首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The methodology has been developed to measure cell chloride activity by fluorescence microscopy using the chloride-sensitive dye, 6-methoxy-1-(3-sulfonatopropyl)quinolinium (SPQ). SPQ was loaded into cells of the in vitro microperfused rabbit proximal convoluted tubule by a 10 min luminal perfusion with 20 mM SPQ at 38 degrees C. Fluorescence was excited with a broad band excitation filter (340 and 380 nm) and detected with a 435 nm cut-on filter. The signal to background (autofluorescence) ratio was 4.6 +/- 0.6. The halftime for SPQ leakage from cells at 38 degrees C was 8.6 +/- 1.1 min. In suspended tubules, SPQ did not affect O2 consumption significantly. Intracellular SPQ calibration was performed using the ionophores nigericin and tributyltin, high external potassium concentrations, and varying extracellular chloride concentrations. Cell fluorescence was related to intracellular chloride by a Stern-Volmer relation with a quenching constant of 12 M-1. Apparent chloride concentration in tubules perfused with solutions characteristic for the late proximal convoluted tubule was 27.5 +/- 5 mM (activity 20.6 mM). The halftime of the transient in cell chloride activity upon bath chloride addition was approximately 3 s (38 degrees C). Applications and limitations of this new fluorescence method to study cell chloride transport are discussed.  相似文献   

2.
N P Illsley  A S Verkman 《Biochemistry》1987,26(5):1215-1219
Transport of chloride across cell membranes through exchange, cotransport, or conductive pathways is a subject of great biological importance. Current methods of measurement are restricted in their sensitivity, time resolution, and applicability. A new transport measurement technique has been developed on the basis of the fluorescence quenching by chloride of the dye 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). SPQ fluorescence quenching by chloride is rapid (less than 1 ms) and sensitive, with a greater than 50% decrease in fluorescence at 10 mM chloride. SPQ fluorescence is not altered by other physiological anions or by pH and can be used to measure both neutral and conductive transport processes. The high water solubility and membrane permeability properties of SPQ make it ideal for use in both membrane vesicles and cells. Chloride transport determined with SPQ was validated by measurement of erythrocyte chloride/anion exchange and membrane vesicle chloride conductance.  相似文献   

3.
A quantitative fluorescence assay has been developed to measure Cl flux across liposomal membranes for use in chloride transporter reconstitution studies. A Cl-sensitive fluorophore [6-methoxy-N-(3-sulfopropyl)quinolinium; SPQ] was entrapped into phospholipid/cholesterol liposomes formed by bath sonication, high-pressure extrusion, and detergent dialysis. Liposomes containing entrapped SPQ were separated from external SPQ by passage down a Sephadex G25 column. There was less than 10% leakage of SPQ from liposomes in 8 h at 4 degrees C and in 2 h at 23 degrees C. Cl influx (JCl in millimolar per second or nanomoles per second per centimeter squared) was determined from the time course of SPQ fluorescence, measured by cuvette or stopped-flow fluorometry, in response to inward Cl gradients. In 90% phosphatidylcholine (10% cholesterol liposomes at 23 degrees C, JCl in response to a 50 mM inward Cl gradient was 0.06 +/- 0.01 mM.s-1 (SD, n = 3) in the absence and 0.27 +/- 0.02 mM.s-1 in the presence of a K/valinomycin voltage clamp (0 mV), showing that the basal Cl "leak" is conductive; JCl increased (1.7 +/- 0.1)-fold in the presence of a 60-mV inside-positive diffusion potential. Accuracy of chloride influx rates determined by the SPQ method was confirmed by measurement of 36Cl uptake. In liposomes voltage-clamped to 0 mV, JCl was linear with external [Cl] (0-100 mM), independent of pH gradients, and strongly dependent on temperature (activation energy 18 +/- 1 kcal/mol, 12-42 degrees C) as predicted for channel-independent Cl diffusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We used the chloride fluorescent probe, 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ), to study chloride fluxes in human erythrocytes. The SPQ load was made by hypotonic buffer (150 mOsm, 10 min). Intracellular fluorescence was monitored continuously at 360 nm excitation and 410 nm emission wavelengths. The leakage of SPQ out of cells was <5% h(-1) and the Stern-Volmer constant for quenching of intracellular SPQ by Cl was 0.023 mM(-1). The time course of intracellular [Cl] was measured and the influence of PTH, forskolin, and phorbol 12-myristate 13-acetate (PMA) on erythrocyte Cl transport was examined. The results establish a direct method to measure intracellular [Cl] continuously in erythrocytes and show that PTH induces a Cl efflux inhibited by 4, 4'-diisothiocyanatostilbene-2,2'-disulfonate. This effect was similar to those induced by forskolin, which stimulates cAMP generation, and by PMA, which stimulates protein kinase C.  相似文献   

5.
P Y Chen  A S Verkman 《Biochemistry》1988,27(2):655-660
The mechanisms for Cl transport across basolateral membrane vesicles (BLMV) isolated from rabbit renal cortex were examined by using the Cl-sensitive fluorescent indicator 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). The transporters studied included Cl/base exchange, Cl/base/Na cotransport, K/Cl cotransport, and Cl conductance. Initial rates of chloride influx (JCl) were determined from the measured time course of SPQ fluorescence in BLMV following inwardly directed gradients of Cl and gradients of other ions and/or pH. For a 50 mM inwardly directed Cl gradient in BLMV which were voltage and pH clamped (7.0) using K/valinomycin and nigericin, JCl was 0.80 +/- 0.14 nmol S-1 (mg of vesicle protein)-1 (mean +/- SD, n = 8 separate preparations). In the absence of Na and CO2/HCO3 in voltage-clamped BLMV, JCl increased 56% +/- 5% in response to a 1.9 pH unit inwardly directed H gradient; the increase was further enhanced by 40% +/- 3% in the presence of CO2/HCO3 and inhibited 30% +/- 8% by 100 microM dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. Na gradients did not increase JCl in the absence of CO2/HCO3; however, an outwardly directed Na gradient in the presence of CO2/HCO3 increased JCl by 31% +/- 8% with a Na KD of 7 +/- 2 mM. These results indicate the presence of Cl/OH and Cl/HCO3 exchange, and Cl/HCO3 exchange trans-stimulated by Na. There was no significant effect of K gradients in the presence or absence of valinomycin, suggesting lack of significant K/Cl cotransport and Cl conductance under experimental conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
This study describes a quantitative analysis of the enhancement in anion permeability through swelling-activated Cl- channels, using the halide-sensitive fluorescent dye 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). Cultured bovine corneal endothelial monolayers perfused with NO3- Ringer's were exposed to I- pulses under isosmotic and, subsequently, hyposmotic conditions. Changes in SPQ fluorescence due to I- influx were significantly faster under hyposmotic than under isosmotic conditions. Plasma membrane potential (Em) was -58 and -32 mV under isosmotic and hyposmotic conditions, respectively. An expression for the ratio of I- permeability under hyposmotic condition to that under isosmotic condition (termed enhancement ratio or ER) was derived by combining the Stern-Volmer equation (for modeling SPQ fluorescence quenching by I-) and the Goldman flux equation (for modeling the electrodiffusive unidirectional I- influx). The fluorescence values and slopes at the inflection points of the SPQ fluorescence profile during I- influx, together with Em under isosmotic and hyposmotic conditions, were used to calculate ER. Based on this approach, endothelial cells were shown to express swelling-activated Cl- channels with ER = 4.9 when the hyposmotic shock was 110 +/- 10 mosM. These results illustrate the application of the SPQ-based method for quantitative characterization of swelling-activated Cl- channels in monolayers.  相似文献   

7.
Three fluorescent halide-sensitive quinolinium dyes have been produced by the reaction of the 6-methylquinoline heterocyclic nitrogen base with methyl bromide, methyl iodide, and 3-bromo-1-propanol. The quaternary salts, unlike the precursor molecule, are readily water soluble and the fluorescence intensity of these salts is reduced in the presence of aqueous chloride, bromide, and iodide ions, allowing halide solution concentrations to be determined using well-known Stern-Volmer kinetics. One of the dyes, dye 1, has a chloride Stern-Volmer constant of 255 mol(-1) dm(3) which is more than twice that of SPQ [6-methoxy-N-(3-sulfopropyl)quinolinium] used in recent physiological measurements to measure intracellular chloride levels. The dyes have been characterized using steady-state fluorescence spectroscopy and are compared to three similar dyes based on the 6-methoxyquinoline nucleus, reported earlier by the authors, and also to dyes reported by Krapf et al. (Anal. Biochem. 169, 142-150, 1988). The interference of aqueous anions and the potential for using these dyes in biological halide-sensing applications are discussed.  相似文献   

8.
Nitrite was shown to quench the fluorescence of 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ) almost twofold more than chloride. SPQ loaded inside vesicles prepared from asolectin and isolated erythrocyte ghosts allowed for the direct measurement of nitrite movement across these membranes. Movement of nitrite across asolectin occurred by diffusion as HNO2 in a pH-dependent manner. By contrast, erythrocyte ghosts had very low diffusion rates for nitrous acid. Erythrocyte ghosts preloaded with 50 mM nitrite to quench SPQ fluorescence were utilized to study heteroexchange with externally added anions. SPQ fluorescence increases (becomes unquenched) with added bicarbonate and nitrate, indicating that nitrite is moving out of the preloaded vesicles. The pH optimum for this exchange was approximately 7.6 and exchange was inhibited by N-ethylmaleimide (NEM) and dihydro-4,4-diisothiocyanostilbene-2,2-disulfonic acid (DIDS). These data indicate that nitrite moves across erythrocyte plasma membranes as NO2- by a heteroexchange mechanism with other monovalent anions.  相似文献   

9.
The methodology has been developed to measure Cl activity and transport in cultured cells grown on a monolayer using the entrapped Cl-sensitive fluorophore 6-methoxy-N-[3-sulfopropyl] quinolinium (SPQ). The method was applied to a renal epithelial cell line, LLC-PKI, and a nonepithelial cell line, Swiss 3T3 fibroblasts. SPQ was nontoxic to cells when present for greater than h in the culture media. To load with SPQ (5 mM), cells were made transiently permeable by exposure to hypotonic buffer (150 mOsm, 4 min). Intracellular fluorescence was monitored continuously by epifluorescence microscopy using low illumination intensity at 360 +/- 5 nm excitation wavelength and photomultiplier detection at greater than 410 nm. Over 60 min at 37 degrees C, there was no photobleaching and less than 10% leakage of SPQ out of cells; intracellular SPQ fluorescence was uniform. SPQ fluorescence was calibrated against intracellular [Cl] using high K solutions containing the ionophores nigericin and tributyltin. The Stern-Volmer constant (Kq) for quenching of intracellular SPQ by Cl was 13 M-1 for fibroblasts and LLC-PKl cells. In the absence of Cl, SPQ lifetime was 26 ns in aqueous solution and 3.7 +/- 0.6 ns in cells, showing that the lower Kq in cells than in free solution (Kq = 118 M-1) was due to SPQ quenching by intracellular anions. To examine Cl transport mechanisms, the time course of intracellular [Cl] was measured in response to rapid Cl addition and removal in the presence of ion or pH gradients. In fibroblasts, three distinct Cl transporting systems were identified: a stilbeneinhibitable Cl/HCO3 exchanger, a furosemide-sensitive Na/K/2Cl cotransporter, and a Ca-regulated Cl conductance. These results establish a direct optical method to measure intracellular [Cl] continuously in cultured cells.  相似文献   

10.
Cystic fibrosis (CF) is a frequent autosomal recessive disease caused by mutations that impair the CF transmembrane conductance regulator (CFTR) protein function. CFTR is a chloride channel activated by cyclic AMP (cAMP) via protein kinase A (PKA) and ATP hydrolysis. We describe here a method to measure CFTR activity in a monolayer of cultured cells using a fluorescence spectrophotometer and the chloride-sensitive probe 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). Modifying a slice holder, the spectrophotometer quartz cuvette was converted in a perfusion chamber, allowing measurement of CFTR activity in real time, in a monolayer of T84 colon carcinoma cells. The SPQ Stern–Volmer constant (KCl-) for chloride in water solution was 115.0 ± 2.8 M−1, whereas the intracellular KCl- was 17.8 ± 0.8 M−1, for T84 cells. A functional analysis was performed by measuring CFTR activity in T84 cells. The CFTR transport inhibitors CFTR(inh)-172 (5 μM) and glibenclamide (100 μM) showed a significant reduction (P < 0.05) in CFTR activity. This simple method allows measuring CFTR activity in a very simple, reproducible, and sensitive way.  相似文献   

11.
Resistance to chemotherapeutic agents in neoplastic cells is often mediated by expression of P-glycoprotein, which functions as a drug- efflux pump for a broad range of substrates. We have used a combination of patch clamp and video-imaging techniques to examine the expression and drug-efflux function of P-glycoprotein and to determine the possible correlation with swelling-activated chloride channels in drug- sensitive and -resistant cell lines. Two pairs of cell lines were used in these experiments: (a) control NIH-3T3 cells and a corresponding MDR1-transfectant; and (b) control 8226 myeloma cells and a derivative cell line selected for resistance to chemotherapeutic agents. Control cells lacked detectable P-glycoprotein expression based on Western blotting, immunofluorescence staining with a specific monoclonal antibody, and a functional assay of rhodamine-123 (R123) efflux. Resistant cells expressed P-glycoprotein at high levels and rapidly exported R123. During whole-cell recording using either hyperosmotic pipette solution or hypoosmotic Ringer solution, cell swelling was accompanied by Cl- channel opening in all four cell lines. The rates of induction, biophysical properties and magnitudes of Cl conductance (gCl) were indistinguishable between control and corresponding multidrug-resistant cells: gCl reached 0.96 +/- 0.31 (n = 14) and 0.83 +/- 0.31 nS/pF (mean +/- SD; n = 31) in NIH-3T3 and NIH-3T3/MDR cells, respectively; and 0.31 +/- 0.20 (n = 9) and 0.37 +/- 0.22 nS/pF (n = 7) in 8226 and 8226/Dox40 cells, respectively. gCl exhibited moderate outward rectification in symmetrical Cl- solutions, with a rectification ratio of 1.4 at +/- 50 mV. Cl- channels slowly closed during strong depolarization beyond +60 mV. Using video-imaging techniques with SPQ as a fluorescent probe, we monitored Cl(-)-channel opening in intact drug-sensitive and -resistant cells. gCl, measured either with whole-cell recording or SPQ imaging, was blocked by DIDS (voltage-dependent Kd < 50 microM at +40 mV), NPPB (Kd approximately 30 microM), and tamoxifen (complete and irreversible block approximately 10 microM). None of these blockers inhibited R123 efflux. NPPB accelerated R123 efflux, an effect that was mimicked by CCP, a mitochondrial uncoupler. In contrast, verapamil selectively blocked R123 efflux (Kd = 0.3 to 0.5 microM); 10 microM left gCl unaltered. Induction of gCl was not affected by vincristine or doxorubicin in the pipette solution. Moreover, the rate of R123 efflux did not change during cell swelling. We conclude that P-glycoprotein and swelling- activated chloride channels function independently and are separable by expression and by pharmacological sensitivities.  相似文献   

12.
Chloride fluxes in synaptoneurosomes in response to additions of gamma-aminobutyric acid, glycine, and ethanol were measured using a chloride-sensitive fluorescent probe 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). The Cl- gradient was directed outward by bathing cells in a medium low in Cl- concentration. The synaptoneurosomes responded to both gamma-aminobutyric acid and glycine by outflow of Cl- ions, as judged from an increase in SPQ fluorescence. These effects were inhibited by picrotoxin and strychnine, respectively. Ethanol also produced an outflow of Cl- ions from the synaptoneurosomes. Both picrotoxin and strychnine inhibited this effect. When the antagonists were used together, the inhibiting effect was additive. These results indicate that ethanol affects both gamma-aminobutyric acid and glycine receptor-linked chloride fluxes in the rat brain.  相似文献   

13.
In mouse mammary epithelial C127 cells expressing wild-type cystic fibrosis transmembrane conductance regulator (CFTR), chloride efflux, measured with the Cl(-)-sensitive dye 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ), was stimulated by activation of protein kinase A with cyclic AMP elevating agents forskolin plus 3-isobutyl-1-methyl-xanthine (IBMX) and, to a less extent, by activation of protein kinase C with the phorbol 12-myristate 13-acetate (PMA). Conversely, bicarbonate influx, determined by intracellular alkalinization of cells incubated with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluoresceintetraacetoxymethyl ester (BCECF-AM), was stimulated by cyclic AMP elevation, but not by PMA. Patch clamp analysis revealed that PMA activated a Cl(-) current with the typical biophysical characteristics of swelling-activated current and not of CFTR.  相似文献   

14.
Intracellular chloride in submucosal gland cells   总被引:1,自引:0,他引:1  
T M Dwyer  J M Farley 《Life sciences》1991,48(22):2119-2127
The chloride ion concentration within isolated tracheal submucosal gland cells was studied micro-spectrofluorometrically using a fluorescent dye, 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ), that is quenched by Cl-. Cells from normal weanling swine and from a cystic fibrosis (CF) patient were used. Ion substitution experiments showed that cell fluorescence increased in both cell types when bath Cl- was replaced with the impermeant anion glucuronate. Following a Donnan-type ion substitution that kept the product of the bath K+ and Cl- concentrations constant, reducing bath chloride had little effect on fluorescence for normal cells, but caused a marked increase for CF cells. Thus, K+ and Cl- ions have approximately the same Nernst potential in control submucosal gland cells; in contrast, cells from a CF patient concentrated Cli, resulting in a Cl- Nernst potential that was more positive than the K+ Nernst potential. This finding is consistent with the hypothesis that CF submucosal gland cells have a decreased Cl- permeability.  相似文献   

15.
V Jayaraman  S Thiran  G P Hess 《Biochemistry》1999,38(35):11372-11378
The gamma-aminobuytric acid(A) (GABA(A)) receptor is a membrane-bound protein that mediates signal transmission between neurons through formation of chloride ion channels. GABA is the activating ligand, which upon binding to the receptor triggers channel opening in the microsecond time domain and reversible desensitization of the receptor in the millisecond time region. We have investigated the channel-opening mechanism for this receptor in rat hippocampal neurons before the protein desensitizes by using a rapid flow method (cell-flow) with a 10 ms time resolution and a laser-pulse photolysis technique with a approximately 30 micros time resolution to determine the rate and equilibrium constants for channel opening and closing. Two different forms of the receptor, namely, a rapidly and a slowly desensitizing form, exist in the rat hippocampal cells and are characterized by their different rates for desensitization. At 250 microM GABA the rate constant for desensitization was 2.3 +/- 0.4 s(-)(1) for the rapidly desensitizing form and 0.4 +/- 0.1 s(-)(1) for the slowly desensitizing form. The dissociation constant of GABA from the site controlling channel opening was 100 +/- 40 microM for the rapidly desensitizing form and 120 +/- 60 microM for the slowly desensitizing form. The rate constants for channel closing did not differ significantly for the two forms, 85 +/- 20 s(-)(1) for the rapidly desensitizing and 100 +/- 60 s(-)(1) for the slowly desensitizing form. However, the channel-opening rate constant differed by a factor of 3, 1840 +/- 160 s(-)(1) for the rapidly desensitizing and 6700 +/- 330 s(-)(1) for the slowly desensitizing form. This difference in the rate constant for channel opening for the two forms, determined by the laser-pulse photolysis technique, is reflected as a shift in the channel-opening equilibrium constant, which is 7 +/- 5 and 20 +/- 15 for the rapidly and slowly desensitizing forms respectively, determined by the cell-flow method. These constants, together with the concentration of GABA and the concentration of receptor sites in the membrane, determine the number of channels that open as a function of GABA concentration, and the rate at which they open and close. These constants play an important role in determining the rate of the transmembrane ion flux and, therefore, the receptor-controlled changes in transmembrane voltage that trigger signal transmission.  相似文献   

16.
In mouse mammary epithelial C127 cells expressing wild-type cystic fibrosis transmembrane conductance regulator (CFTR), chloride efflux, measured with the Cl-sensitive dye 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ), was stimulated by activation of protein kinase A with cyclic AMP elevating agents forskolin plus 3-isobutyl-1-methyl-xanthine (IBMX) and, to a less extent, by activation of protein kinase C with the phorbol 12-myristate 13-acetate (PMA). Conversely, bicarbonate influx, determined by intracellular alkalinization of cells incubated with the pH-sensitive dye 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluoresceintetraacetoxymethyl ester (BCECF-AM), was stimulated by cyclic AMP elevation, but not by PMA. Patch clamp analysis revealed that PMA activated a Cl current with the typical biophysical characteristics of swelling-activated current and not of CFTR.  相似文献   

17.
Organotin cations (R3Sn+) form electrically neutral ion pairs with monovalent anions. It is demonstrated that the tin derivatives induce exchange diffusion of chloride in red cells and resealed ghosts, without any detectable increase of membrane permeability to net movements of chloride ions. The obligatory anion exchange is believed to be due to the permeation of electroneural ion pairs, whereas the organic cation (R3Sn+) has an extremely low membrane permeability. Exchange fluxes of chloride increased with the lipophilicity of the substituting group (R3). At the same molar concentration of organotin, the relative potencies of the tin derivatives as anion carriers (with trimethyltin as a reference) were: methyl 1, ethyl 30, propyl = phenyl 1,00, and butyl 10,000. Tributyltin-mediated anion exchange was studied in detail. The organotin-induced anion transport increased through the sequence: F- less than Cl- less than Br- less than I- = SCN- less than OH-. Partitioning of tributyltin into red cell membranes was greater in iodide than in chloride media (partition coefficients 6.6 and 1.7 x 10(-3) cm, respectively). Bicarbonate, fluoride, nitrate, phosphate, and sulphate did not exchange with chloride in the presence of tributyltin. Chloride exchange fluxes increased linearly with tributylin concentrations up to 10(-5) M, and with chloride concentrations up to at least 0.9 M. The apparent turnover number for tributyltin-mediated chloride exchange increased from 15 to 1,350 s-1 between 0 and 38 degrees C. These figures are minimum turnover numbers, because it is not known what fraction of the organotin in the membrane exists as chloride ion pairs.  相似文献   

18.
Cyclic AMP-activated chloride fluxes have been analyzed in HT29-18-C1 cells (a clonal cell line derived from a human colon carcinoma) using measurements of cell volume (electronic cell sizing), cell chloride content (chloride titrator) and intracellular chloride activity (6-methoxy-N-(3-sulfopropyl)quinolinium; SPQ). HT29-18-C1 was shown to mediate polarized chloride transport. In unstimulated cells, the apical membrane was impermeable to chloride and net chloride flux was mediated by basolateral furosemide-sensitive transport. Forskolin (10) (m) increased furosemideinsensitive chloride permeability of the apical membrane, and decreased steady-state intracellular chloride concentration approximately 9%. Cellular chloride depletion (substitution of medium chloride by nitrate or gluconate), caused greater than fourfold reduction in cellular chloride concentration. When chloride-depleted cells were returned to normal medium, cells regained chloride and osmolytes via bumetanide-sensitive transport, but forskolin did not stimulate bumetanideinsensitive chloride uptake. The inhibition of cAMP-activated chloride reuptake was not explained by limiting cation conductance, cell shrinkage, choice of substitute anion, or decreased generation of cAMP in chloridedepleted cells. When cells with normal chloride content were depolarized (135 mm medium potassium + 10 m valinomycin), cAMP activated electrogenic chloride uptake permselective for ClBr>NO 3 >I. The electrogenic transport pathway was inhibited in chloridedepleted cells. Results suggest that chloride depletion limits activation of electrogenic chloride flux.The technical assistance of Dwight Derr is gratefully acknowledged. We also thank Dr. Chahrzad Montrose-Rafizadeh for help in performance of the chloride efflux experiments. This work was supported by National Institutes of Health grants RO1-DK42457 and PO1-DK44484.  相似文献   

19.
The kinetics of binding of the mercurial sulfhydryl reagent, pCMBS (p-chloromercuribenzene sulfonate), to the extracellular site(s) at which pCMBS inhibits water and urea transport across the human red cell membrane, have previously been characterized. To determine whether pCMBS binding alters Cl- transport, we measured Cl-/NO3- exchange by fluorescence enhancement, using the dye SPQ (6-methoxy-N-(3-sulfopropyl)quinolinium). An essentially instantaneous extracellular phase of pCMBS inhibition is followed by a much slower intracellular phase, correlated with pCMBS permeation. We attribute the instantaneous phase to competitive inhibition of Cl- binding to band 3 by the pCMBS anion. The ID50 of 2.0 +/- 0.1 mM agrees with other organic sulfonates, but is very much greater than that of pCMBS inhibition of urea and water transport, showing that pCMBS reaction with water and urea transport inhibition sites has no effect on anion exchange. The intracellular inhibition by 1 mM pCMBS (1 h) is apparently non-competitive with Ki = 5.5 +/- 6.3 mM, presumably an allosteric effect of pCMBS binding to an intracellular band 3-related sulfhydryl group. After N-ethylmaleimide (NEM) treatment to block these band 3 sulfhydryl groups, there is apparent non-competitive inhibition with Ki = 2.1 +/- 1.2 mM, which suggests that pCMBS reacts with one of the NEM-insensitive sulfhydryl groups on a protein that links band 3 to the cytoskeleton, perhaps ankyrin or bands 4.1 and 4.2.  相似文献   

20.
A fluorimetric assay was developed to measure halide release from halogenated compounds being degraded by microbes. The method relies on the property of halides to quench the fluorescence of 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ) by collision quenching. The assay shows a wide response to halide concentration (1-500 mM) and tolerates a wide pH range. Furthermore, it is simple to use, has the potential for automation and uses an inexpensive non-toxic reagent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号