首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The circadian locomotor activity rhythm of the Japanese newt has been thought to be driven by a putative brain oscillator(s) subordinate to the pineal clock. The existence of mutual coupling between the pineal clock and the brain oscillator(s) in vivo was examined. We covered the newt's skull with aluminum foil and simultaneously reversed the light-dark cycle, thereby allowing the pineal organ to be exposed to constant darkness while the rest of the animal was exposed to the reversed light-dark cycle. In control animals, whose heads were covered with transparent plastic, the rhythm of synaptic ribbon number in the pineal photoreceptor cells was entrained to the reversed light-dark cycle. Rhythms from newts whose heads were shielded, however, were similar to those observed in the unoperated newts kept under constant darkness. The locomotor activity rhythms of both head-covered animals and control animals were entrained to the reversed light-dark cycle. These data suggest that extrapineal photoreception can entrain the putative brain oscillator(s), but not the pineal clock. Thus, at least in an aspect of photic entrainment, there seems to be little or no mutual coupling between the pineal clock and the putative brain oscillator(s) in the circadian system of the Japanese newt.Abbreviations LD light-dark - DD constant darkness - SCN suprachiasmatic nucleus - SR synaptic ribbon  相似文献   

2.
Summary The roles of the pineal organ and the eye in the control of circadian locomotor rhythmicity were studied in the pigeon (Columba livia). Neither pinealectomy nor blinding abolished the circadian rhythms in constant dim light conditions (LLdim). All the pinealectomized birds and the blinded birds entrained to light-dark (LD) cycles with no discernible anticipatory activity. However, the birds which had been both pinealectomized and blinded showed no circadian rhythms in prolonged LLdim. These birds entrained to LD cycles with anticipatory activity and showed residual rhythmicity for a while after transfer from LD cycles to LLdim. Continuous administration of melatonin induced suppression of the circadian rhythms and reduced total amount of locomotor activity in LLdim. These results suggest that not only the pineal organ but also the eye (perhaps the retina) is involved in the pigeon's circadian system.Abbreviations NAT N-acetyltransferase - LLdim constant dim light - cadian period - SCN suprachiasmatic nucleus - circadian activity time - LD light-dark  相似文献   

3.
Daily and circadian variations of melatonin contents in the diencephalic region containing the pineal organ, the lateral eyes, and plasma were studied in a urodele amphibian, the Japanese newt (Cynops pyrrhogaster), to investigate the possible roles of melatonin in the circadian system. Melatonin levels in the pineal region and the lateral eyes exhibited daily variations with higher levels during the dark phase than during the light phase under a light-dark cycle of 12 h light and 12 h darkness (LD12:12). These rhythms persisted even under constant darkness but the phase of the rhythm was different from each other. Melatonin levels in the plasma also exhibited significant day-night changes with higher values at mid-dark than at mid-light under LD 12:12. The day-night changes in plasma melatonin levels were abolished in the pinealectomized (Px), ophthalmectomized (Ex), and Px+Ex newts but not in the sham-operated newts. These results indicate that in the Japanese newts, melatonin production in the pineal organ and the lateral eyes were regulated by both environmental light-dark cycles and endogenous circadian clocks, probably located in the pineal organ and the retina, respectively, and that both the pineal organ and the lateral eyes are required to maintain the daily variations of circulating melatonin levels.  相似文献   

4.
Summary Locomotor activity of the river lamprey, Lampetra japonica, was investigated under a light-dark (LD 1212) cycle and under continuous dark conditions. Intact lampreys were entrained to the light:dark cycle. They were active mainly in the early half of the dark period and inactive in light period. The light:dark entrainment continued in 72.7% of lampreys after the removal of bilateral eyes, but additional pinealectomy made the entrainment disappear in all lampreys. When lampreys were pinealectomized with their eyes intact, light: dark entrainment was abolished in most cases. The results indicate that the pineal organ of the lamprey is a photoreceptive organ responsible for synchronizing locomotor activity to LD cycle. Under continuous dark conditions, the locomotor activity began to free-run with a period of 21.3 ± 0.9 h (mean ± SD, n = 53). This circadian rhythmicity was not affected by the removal of lateral eyes but was abolished by pinealectomy. The pineal organ appears to function as an oscillator, or as one of the oscillators, for the circadian locomotor rhythm of lampreys.Abbreviations DD continuous dark - LD light:dark  相似文献   

5.
Summary Locomotor activity and feeding activity were measured together with circulating levels of melatonin in pigeons which were exposed to constant bright light (LLbright, 2000 lux) following light-dark (LD) cycles. Although all the pigeons showed daily rhythms of locomotor activity, feeding activity, and melatonin levels under LD cycles, they lost all the rhythms in prolonged LLbright. Acute exposure to bright light (2000 lux) during darkness reduced plasma melatonin levels. The half-time for the suppression in melatonin levels was about 30 min after short-term light exposure. These results support the hypothesis that melatonin may control the circadian rhythms of locomotor activity and feeding activity in the pigeon.Abbreviations LD light-dark - LLdim constant dim light - LLbright constant bright light - DD constant darkness - PX pinealectomy - EX blinding - RIA radioimmunoassay  相似文献   

6.
Summary Although pinealectomy or blinding resulted in loss of the clarity of the free-running rhythm of locomotor activity and body temperature and reduced the peak level of circulating melatonin rhythms to approximately a half in intact pigeons, neither pinealectomy nor blinding abolished any of these rhythms. However, when pinealectomy and blinding were combined, the rhythms of locomotor activity and body temperature disappeared in prolonged constant dim light, and melatonin concentration was reduced to the minimum level of detection. In order to examine the role of melatonin in the pigeon's circadian system, it was administered either daily or continuously to PX + EX-pigeons in LLdim. Daily administration of melatonin restored circadian rhythms of locomotor activity which entrained to melatonin injections, but continuous administration did not induce any remarkable change of locomotor activity. These results suggest that melatonin synthesized in the pineal body and the eye contributes to circulating melatonin and its rhythmicity is important for the control of circadian rhythms of locomotor activity and body temperature in the pigeon.Abbreviations LD Light-dark - LLdim constant dim light - LLbright constant bright light - PX pinealectomy - EX blinding - SCN suprachiasmatic nucleus  相似文献   

7.
The locomotor activity of the millipede Glyphiulus cavernicolus (Spirostreptida), which occupies the deeper recesses of a cave, was monitored in light-dark (LD) cycles (12h light and 12h darkness), constant darkness (DD), and constant light (LL) conditions. These millipedes live inside the cave and are apparently never exposed to any periodic factors of the environment such as light-dark, temperature, and humidity cycles. The activity of a considerable fraction of these millipedes was found to show circadian rhythm, which entrained to a 12:12 LD cycle with maximum activity during the dark phase of the LD cycle. Under constant darkness (DD), 56.5% of the millipedes (n = 23) showed circadian rhythms, with average free-running period of 25.7h ± 3.3h (mean ± SD, range 22.3h to 35.0h). The remaining 43.5% of the millipedes, however, did not show any clear-cut rhythm. Under DD conditions following an exposure to LD cycles, 66.7% (n = 9) showed faint circadian rhythm, with average free-running period of 24.0h ± 0.8h (mean ± SD, range 22.9h to 25.2h). Under constant light (LL) conditions, only 2 millipedes of 11 showed free-running rhythms, with average period length of 33.3h ± 1.3h. The results suggest that these cave-dwelling millipedes still possess the capacity to measure time and respond to light and dark situations. (Chronobiology International, 17(6), 757-765, 2000)  相似文献   

8.
The locomotor activity of the millipede Glyphiulus cavernicolus (Spirostreptida), which occupies the deeper recesses of a cave, was monitored in light-dark (LD) cycles (12h light and 12h darkness), constant darkness (DD), and constant light (LL) conditions. These millipedes live inside the cave and are apparently never exposed to any periodic factors of the environment such as light-dark, temperature, and humidity cycles. The activity of a considerable fraction of these millipedes was found to show circadian rhythm, which entrained to a 12:12 LD cycle with maximum activity during the dark phase of the LD cycle. Under constant darkness (DD), 56.5% of the millipedes (n = 23) showed circadian rhythms, with average free-running period of 25.7h ± 3.3h (mean ± SD, range 22.3h to 35.0h). The remaining 43.5% of the millipedes, however, did not show any clear-cut rhythm. Under DD conditions following an exposure to LD cycles, 66.7% (n = 9) showed faint circadian rhythm, with average free-running period of 24.0h ± 0.8h (mean ± SD, range 22.9h to 25.2h). Under constant light (LL) conditions, only 2 millipedes of 11 showed free-running rhythms, with average period length of 33.3h ± 1.3h. The results suggest that these cave-dwelling millipedes still possess the capacity to measure time and respond to light and dark situations. (Chronobiology International, 17(6), 757–765, 2000)  相似文献   

9.
We examined whether melatonin can act as a synchronizing agent within the circadian system of amphibians by testing the ability of melatonin injections to entrain the circadian locomotor activity rhythm of a newt (Cynops pyrrhogaster). Under constant darkness, all newts (13 cases) showing the free-running rhythms were subcutaneously injected with 10 g melatonin at the same time every other day for at least 30 days. Subsequently, they were injected with vehicle (1% ethanolic saline) instead of melatonin for at least another 30 days. In 10 of the 13 newts, the locomotor activity rhythms could be entrained to a period of 24 h by melatonin injections but not by vehicle injections. During the entrained steady-state, the active phase of an activity-rest cycle preceded the time of melatonin injections as previously reported in other diurnal species. These results suggest that the endogenous circadian rhythm of melatonin concentration may be involved in synchronizing circadian oscillator(s) within the newt's circadian system.  相似文献   

10.
Summary The locomotor activity rhythm of normal anoles freerunning in conditions of constant darkness or constant dim light typically shows a bimodal pattern. Pinealectomy of freerunning anoles renders the lizards arrhythmic (continuously active). Pinealectomy of anoles entrained to light-dark (LD) cycles often causes a large phase advance of the lizards' daily activity onsets relative to light onsets. Also, the activity onsets of individual pinealectomized anoles entrained to LD cycles often alternate between two preferred phase relationships relative to the LD cycle. These data support the hypothesis that at least two circadian oscillators (or sets of oscillators) drive the overt rhythm of locomotor activity and the pineal acts either as a circadian pacemaker or as a coupling device for these oscillators.Abbreviation SCN suprachiasmatic nuclei  相似文献   

11.
Summary The pineal and the eyes are known to be important components in the circadian system of some species of lizards; their effects may be mediated by the hormone melatonin. We examined the role played by these structures in the desert iguana (Dipsosaurus dorsalis). Surgical removal of the pineal had no effect on circadian locomotor rhythms, even though this procedure abolished the circadian rhythm of melatonin in the blood. Furthermore, when the isolated pineal of Dipsosaurus was studied in organ culture, it showed no circadian rhythm of melatonin secretion, as do pineals of some other lizard species, although it did produce large quantities of this hormone. Bilateral ocular enucleation had only small effects on the freerunning period of locomotor rhythms, without affecting melatonin levels in the blood. Behavioral circadian rhythms persisted in desert iguanas subjected to both enucleation and pinealectomy. These data suggest that neither the pineal nor the eyes are central components of the circadian pacemaking system in Dipsosaurus, nor is melatonin critically involved in maintaining its organization.Abbreviations CT circadian time - ZT zeitgeber time - LL constant light - LD light-dark cycle - DD constant darkness - freerunning circadian period  相似文献   

12.
In order to contribute to a comparative view on lacertids, the effect of pinealectomy on the freerunning activity displayed under constant darkness and temperature (27.5°C ± 0.5) has been studied in the lizard Gallotia galloti eisentrauti . Animals showed an entrained motor activity rhythm under an initial light-dark (12:12 hours) routine and freerunning circadian periods ranging between 24.1 and 25.5 h during constant darkness (periodograms obtained by Sokolove & Bushell's method). After pinealectomy, most animals showed no significant circadian rhythm, their locomotor activity becoming diffuse throughout the whole 24 h period. Thus, the pineal gland seems to play an important role as a main pacemaker regulating the endogenous activity rhythm under constant conditions. This result contrasts with that found in Podarcis sicula where after pinealectomy only changes in length of the freerunning period were found.  相似文献   

13.
Summary A marked interspecific variability in the role played by the pineal and the retinae characterizes the circadian system of lizards. I examined the role played by these structures in a new model species, the ruin lizard, Podarcis sicula. In constant temperature and darkness pinealectomy as well as bilateral removal of the retinae produced significant changes (both lengthening and shortening) in the freerunning period of locomotor rhythms. Circadian activity time was also affected by pinealectomy. Circadian locomotor rhythmicity persisted in all cases even when both operations were combined in the same individuals. This demonstrates in Podarcis sicula the existence of an oscillatory system outside the pineal and the retinae which can drive locomotor rhythms. The period changes recorded after pinealectomy as well as after bilateral removal of the retinae specifically suggest that both the pineal and the retinae play a modulating role on circadian oscillators located elsewhere in the system, with the final effect of stabilizing the overt rhythms.Abbreviations DD constant darkness - LL constant light - PIN-X pinealectomy - RET-X bilateral removal of the retinae - SHAM sham pinealectomy - circadian activity time - freerunning circadian period  相似文献   

14.
Lycosa tarentula is a ground-living spider that inhabits a burrow where it awaits the appearance of prey or conspecifics. In this study, circadian rhythms of locomotor activity were examined as well as the ocular pathway of entrainment. Thirty-three adult virgin females were examined under constant darkness (DD); all of them exhibited robust circadian rhythms of locomotor activity with a period averaging 24.1h. Fourteen of these spiders were studied afterwards under an LD 12:12 cycle; they usually entrained to in the first or second day, even when the light intensity was as low as 1 lx. During the LD cycle, locomotor activity was generally restrained to the darkness phase, although several animals showed a small amount of diurnal activity. Ten males were also examined under LD; they were also nocturnal, but were much more active than the females. Seven females were examined under constant light (LL); under this they became arrhythmic. Except for the anterior median eyes (OMAs), all the eyes were capable of entraining the locomotor activity to an LD cycle. These results demonstrate that under laboratory conditions and low light intensities locomotor activity of Lycosa tarentula is circadian and in accordance with Aschoff's 'rule'. Only OMAs are unable to entrain the rhythm; the possible localization of circadian clock is therefore discussed.  相似文献   

15.
Adult lizards (Sceloporus torquatus) were used to test whether seasonal differences in the effects of pinealectomy upon the locomotor activity rhythm exist. Animals were field collected and exposed to artificial light - dark cycles and constant temperature in winter and summer. Free running circadian rhythms under constant temperature and dim red light were monitored using infrared light-crossings. The effects of pinealectomy were assessed by analysing the circadian parameters of free running period and activity - rest ratio in constant darkness or light - dark cycles. Results obtained indicate that pinealectomy changes the free running period of locomotor activity rhythm, irrespective of season, while seasonal differences in activity-rest ratio were detected. Our findings support the hypothesis that seasonal regulation of circadian rhythms in lizards is accomplished, in part, via the output of the pineal gland.  相似文献   

16.
Lycosa tarentula is a ground-living spider that inhabits a burrow where it awaits the appearance of prey or conspecifics. In this study, circadian rhythms of locomotor activity were examined as well as the ocular pathway of entrainment. Thirty-three adult virgin females were examined under constant darkness (DD); all of them exhibited robust circadian rhythms of locomotor activity with a period averaging 24.1h. Fourteen of these spiders were studied afterwards under an LD 12:12 cycle; they usually entrained to in the first or second day, even when the light intensity was as low as 1 lx. During the LD cycle, locomotor activity was generally restrained to the darkness phase, although several animals showed a small amount of diurnal activity. Ten males were also examined under LD; they were also nocturnal, but were much more active than the females. Seven females were examined under constant light (LL); under this they became arrhythmic. Except for the anterior median eyes (OMAs), all the eyes were capable of entraining the locomotor activity to an LD cycle. These results demonstrate that under laboratory conditions and low light intensities locomotor activity of Lycosa tarentula is circadian and in accordance with Aschoff's 'rule'. Only OMAs are unable to entrain the rhythm; the possible localization of circadian clock is therefore discussed.  相似文献   

17.
A population of the fruit fly Drosophila melanogaster was raised in periodic light/dark (LD) cycles of 12:12 h for about 35 generations. Eclosion, locomotor activity, and oviposition were found to be rhythmic in these flies, when assayed in constant laboratory conditions where the light intensity, temperature, humidity and other factors which could possibly act as time cue for these flies, were kept constant. These rhythms also entrained to a LD cycle of 12:12 h in the laboratory with each of them adopting a different temporal niche. The free-running periods (tau) of the eclosion, locomotor activity and oviposition rhythms were significantly different from each other. The peak of eclosion and the onset of locomotor activity occurred during the light phase of the LD cycle, whereas the peak of oviposition was found to occur during the dark phase of the LD cycle. Based on these results, we conclude that different circadian oscillators control the eclosion, locomotor activity and oviposition rhythms in the fruit fly D. melanogaster.  相似文献   

18.
Six female mice were studied separately for six weeks, first in constant light (300 lx), and then on a 12 : 12 L : D schedule (light on 07:00–19:00–h). Food and water were available ad libitum. Abdominal temperature and spontaneous locomotor activity were measured every 10 min. In constant light, the animals free-ran with both temperature and activity records showing circadian rhythms that were significantly greater than 24 h; by contrast, in the LD schedule, the circadian rhythms had become entrained and showed a stable phase relation to this schedule. The direct masking effects upon raw temperatures caused by bursts of activity were clearly seen, and could be removed by a process of ‘purification’. A comparison of the activity profiles during the entrained and free-running phases showed that the imposed light-dark cycle resulted in decreased activity in the light, increased activity in the dark, and bursts of activity at the light-dark and dark-light transitions. Masking effects due to the activity profile were present in the raw temperature profile, and many could be removed by purification using the activity profile; however, there was evidence that other masking effects, independent of activity, were present also. The efficacy of thermoregulatory compensation, as assessed from the rise of core temperature produced by spontaneous locomotor activity, was, in comparison with the free-running condition, increased in the dark phase and decreased in the light phase; this would appear to be one way to limit the temperature rise that occurs in the active phase of the rest-activity cycle.  相似文献   

19.
The effects of hypothalamic lesioning and removal of the eyes on locomotor activity rhythms of African clawed frog, Xenopus laevis were examined under light-dark cycles (LD12:12) and constant conditions. Frogs were kept individually and the activity rhythms at the bottom layer of water tank were recorded by means of the infrared photocells. Intact frogs displayed clear entrained nocturnal activity and expressed freerunning activity rhythms in constant darkness (DD), while some frogs did not freerun under co nstant dim light (dimLL) and constant light (LL). Freerunning periods in intact frogs were significantly shorter in dimLL than in DD. Although freerunning periods were shortened after blinding in same individuals, no significant changes in the freerunning periods were observed after blinding under dimLL and LL. When electrolytic lesions to the hypothalamus were performed, all frogs with more than 70% damage of the SCN abolished freerunning rhythms and in frogs with less than 70% damage, 57% of the animals became arrhythmic. In conclusion, (1) There is a circadian pacemaker somewhere outside the eyes, and it is probably situated in the hypothalamusincluding the SCN. (2) Both the eyes and the SCN are involved in the circadian system of the frogs.  相似文献   

20.
The effects of hypothalamic lesioning and removal of the eyes on locomotor activity rhythms of African clawed frog, Xenopus laevis were examined under light-dark cycles (LD12:12) and constant conditions. Frogs were kept individually and the activity rhythms at the bottom layer of water tank were recorded by means of the infrared photocells. Intact frogs displayed clear entrained nocturnal activity and expressed freerunning activity rhythms in constant darkness (DD), while some frogs did not freerun under co nstant dim light (dimLL) and constant light (LL). Freerunning periods in intact frogs were significantly shorter in dimLL than in DD. Although freerunning periods were shortened after blinding in same individuals, no significant changes in the freerunning periods were observed after blinding under dimLL and LL. When electrolytic lesions to the hypothalamus were performed, all frogs with more than 70% damage of the SCN abolished freerunning rhythms and in frogs with less than 70% damage, 57% of the animals became arrhythmic. In conclusion, (1) There is a circadian pacemaker somewhere outside the eyes, and it is probably situated in the hypothalamusincluding the SCN. (2) Both the eyes and the SCN are involved in the circadian system of the frogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号