predominance of taxa derived by vicariant processes, driven by plate tectonics and the fragmentation of Gondwana, is no longer accepted as a principal explanation of the biota's origins and relationships.
Main conclusions  Most of the terrestrial New Zealand flora and fauna has clearly arrived in New Zealand much more recently than the postulated separation of New Zealand from Gondwana, dated at c. 80 Ma. There is a view that New Zealand may have disappeared completely beneath the sea in the early Cenozoic, and acceptance of this would mean derivation of the entire biota by transoceanic dispersal. However, there are elements in the biota that seem to have broad distributions that date back to Gondwanan times, and also some that are thought unlikely to have been able to disperse to New Zealand across ocean gaps, especially freshwater organisms. Very strong connections to the biota of Australia, rather than to South America, are inconsistent with the timing of New Zealand's ancient and early separation from Gondwana and seem likely to have resulted from dispersal.  相似文献   

9.
New Zealand taxa from the Orthopteran family Anostostomatidae have been shown to consist of three broad groups, Hemiandrus (ground weta), Anisoura/Motuweta (tusked weta) and Hemideina-Deinacrida (tree-giant weta). The family is also present in Australia and New Caledonia, the nearest large land masses to New Zealand. All genera are endemic to their respective countries except Hemiandrus that occurs in New Zealand and Australia. We used nuclear and mitochondrial DNA sequence data to study within genera and among species-level genetic diversity within New Zealand and to examine phylogenetic relationships of taxa in Australasia. We found the Anostostomatidae to be monophyletic within Ensifera, and justifiably distinguished from the Stenopelmatidae among which they were formerly placed. However, the New Zealand Anostostomatidae are not monophyletic with respect to Australian and New Caledonian species in our analyses. Two of the New Zealand groups have closer allies in Australia and one in New Caledonia. We carried out maximum-likelihood and Bayesian analyses to reveal several well supported subgroupings. Our analysis included the most extensive sampling to date of Hemiandrus species and indicate that Australian and New Zealand Hemiandrus are not monophyletic. We used molecular dating approaches to test the plausibility of alternative biogeographic hypotheses for the origin of the New Zealand anostostomatid fauna and found support for divergence of the main clades at, or shortly after, Gondwanan break-up, and dispersal across the Tasman much more recently.  相似文献   

10.
Orthoglymma Liebherr, Marris, Emberson, Syrett & Roig‐Juñent gen.n. (Coleoptera: Carabidae: Broscini) is described to accommodate the single type species Orthoglymma wangapeka Liebherr, Marris, Emberson, Syrett & Roig‐Juñent sp.n., known from the Wangapeka Track, Kahurangi National Park, north‐western South Island, New Zealand. Orthoglymma wangapeka sp.n. is analysed cladistically along with a comprehensive array of 42 other broscine generic terminals and four out‐group taxa, using information obtained from 73 morphological characters, and placed as adelphotaxon to the remainder of subtribe Nothobroscina, a clade distributed in New Zealand, southern South America and Australia. Based on fossil evidence for Carabidae, the occurrence of Orthoglymma wangapeka sp.n. on the Buller Terrane, a geological feature once situated on the eastern margin of Gondwana, and early cladistic divergence of Orthoglymma from the remaining Nothobroscina, Orthoglymma wangapeka sp.n. is interpreted as a Gondwanan relict. The New Zealand arthropod fauna is reviewed to identify other taxa in existence at the time of Cretaceous vicariance of New Zealand and Australia. These candidate Gondwanan taxa, all of which are specified using fossil data or molecular divergence‐based estimates, are analysed biogeographically. Where phylogenetic hypotheses are available, primordial distributions are optimized using event‐based, dispersal‐vicariance (DIVA) analysis. The hypothesized Gondwanan‐aged taxa demonstrate inordinate fidelity to the Gondwanan‐aged geological terranes that constitute the western portions of New Zealand, especially in the South Island. Persistence of these relicts through a hypothesized ‘Oligocene drowning’ event is the most parsimonious explanation for the concentration of Gondwanan relicts in the Nelson, Buller and Fiordland districts of the South Island. Geographic patterns of Gondwanan‐aged taxa are compared with distributions of taxa hypothesized to have colonized New Zealand across the Tasman Sea from Australia and New Caledonia, subsequent to Cretaceous vicariance. These post‐Gondwanan taxa exhibit very different patterns of distribution and diversification in New Zealand, including: (i) abundant endemism in Northland, and the islands and peninsulas of the North Island; (ii) species geographically restricted to areas underlain by the youngest Rakaia and Pahau geological terranes; and (iii) species exhibiting exceedingly widespread geographic distributions spanning geological terranes of disparate ages.
相似文献   

11.
Aim To test the hypothesis that continental drift drives diversification of organisms through vicariance, we selected a group of primitive arachnids which originated before the break‐up of Pangaea and currently inhabits all major landmasses with the exception of Antarctica, but lacks the ability to disperse across oceanic barriers. Location Major continental temperate to tropical landmasses (North America, South America, Eurasia, Africa, Australia) and continental islands (Bioko, Borneo, Japan, Java, New Caledonia, New Guinea, New Zealand, Sri Lanka, Sulawesi, Sumatra). Methods Five kb of sequence data from five gene regions for more than 100 cyphophthalmid exemplars were analysed phylogenetically using different methods, including direct optimization under parsimony and maximum likelihood under a broad set of analytical parameters. We also used geological calibration points to estimate gross phylogenetic time divergences. Results Our analyses show that all families except the Laurasian Sironidae are monophyletic and adhere to clear biogeographical patterns. Pettalidae is restricted to temperate Gondwana, Neogoveidae to tropical Gondwana, Stylocellidae to Southeast Asia, and Troglosironidae to New Caledonia. Relationships between the families inhabiting these landmasses indicate that New Caledonia is related to tropical Gondwana instead of to the Australian portion of temperate Gondwana. The results also concur with a Gondwanan origin of Florida, as supported by modern geological data. Main conclusions By studying a group of organisms with not only an ancient origin, low vagility and restricted habitats, but also a present global distribution, we have been able to test biogeographical hypotheses at a scale rarely attempted. Our results strongly support the presence of a circum‐Antarctic clade of formerly temperate Gondwanan species, a clade restricted to tropical Gondwana and a Southeast Asian clade that originated from a series of early Gondwanan terranes that rifted off northwards from the Devonian to the Triassic and accreted to tropical Laurasia. The relationships among the Laurasian species remain more obscure.  相似文献   

12.
Abstract The present study uses differences among frugivore faunas of the southern hemisphere landmasses to test whether frugivore characteristics have influenced the evolution of fruit traits. Strong floristic similarities exist among southern landmasses; for example, 75% of New Zealand vascular plant genera also have species in Australia. However, plants in Australia and South America have evolved in the presence of a range of mammalian frugivores, whereas those in New Zealand, New Caledonia and the Pacific Islands have not. In addition, the avian frugivores in New Zealand and New Caledonia are generally smaller than those of Australia. If frugivore characteristics have influenced the evolution of fruit traits, predictable differences should exist between southern hemisphere fruits, particularly fruit size and shape. Fruit dimensions were measured for 77 New Zealand species and 31 Australian species in trans‐Tasman genera. New Zealand fruits became significantly more ellipsoid in shape with increasing size. This is consistent with frugivore gape size imposing a selective pressure on fruit ingestability. This result is not a product of phylogenetic correlates, as fruit length and width scaled isometrically for Australian species in genera shared with New Zealand. Within‐genus contrasts between New Zealand and Australian species in 20 trans‐Tasman genera showed that New Zealand species have significantly smaller fruits than their Australian counterparts. Within‐genus contrasts between New Zealand and South American species in nine genera gave the same result; New Zealand species had significantly smaller fruits than their South American counterparts. No difference was found in fruit size or shape between New Zealand and New Caledonia congeneric species from 12 genera. These results are consistent with the broad characteristics of the frugivore assemblage influencing the evolution of fruit size and shape in related species. The smaller‐sized New Zealand frugivore assemblage has apparently influenced the evolution of fruit size of colonizing taxa sometimes within a relatively short evolutionary timeframe.  相似文献   

13.
NOTHOFAGUS AND PACIFIC BIOGEOGRAPHY   总被引:4,自引:0,他引:4  
Abstract — Gondwanan biogeography, particularly the relationships between southern South America, New Zealand, Australia, New Guinea and New Caledonia, has been much studied. Nothofagus is often used as the "test taxon", and many papers have been directed at using Nothofagus to explain Gondwanan biogeography. Cladistic biogeographers, working on plant material, have generally failed to find congruence among taxa expected from the southern Pacific disjunctions. New morphological and molecular data on the phytogeny of Nothofagus have re-opened the issue, and we analysed these data to construct a new hypothesis of the biogeography of the genus. We assembled all plant taxa for which we could find reasonably robust phylogenetic hypotheses, and sought a parsimonious biogeographical pattern common to all. Two analyses, based on different assumptions, produced the same general areacladogram. We use the general area-cladogram, in conjunction with the fossil record of Nothofagus to construct a historical scenario for the evolution of the genus. This scenario indicates extensive extinction, but also suggests that Australia has a more recent relationship to New Zealand than to southern South America. This is not congruent with the current geological theories, nor with the patterns evident from insect biogeography. We suggest that concordant dispersal is an unlikely explanation for this pattern, and propose that the solution might be found in alternative geological hypotheses.  相似文献   

14.
Aim The distribution of Onychophora across the southern continents has long been considered the result of vicariance events. However, it has recently been hypothesized that New Zealand was completely inundated during the late Oligocene (25–22 Ma) and therefore that the entire biota is the result of long-distance dispersal. We tested this assumption using phylogenetic and molecular dating of DNA sequence data from Onychophora. Location New Zealand, Australia, South Africa, Chile (South America). Methods We obtained DNA sequence data from the nuclear genes 28S and 18S rRNA to reconstruct relationships among species of Peripatopsidae (Onychophora). We performed molecular dating under a Bayesian relaxed clock model with a range of prior distributions using the rifting of South America and South Africa as a calibration. Results Our phylogenetic trees revealed that the New Zealand genera Ooperipatellus and Peripatoides, together with selected Australian genera (Euperipatoides, Phallocephale and an undescribed genus from Tasmania), form a monophyletic group that is the sister group to genera from Chile (Metaperipatus) and South Africa (Peripatopsis and Opisthopatus). The relaxed clock dating analyses yielded mean divergence times from 71.3 to 78.9 Ma for the split of the New Zealand Peripatoides from their Australian sister taxa. The 0.95 Bayesian posterior intervals were very broad and ranged from 24.5 to 137.6 Ma depending on the prior assumptions. The mean divergence of the New Zealand species of Ooperipatellus from the Australian species Ooperipatellus insignis was estimated at between 39.9 and 46.2 Ma, with posterior intervals ranging from 9.5 to 91.6 Ma. Main conclusions The age of Peripatoides is consistent with long-term survival in New Zealand and implies that New Zealand was not completely submerged during the Oligocene. Ooperipatellus is less informative on the question of continuous land in the New Zealand region because we cannot exclude a post-Oligocene divergence. The great age of Peripatoides is consistent with a vicariant origin of this genus resulting from the rifting of New Zealand from the eastern margin of Gondwana and supports the assumptions of previous authors who considered the Onychophora to be a relict component of the New Zealand biota.  相似文献   

15.
Aim To investigate distributional patterns and derivation of skates in the Australasian realm. Location Australasia. Methods Genus‐group skate taxa were defined for this region for the first time and new systematic information, as well as bathymetric and geographical data, used to identify distribution patterns. Results The extant skate fauna of Australasia (Australia, New Zealand, New Caledonia and adjacent subAntarctic dependencies) is highly diverse and endemic with sixty‐two species from twelve currently recognized, nominal genus‐group taxa. These include the hardnose skate (rajin) groups Anacanthobatis, Amblyraja, Dipturus, Okamejei, Rajella and Leucoraja, and softnose skate (arhynchobatin) genera Arhynchobatis, Bathyraja, Insentiraja, Irolita, Pavoraja and Notoraja. Additional new and currently unrecognized nominal taxa of both specific and supraspecific ranks also occur in the region. The subfamily Arhynchobatinae is particularly speciose in Australasia, and the New Zealand/New Caledonian fauna is dominated by undescribed supraspecific taxa and species. The Australian fauna, although well represented by arhynchobatins, is dominated by Dipturus‐like skates and shows little overlap in species composition with the fauna of New Zealand and New Caledonia. Similarly, these faunas exhibit no overlap with the polar faunas of the Australian subAntarctic dependencies (Heard and Macdonald Islands) to the south. Skates appear to be absent from the Macquarie Ridge at the southern margin of the New Zealand Plateau. Their absence off New Guinea probably reflects inadequate sampling and the subsequent poor knowledge of that region's deepwater fish fauna. Main conclusions Skates appear to have existed in the eastern, Australasian sector of Gondwana before fragmentation in the late Cretaceous. The extant fauna appears to be derived from elements of Gondwanan origin, dispersal from the eastern and western Tethys Sea, and intraregional vicariance speciation.  相似文献   

16.
Aim The biogeography of the tropical plant family Monimiaceae has long been thought to reflect the break‐up of West and East Gondwana, followed by limited transoceanic dispersal. Location Southern Hemisphere, with fossils in East and West Gondwana. Methods We use phylogenetic analysis of DNA sequences from 67 of the c. 200 species, representing 26 of the 28 genera of Monimiaceae, and a Bayesian relaxed clock model with fossil prior constraints to estimate species relationships and divergence times. Likelihood optimization is used to infer switches between biogeographical regions on the highest likelihood tree. Results Peumus from Chile, Monimia from the Mascarenes and Palmeria from eastern Australia/New Guinea form a clade that is sister to all other Monimiaceae. The next‐deepest split is between the Sri Lankan Hortonia and the remaining genera. The African Monimiaceae, Xymalos monospora, then forms the sister clade to a polytomy of five clades: (I) Mollinedia and allies from South America; (II) Tambourissa and allies from Madagascar and the Mascarenes; (III) Hedycarya, Kibariopsis and Leviera from New Zealand, New Caledonia and Australia; (IV) Wilkiea, Kibara, Kairoa; and (V) Steganthera and allies, all from tropical Australasia. Main conclusions Tree topology, fossils, inferred divergence times and ances‐tral area reconstruction fit with the break‐up of East Gondwana having left a still discernible signature consisting of sister clades in Chile and Australia. There is no support for previous hypotheses that the break‐up of West Gondwana (Africa/South America) explains disjunctions in the Monimiaceae. The South American Mollinedia clade is only 28–16 Myr old, and appears to have arrived via trans‐Pacific dispersal from Australasia. The clade apparently spread in southern South America prior to the Andean orogeny, fitting with its first‐diverging lineage (Hennecartia) having a southern‐temperate range. The crown ages of the other major clades (II–V) range from 20 to 29 Ma, implying over‐water dispersal between Australia, New Caledonia, New Zealand, and across the Indian Ocean to Madagascar and the Mascarenes. The endemic genus Monimia on the Mascarenes provides an interesting example of an island lineage being much older than the islands on which it presently occurs.  相似文献   

17.
The Lanceocercata are a clade of stick insects (Phasmatodea) that have undergone an impressive evolutionary radiation in Australia, New Caledonia, the Mascarene Islands and areas of the Pacific. Previous research showed that this clade also contained at least two of the nine New Zealand stick insect genera. We have constructed a phylogeny of the Lanceocercata using 2277 bp of mitochondrial and nuclear DNA sequence data to determine whether all nine New Zealand genera are indeed Lanceocercata and whether the New Zealand fauna is monophyletic. DNA sequence data were obtained from mitochondrial cytochrome oxidase subunits I and II and the nuclear large subunit ribosomal RNA and histone subunit 3. These data were subjected to Bayesian phylogenetic inference under a partitioned model and maximum parsimony. The resulting trees show that all the New Zealand genera are nested within a large New Caledonian radiation. The New Zealand genera do not form a monophyletic group, with the genus Spinotectarchus Salmon forming an independent lineage from the remaining eight genera. We analysed Lanceocercata apomorphies to confirm the molecular placement of the New Zealand genera and to identify characters that confirm the polyphyly of the fauna. Molecular dating analyses under a relaxed clock coupled with a Bayesian extension to dispersal‐vicariance analysis was used to reconstruct the biogeographical history for the Lanceocercata. These analyses show that Lanceocercata and their sister group, the Stephanacridini, probably diverged from their South American relatives, the Cladomorphinae, as a result of the separation of Australia, Antarctica and South America. The radiation of the New Caledonian and New Zealand clade began 41.06 million years ago (mya, 29.05–55.40 mya), which corresponds to a period of uplift in New Caledonia. The main New Zealand lineage and Spinotectarchus split from their New Caledonian sister groups 33.72 (23.9–45.62 mya) and 29.9 mya (19.79–41.16 mya) and began to radiate during the late Oligocene and early Miocene, probably in response to a reduction in land area and subsequent uplift in the late Oligocene and early Miocene. We discuss briefly shared host plant patterns between New Zealand and New Caledonia. Because Acrophylla sensu Brock & Hasenpusch is polyphyletic, we have removed Vetilia Stål from synonymy with Acrophylla Gray.  相似文献   

18.
Aim A New Caledonian insect group was studied in a world‐wide phylogenetic context to test: (1) whether local or regional island clades are older than 37 Ma, the postulated re‐emergence time of New Caledonia; (2) whether these clades show evidence for local radiations or multiple colonizations; and (3) whether there is evidence for relict taxa with long branches in phylogenetic trees that relate New Caledonian species to geographically distant taxa. Location New Caledonia, south‐west Pacific. Methods We sampled 43 cricket species representing all tribes of the subfamily Eneopterinae and 15 of the 17 described genera, focusing on taxa distributed in the South Pacific and around New Caledonia. One nuclear and three mitochondrial genes were analysed using Bayesian and parsimony methods. Phylogenetic divergence times were estimated using a relaxed clock method and several calibration criteria. Results The analyses indicate that, under the most conservative dating scenario, New Caledonian eneopterines are 5–16 million years old. The largest group in the Pacific region dates to 18–29 Ma. New Caledonia has been colonized in two phases: the first around 10.6 Ma, with the subsequent diversification of the endemic genus Agnotecous, and the second with more recent events around 1–4 Ma. The distribution of the sister group of Agnotecous and the lack of phylogenetic long branches in the genus refute an assumption of major extinction events in this clade and the hypothesis of local relicts. Main conclusions Our phylogenetic studies invalidate a simple scenario of local persistence of this group in New Caledonia since 80 Ma, either by survival on the New Caledonian island since its rift from Australia, or, if one accepts the submergence of New Caledonia, by local island‐hopping among other subaerial islands, now drowned, in the region during periods of New Caledonian submergence.  相似文献   

19.
Aim Determine the geographical and temporal origins of New Zealand cicadas. Location New Zealand, eastern Australia and New Caledonia. Methods DNA sequences from 14 species of cicadas from New Zealand, Australia, and New Caledonia were examined. A total of 4628 bp were analysed from whole genome extraction of four mitochondrial genes (cytochrome oxidase subunits I and II, and ribosomal 12S and 16S subunits) and one nuclear gene (elongation factor‐1 alpha). These DNA sequences were aligned and analysed using standard phylogenetic methods based primarily on the maximum likelihood optimality criterion. Dates of divergences between clades were determined using several molecular clock methods. Results New Zealand cicadas form two well‐defined clades. One clade groups with Australian taxa, the other with New Caledonian taxa. The molecular clock analyses indicate that New Zealand genera diverged from the Australian and New Caledonian genera within the last 11.6 Myr. Main conclusions New Zealand was likely colonized by two or more invasions. One NZ lineage has its closest relatives in Australia and the other in New Caledonia. These invasions occurred well after New Zealand became isolated from other land masses, therefore cicadas must have crossed large bodies of water to reach New Zealand.  相似文献   

20.
Abstract. Relationships in Henicopidae, the dominant southern temperate clade of Lithobiomorpha, are appraised based on parsimony analysis of forty-nine morphological characters and sequence data from five loci (nuclear ribosomal RNAs 18S and 28S, mitochondrial ribosomal RNAs 12S and 16S, protein-coding mitochondrial cytochrome c oxidase I). A combined analysis of these data used direct character optimization, and tested stability of hypotheses through parameter-sensitivity analysis. The morphology dataset highlighted the mandibles as a source of new characters. Morphology, as well as the most congruent parameters for the sequence data and combined analysis, resolved Zygethobiini within Henicopini. Groups retrieved by combined analysis of the sequences and combination with morphology for all parameters include Anopsobiinae/Henicopinae, Lamyctes + Lamyctinus + Henicops , Paralamyctes ( Paralamyctes ), and a clade that groups the southeastern Australian/New Zealand Paralamyctes ( Haasiella ) and P . ( Thingathinga ). Paralamyctes (including Haasiella ) is a Gondwanan clade in the most congruent cladograms based on all molecular data and combination with morphological data. Biogeographic analysis of subtrees for Paralamyctes resolved the interrelationships of Gondwana as (Patagonia ((New South Wales + southeastern Queensland) ((Tasmania) (southern Africa + India) (New Zealand + north Queensland)))).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号