首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microbial community structure of five geographically distinct hydrothermal vents located within the Axial Seamount caldera, Juan de Fuca Ridge, was examined over 6 years following the 1998 diking eruptive event. Terminal restriction fragment length polymorphism (TRFLP) and 16S rRNA gene sequence analyses were used to determine the bacterial and archaeal diversity, and the statistical software primer v6 was used to compare vent microbiology, temperature and fluid chemistry. Statistical analysis of vent fluid temperature and composition shows that there are significant differences between vents in any year, but that the fluid composition changes over time such that no vent maintains a chemical composition completely distinct from the others. In contrast, the subseafloor microbial communities associated with individual vents changed from year to year, but each location maintained a distinct community structure (based on TRFLP and 16S rRNA gene sequence analyses) that was significantly different from all other vents included in this study. Epsilonproteobacterial microdiversity is shown to be important in distinguishing vent communities, while archaeal microdiversity is less variable between sites. We propose that persistent venting at diffuse flow vents over time creates the potential to isolate and stabilize diverse microbial community structures between vents.  相似文献   

2.
Y Zhang  Z Zhao  CT Chen  K Tang  J Su  N Jiao 《PloS one》2012,7(9):e44593
To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4)) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4) was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4) concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.  相似文献   

3.
Chemosynthetic primary production supports hydrothermal vent ecosystems, but the extent of that productivity and its governing factors have not been well constrained. To better understand anaerobic primary production within massive vent deposits, we conducted a series of incubations at 4, 25, 50 and 90 °C using aggregates recovered from hydrothermal vent structures. We documented in situ geochemistry, measured autochthonous organic carbon stable isotope ratios and assessed microbial community composition and functional gene abundances in three hydrothermal vent chimney structures from Middle Valley on the Juan de Fuca Ridge. Carbon fixation rates were greatest at lower temperatures and were comparable among chimneys. Stable isotope ratios of autochthonous organic carbon were consistent with the Calvin–Benson–Bassham cycle being the predominant mode of carbon fixation for all three chimneys. Chimneys exhibited marked differences in vent fluid geochemistry and microbial community composition, with structures being differentially dominated by gamma (γ) or epsilon (ε) proteobacteria. Similarly, qPCR analyses of functional genes representing different carbon fixation pathways showed striking differences in gene abundance among chimney structures. Carbon fixation rates showed no obvious correlation with observed in situ vent fluid geochemistry, community composition or functional gene abundance. Together, these data reveal that (i) net anaerobic carbon fixation rates among these chimneys are elevated at lower temperatures, (ii) clear differences in community composition and gene abundance exist among chimney structures, and (iii) tremendous spatial heterogeneity within these environments likely confounds efforts to relate the observed rates to in situ microbial and geochemical factors. We also posit that microbes typically thought to be mesophiles are likely active and growing at cooler temperatures, and that their activity at these temperatures comprises the majority of endolithic anaerobic primary production in hydrothermal vent chimneys.  相似文献   

4.
The intact polar lipid (IPL) composition of twelve hydrothermal vent deposits from the Rainbow (RHF) and Lucky Strike hydrothermal fields (LSHF) has been investigated in order to assess its utility as a proxy for microbial community composition associated with deep‐sea hydrothermal locations. Gene‐based culture‐independent surveys of the microbial populations of the same vent deposits have shown that microbial populations are different in the two locations and appear to be controlled by the geochemical and geological processes that drive hydrothermal circulation. Large differences in the IPL composition between these two sites are evident. In the ultramafic‐hosted RHF, mainly archaeal‐IPLs were identified, including those known to be produced by hyperthermophilic Euryarchaeota. More specifically, polyglycosyl derivatives of archaeol and macrocyclic archaeol indicate the presence of hyperthermophilic methanogenic archaea in the vent deposits, which are related to members of the Methanocaldococcaceae or Methanococcaceae. In contrast, bacterial IPLs dominate IPL distributions from LSHF, suggesting that bacteria are more predominant at LSHF than at RHF. Bacterial Diacyl glycerol (DAG) IPLs containing phosphocholine, phosphoethanolamine or phosphoglycerol head groups were identified at both vent fields. In some vent deposits from LSHF ornithine lipids and IPLs containing phosphoaminopentanetetrol head groups were also observed. By comparison with previously characterized bacterial communities at the sites, it is likely the DAG‐IPLs observed derive from Epsilon‐ and Gammaproteobacteria. Variation in the relative amounts of archaeal versus bacterial IPLs appears to indicate differences in the microbial community between vent sites. Overall, IPL distributions appear to be consistent with gene‐based surveys.  相似文献   

5.
Metal sulfide minerals, including mercury sulfides (HgS), are widespread in hydrothermal vent systems where sulfur‐oxidizing microbes are prevalent. Questions remain as to the impact of mineral composition and structure on sulfur‐oxidizing microbial populations at deep‐sea hydrothermal vents, including the possible role of microbial activity in remobilizing elemental Hg from HgS. In the present study, metal sulfides varying in metal composition, structure, and surface area were incubated for 13 days on and near a diffuse‐flow hydrothermal vent at 9°50′N on the East Pacific Rise. Upon retrieval, incubated minerals were examined by scanning electron microscopy with energy‐dispersive X‐ray spectroscopy (SEM‐EDS), X‐ray diffraction (XRD), and epifluorescence microscopy (EFM). DNA was extracted from mineral samples, and the 16S ribosomal RNA gene sequenced to characterize colonizing microbes. Sulfur‐oxidizing genera common to newly exposed surfaces (Sulfurimonas, Sulfurovum, and Arcobacter) were present on all samples. Differences in their relative abundance between and within incubation sites point to constraining effects of the immediate environment and the minerals themselves. Greater variability in colonizing community composition on off‐vent samples suggests that the bioavailability of mineral‐derived sulfide (as influenced by surface area, crystal structure, and reactivity) exerted greater control on microbial colonization in the ambient environment than in the vent environment, where dissolved sulfide is more abundant. The availability of mineral‐derived sulfide as an electron donor may thus be a key control on the activity and proliferation of deep‐sea chemosynthetic communities, and this interpretation supports the potential for microbial dissolution of HgS at hydrothermal vents.  相似文献   

6.
7.
To evaluate possible compositional changes in archaeal communities at a deep-sea hydrothermal vent field scale, we examined five different samples obtained after deploying in situ collectors for different times on three spatially separated venting sulphide structures on the East Pacific Rise (13 degrees N). Direct cell counts and whole-cell hybridizations with fluorescently labelled 16S rRNA-based oligonucleotide probes revealed that the relative abundance of archaeal populations represented from 14 to 33% of the prokaryotic community. 16S rDNA sequence analysis of the archaeal clone libraries indicated that a large percentage of clones were closely related to known archaeal isolates recovered from similar habitats. Among the 24 different phylotypes identified, Thermococcales-related sequences were dominant in all the libraries that also included representative genera of orders Methanopyrales, Methanococcales, Archaeoglobales and Desulfurococcales. The presence of most of these phylogenetic groups was confirmed in enrichment cultures performed at temperatures from 60 to 90 degrees C. Additional sequences with no known cultivated relatives grouped with the Marine group I Crenarchaeota, Korarchaeota and Deep-sea Hydrothermal Vent Euryarchaeota (DHVE) within which a novel lineage was identified. Furthermore, the archaeal community composition was distinct from vent to vent within the same vent field and varied within short time scales. This study provides new insights into microbial diversity and distribution at deep-sea hydrothermal vents.  相似文献   

8.
Microbial communities associated with a variety of hydrothermal emissions at the Yonaguni Knoll IV hydrothermal field, the southernmost Okinawa Trough, were analyzed by culture-dependent and -independent techniques. In this hydrothermal field, dozens of vent sites hosting physically and chemically distinct hydrothermal fluids were observed. Variability in the gas content and formation in the hydrothermal fluids was observed and could be controlled by the potential subseafloor phase-separation and -partition processes. The hydrogen concentration in the hydrothermal fluids was also variable (0.8–3.6 mmol kg−1) among the chimney sites, but was unusually high as compared with those in other Okinawa Trough hydrothermal fields. Despite the physical and chemical variabilities of the hydrothermal fluids, the microbial communities were relatively similar among the habitats. Based on both culture-dependent and -independent analyses of the microbial community structures, members of Thermococcales, Methanococcales and Desulfurococcales likely represent the predominant archaeal components, while members of Nautiliaceae and Thioreductoraceae are considered to dominate the bacterial population. Most of the abundant microbial components appear to be chemolithotrophs sustained by hydrogen oxidation. The relatively consistent microbial communities found in this study could have been because of the sufficient input of hydrogen from the hydrothermal fluids rather than other chemical properties.  相似文献   

9.
Viruses are ubiquitous in the oceans and critical components of marine microbial communities, regulating nutrient transfer to higher trophic levels or to the dissolved organic pool through lysis of host cells. Hydrothermal vent systems are oases of biological activity in the deep oceans, for which knowledge of biodiversity and its impact on global ocean biogeochemical cycling is still in its infancy. In order to gain biological insight into viral communities present in hydrothermal vent systems, we developed a method based on deep-sequencing of pulsed field gel electrophoretic bands representing key viral fractions present in seawater within and surrounding a hydrothermal plume derived from Loki's Castle vent field at the Arctic Mid-Ocean Ridge. The reduction in virus community complexity afforded by this novel approach enabled the near-complete reconstruction of a lambda-like phage genome from the virus fraction of the plume. Phylogenetic examination of distinct gene regions in this lambdoid phage genome unveiled diversity at loci encoding superinfection exclusion- and integrase-like proteins. This suggests the importance of fine-tuning lyosgenic conversion as a viral survival strategy, and provides insights into the nature of host-virus and virus-virus interactions, within hydrothermal plumes. By reducing the complexity of the viral community through targeted sequencing of prominent dsDNA viral fractions, this method has selectively mimicked virus dominance approaching that hitherto achieved only through culturing, thus enabling bioinformatic analysis to locate a lambdoid viral "needle" within the greater viral community "haystack". Such targeted analyses have great potential for accelerating the extraction of biological knowledge from diverse and poorly understood environmental viral communities.  相似文献   

10.
The temporal variation in archaeal diversity in vent fluids from a midocean ridge subseafloor habitat was examined using PCR-amplified 16S rRNA gene sequence analysis and most-probable-number (MPN) cultivation techniques targeting hyperthermophiles. To determine how variations in temperature and chemical characteristics of subseafloor fluids affect the microbial communities, we performed molecular phylogenetic and chemical analyses on diffuse-flow vent fluids from one site shortly after a volcanic eruption in 1998 and again in 1999 and 2000. The archaeal population was divided into particle-attached (>3-μm-diameter cells) and free-living fractions to test the hypothesis that subseafloor microorganisms associated with active hydrothermal systems are adapted for a lifestyle that involves attachment to solid surfaces and formation of biofilms. To delineate between entrained seawater archaea and the indigenous subseafloor microbial community, a background seawater sample was also examined and found to consist only of Group I Crenarchaeota and Group II Euryarchaeota, both of which were also present in vent fluids. The indigenous subseafloor archaeal community consisted of clones related to both mesophilic and hyperthermophilic Methanococcales, as well as many uncultured Euryarchaeota, some of which have been identified in other vent environments. The particle-attached fraction consistently showed greater diversity than the free-living fraction. The fluid and MPN counts indicate that while culturable hyperthermophiles represent less than 1% of the total microbial community, the subseafloor at new eruption sites does support a hyperthermophilic microbial community. The temperature and chemical indicators of the degree of subseafloor mixing appear to be the most important environmental parameters affecting community diversity, and it is apparent that decreasing fluid temperatures correlated with increased entrainment of seawater, decreased concentrations of hydrothermal chemical species, and increased incidence of seawater archaeal sequences.  相似文献   

11.
Taxonomic marker gene studies, such as the 16S rRNA gene, have been used to successfully explore microbial diversity in a variety of marine, terrestrial, and host environments. For some of these environments long term sampling programs are beginning to build a historical record of microbial community structure. Although these 16S rRNA gene datasets do not intrinsically provide information on microbial metabolism or ecosystem function, this information can be developed by identifying metabolisms associated with related, phenotyped strains. Here we introduce the concept of metabolic inference; the systematic prediction of metabolism from phylogeny, and describe a complete pipeline for predicting the metabolic pathways likely to be found in a collection of 16S rRNA gene phylotypes. This framework includes a mechanism for assigning confidence to each metabolic inference that is based on a novel method for evaluating genomic plasticity. We applied this framework to 16S rRNA gene libraries from the West Antarctic Peninsula marine environment, including surface and deep summer samples and surface winter samples. Using statistical methods commonly applied to community ecology data we found that metabolic structure differed between summer surface and winter and deep samples, comparable to an analysis of community structure by 16S rRNA gene phylotypes. While taxonomic variance between samples was primarily driven by low abundance taxa, metabolic variance was attributable to both high and low abundance pathways. This suggests that clades with a high degree of functional redundancy can occupy distinct adjacent niches. Overall our findings demonstrate that inferred metabolism can be used in place of taxonomy to describe the structure of microbial communities. Coupling metabolic inference with targeted metagenomics and an improved collection of completed genomes could be a powerful way to analyze microbial communities in a high-throughput manner that provides direct access to metabolic and ecosystem function.  相似文献   

12.
Few studies have directly measured sulfate reduction at hydrothermal vents, and relatively little is known about how environmental or ecological factors influence rates of sulfate reduction in vent environments. A better understanding of microbially mediated sulfate reduction in hydrothermal vent ecosystems may be achieved by integrating ecological and geochemical data with metabolic rate measurements. Here we present rates of microbially mediated sulfate reduction from three distinct hydrothermal vents in the Middle Valley vent field along the Juan de Fuca Ridge, as well as assessments of bacterial and archaeal diversity, estimates of total biomass and the abundance of functional genes related to sulfate reduction, and in situ geochemistry. Maximum rates of sulfate reduction occurred at 90 °C in all three deposits. Pyrosequencing and functional gene abundance data revealed differences in both biomass and community composition among sites, including differences in the abundance of known sulfate-reducing bacteria. The abundance of sequences for Thermodesulfovibro-like organisms and higher sulfate reduction rates at elevated temperatures suggests that Thermodesulfovibro-like organisms may have a role in sulfate reduction in warmer environments. The rates of sulfate reduction presented here suggest that—within anaerobic niches of hydrothermal deposits—heterotrophic sulfate reduction may be quite common and might contribute substantially to secondary productivity, underscoring the potential role of this process in both sulfur and carbon cycling at vents.  相似文献   

13.
Diverse microbial communities thrive on and in deep-sea hydrothermal vent mineral deposits. However, our understanding of the inter-field variability in these communities is poor, as limited sampling and sequencing efforts have hampered most previous studies. To explore the inter-field variability in these communities, we used barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA gene to characterize the archaeal and bacterial communities of over 30 hydrothermal deposit samples from six vent fields located along the Eastern Lau Spreading Center. Overall, the bacterial and archaeal communities of the Eastern Lau Spreading Center are similar to other active vent deposits, with a high diversity of Epsilonproteobacteria and thermophilic Archaea. However, the archaeal and bacterial communities from the southernmost vent field, Mariner, were significantly different from the other vent fields. At Mariner, the epsilonproteobacterial genus Nautilia and the archaeal family Thermococcaceae were prevalent in most samples, while Lebetimonas and Thermofilaceae were more abundant at the other vent fields. These differences appear to be influenced in part by the unique geochemistry of the Mariner fluids resulting from active degassing of a subsurface magma chamber. These results show that microbial communities associated with hydrothermal vent deposits in back-arc basins are taxonomically similar to those from mid-ocean ridge systems, but differences in geologic processes between vent fields in a back-arc basin can influence microbial community structure.  相似文献   

14.
Deep-sea hydrothermal vent chimneys harbor a high diversity of largely unknown microorganisms. Although the phylogenetic diversity of these microorganisms has been described previously, the adaptation and metabolic potential of the microbial communities is only beginning to be revealed. A pyrosequencing approach was used to directly obtain sequences from a fosmid library constructed from a black smoker chimney 4143-1 in the Mothra hydrothermal vent field at the Juan de Fuca Ridge. A total of 308 034 reads with an average sequence length of 227 bp were generated. Comparative genomic analyses of metagenomes from a variety of environments by two-way clustering of samples and functional gene categories demonstrated that the 4143-1 metagenome clustered most closely with that from a carbonate chimney from Lost City. Both are highly enriched in genes for mismatch repair and homologous recombination, suggesting that the microbial communities have evolved extensive DNA repair systems to cope with the extreme conditions that have potential deleterious effects on the genomes. As previously reported for the Lost City microbiome, the metagenome of chimney 4143-1 exhibited a high proportion of transposases, implying that horizontal gene transfer may be a common occurrence in the deep-sea vent chimney biosphere. In addition, genes for chemotaxis and flagellar assembly were highly enriched in the chimney metagenomes, reflecting the adaptation of the organisms to the highly dynamic conditions present within the chimney walls. Reconstruction of the metabolic pathways revealed that the microbial community in the wall of chimney 4143-1 was mainly fueled by sulfur oxidation, putatively coupled to nitrate reduction to perform inorganic carbon fixation through the Calvin–Benson–Bassham cycle. On the basis of the genomic organization of the key genes of the carbon fixation and sulfur oxidation pathways contained in the large genomic fragments, both obligate and facultative autotrophs appear to be present and contribute to biomass production.  相似文献   

15.
The microbial diversity associated with actively venting deep-sea hydrothermal deposits is tightly connected to the geochemistry of the hydrothermal fluids. Although the dominant members of these deposits drive the structure of the microbial communities, it is less well understood whether the lower abundance groups are as closely connected to the geochemical milieu, or driven perhaps by biotic factors such as microbial community interactions. We used the natural geochemical gradients that exist in the back-arc basin, Eastern Lau Spreading Center and Valu-Fa Ridge (ELSC/VFR) in the Southwestern Pacific, to explore whether the chemolithotrophic Aquificales are influenced by geographical location, host-rock of the vent field or deposit type. Using a combination of cloning, DNA fingerprinting (DGGE) and enrichment culturing approaches, all genera of this order previously described at marine vents were detected, i.e., Desulfurobacterium, Thermovibrio, Aquifex, Hydrogenivirga, Persephonella and Hydrogenothermus. The comparison between clone libraries and DGGE showed similar patterns of distribution of different Aquificales whereas results differed for the enrichment cultures that were retrieved. However, the use of cultivation-based and -independent methods did provide complementary phylogenetic diversity overview of the Aquificales in these systems. Together, this survey revealed that the ELSC/VFR contains some of the largest diversity of Aquificales ever reported at a deep-sea vent area, that the diversity patterns are tied to the geography and geochemistry of the system, and that this geochemical diverse back-arc basin may harbor new members of the Aquificales.  相似文献   

16.
We deployed sediment traps adjacent to two active hydrothermal vents at 9°50'N on the East Pacific Rise (EPR) to assess the variability in bacterial community structure associated with plume particles on the timescale of weeks to months, to determine whether an endemic population of plume microbes exists, and to establish ecological relationships between bacterial populations and vent chemistry. Automated rRNA intergenic spacer analysis (ARISA) indicated that there are separate communities at the two different vents and temporal community variations between each vent. Correlation analysis between chemistry and microbiology indicated that shifts in the coarse particulate (>1 mm) Fe/(Fe+Mn+Al), Cu, V, Ca, Al, (232) Th, and Ti as well as fine-grained particulate (<1 mm) Fe/(Fe+Mn+Al), Fe, Ca, and Co are reflected in shifts in microbial populations. 16S rRNA clone libraries from each trap at three time points revealed a high percentage of Epsilonproteobacteria clones and hyperthermophilic Aquificae. There is a shift toward the end of the experiment to more Gammaproteobacteria and Alphaproteobacteria, many of whom likely participate in Fe and S cycling. The particle-attached plume environment is genetically distinct from the surrounding seawater. While work to date in hydrothermal environments has focused on determining the microbial communities on hydrothermal chimneys and the basaltic lavas that form the surrounding seafloor, little comparable data exist on the plume environment that physically and chemically connects them. By employing sediment traps for a time-series approach to sampling, we show that bacterial community composition on plume particles changes on timescales much shorter than previously known.  相似文献   

17.
Microbial processes within deep-sea hydrothermal plumes affect ocean biogeochemistry on global scales. In rising hydrothermal plumes, a combination of microbial metabolism and particle formation processes initiate the transformation of reduced chemicals like hydrogen sulfide, hydrogen, methane, iron, manganese and ammonia that are abundant in hydrothermal vent fluids. Despite the biogeochemical importance of this rising portion of plumes, it is understudied in comparison to neutrally buoyant plumes. Here we use metagenomics and bioenergetic modeling to describe the abundance and genetic potential of microorganisms in relation to available electron donors in five different hydrothermal plumes and three associated background deep-sea waters from the Eastern Lau Spreading Center located in the Western Pacific Ocean. Three hundred and thirty one distinct genomic ‘bins'' were identified, comprising an estimated 951 genomes of archaea, bacteria, eukarya and viruses. A significant proportion of these genomes is from novel microorganisms and thus reveals insights into the energy metabolism of heretofore unknown microbial groups. Community-wide analyses of genes encoding enzymes that oxidize inorganic energy sources showed that sulfur oxidation was the most abundant and diverse chemolithotrophic microbial metabolism in the community. Genes for sulfur oxidation were commonly present in genomic bins that also contained genes for oxidation of hydrogen and methane, suggesting metabolic versatility in these microbial groups. The relative diversity and abundance of genes encoding hydrogen oxidation was moderate, whereas that of genes for methane and ammonia oxidation was low in comparison to sulfur oxidation. Bioenergetic-thermodynamic modeling supports the metagenomic analyses, showing that oxidation of elemental sulfur with oxygen is the most dominant catabolic reaction in the hydrothermal plumes. We conclude that the energy metabolism of microbial communities inhabiting rising hydrothermal plumes is dictated by the underlying plume chemistry, with a dominant role for sulfur-based chemolithoautotrophy.  相似文献   

18.
Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments.  相似文献   

19.
The temporal variation in archaeal diversity in vent fluids from a midocean ridge subseafloor habitat was examined using PCR-amplified 16S rRNA gene sequence analysis and most-probable-number (MPN) cultivation techniques targeting hyperthermophiles. To determine how variations in temperature and chemical characteristics of subseafloor fluids affect the microbial communities, we performed molecular phylogenetic and chemical analyses on diffuse-flow vent fluids from one site shortly after a volcanic eruption in 1998 and again in 1999 and 2000. The archaeal population was divided into particle-attached (>3-microm-diameter cells) and free-living fractions to test the hypothesis that subseafloor microorganisms associated with active hydrothermal systems are adapted for a lifestyle that involves attachment to solid surfaces and formation of biofilms. To delineate between entrained seawater archaea and the indigenous subseafloor microbial community, a background seawater sample was also examined and found to consist only of Group I Crenarchaeota and Group II Euryarchaeota, both of which were also present in vent fluids. The indigenous subseafloor archaeal community consisted of clones related to both mesophilic and hyperthermophilic Methanococcales, as well as many uncultured Euryarchaeota, some of which have been identified in other vent environments. The particle-attached fraction consistently showed greater diversity than the free-living fraction. The fluid and MPN counts indicate that while culturable hyperthermophiles represent less than 1% of the total microbial community, the subseafloor at new eruption sites does support a hyperthermophilic microbial community. The temperature and chemical indicators of the degree of subseafloor mixing appear to be the most important environmental parameters affecting community diversity, and it is apparent that decreasing fluid temperatures correlated with increased entrainment of seawater, decreased concentrations of hydrothermal chemical species, and increased incidence of seawater archaeal sequences.  相似文献   

20.
Mid-ocean ridge hydrothermal venting creates sulfide deposits containing gradients in mineralogy, fluid chemistry, and temperature. Even when hydrothermal circulation ceases, sulfides are known to host microbial communities. The relationship between mineralogy and microbial community composition in low-temperature, rock-hosted systems has not been resolved at any spatial scale, local or global. To examine the hypothesis that geochemistry of seafloor deposits is a dominant parameter driving environmental pressure for bacterial communities at low-temperature, the shared community membership, richness, and structure was measured using 16S rRNA gene sequences. The focus of the study was on hydrothermally inactive seafloor deposits from multiple locations within one deposit (e.g., single extinct chimney), within one vent field (intra-vent field), and among globally distributed vent fields from three ocean basins (inter-vent field). Distinct mineral substrates, such as hydrothermally inactive sulfides versus basalts, host different communities at low temperature in spite of close geographic proximity and contact with the same hydrothermally influenced deep-sea water. Furthermore, bacterial communities inhabiting hydrothermally inactive sulfide deposits from geographically distant locations cluster together in community cladograms to the exclusion of other deep-sea substrates and settings. From this study, we conclude that at low temperature, mineralogy was a more important variable determining microbial community composition than geographic factors. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号