首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: We sought to investigate whether dexamethasone produces a coordinated, time-dependent effect on all enzymes in the catecholamine biosynthetic pathway in PC12 cells. The levels of mRNAs of tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AADC), and dopamine γ-hydroxylase (DBH) were examined at 0, 6, 12, 24, and 48 h after dexamethasone (5 μ M ) treatment to PC12 cells. The levels of all enzyme mRNAs steadily increased for 24 h, although the increase of AADC mRNA content was slow. The increased mRNA levels of TH and AADC were maintained at 48 h, whereas the level of DBH mRNA was sharply decreased at 48 h. The maximally induced mRNA levels were ∼5.0-, 2.4-, and 7.0-fold higher than the control levels of TH, AADC, and DBH, respectively. The elevation of enzyme activities was detected later than the increase in levels of mRNAs. The maximal activities of TH, AADC, and DBH were reached between 48 and 72 h with 3.6-, 1.8-, and 8.0-fold increases, respectively. Low, but detectable, phenylethanolamine N -methyltransferase (PNMT) activity was observed in PC12 cells, and dexamethasone increased its activity 5.6-fold at 72 h. The PNMT mRNA was easily detected by northern blot analysis after exposure for 24 h to dexamethasone. The data suggest that, in PC12 cells, dexamethasone up-regulates all catecholamine biosynthetic enzyme genes in a parallel fashion.  相似文献   

2.
The cell-free translation products of mRNA from canine myocardium were immunoprecipitated using antiserum specific for either the MM or mitochondrial creatine kinase subunit. The two subunits were shown to be encoded by the nuclear genome and translated from separate mRNAs. The mitochondrial subunit was translated as a polypeptide with a molecular weight approximately 6,000 greater than the mature form of the enzyme. In contrast, the M-subunit was translated as a polypeptide having a molecular weight identical to that of the mature cytosolic M-subunit. It is assumed that the mitochondrial subunit precursor must be proteolytically processed during translocation from the cytoplasm into mitochondria.  相似文献   

3.
Nicotine treatment increases intracellular free Ca(2+) concentration [Ca(2+)](i), stimulates catecholamine release, and elevates gene expression for the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH). However, the type of nicotinic acetylcholine receptors (nAChRs) mediating these events is unclear. The nAChR receptor antagonists alpha-bungarotoxin (alphaBTX) and methyllycaconitine greatly reduced the nicotine-triggered initial transient rise in [Ca(2+)](i) and prevented the second prolonged elevation of [Ca(2+)](i), suggesting the involvement of alpha7 nAChRs. Two specific alpha7 nicotinic agonists, 3-(2,4-dimethoxybenzilidene)anabaseine (DMXB) and E, E-3-(cinnamylidene)anabaseine (3-CA), were found to elicit a small, delayed increase in [Ca(2+)](i) with kinetics and magnitude similar to the second elevation observed with nicotine. This increase was inhibited by the inositol trisphosphate receptor antagonist xestospongin C. Exposure to 3-CA or DMXB for 6 or 24 h elevated TH and DBH mRNA levels two- to fourfold over control levels. These agonists were more effective than nicotine alone in increasing TH and DBH gene expression and significantly elevated [Ca(2+)](i) for up to 6 h. The increase in [Ca(2+)](i) or the elevation in TH mRNA by 3-CA was completely inhibited by alphaBTX. This study, for the first time, implicates stimulation of alpha7 nAChRs in the activation of TH and DBH gene expression.  相似文献   

4.
Abstract: The effects of insulin-like growth factor-I (IGF-I) on gene expression and the activities of the three enzymes specific for catecholamine biosynthesis, tyrosine hydroxylase (TH), dopamine β-hydroxylase (DBH), and phenylethanolamine N -methyltransferase (PNMT), were determined in bovine adrenomedullary chromaffin cells primary cultured in serum-free medium. The mRNA level of TH was maximally elevated in the presence of IGF-I by 3.1 ± 0.4-fold after 48 h, DBH by 5.1 ± 0.3-fold in 24 h, and PNMT by 2.8 ± 0.5-fold in 72 h. In addition, the activity of TH was increased by 77%, DBH by 70%, and PNMT by 23% in IGF-I-exposed cultures. In the absence of the growth factor, the mRNA levels of TH and DBH were decreased to 45 ± 10% and 35 ± 12% of the time-zero control within 48 h while PNMT mRNA was decreased to 82 ± 5% only after 72 h. When the cells were cotreated with the protein tyrosine kinase inhibitor genistein, DBH induction by IGF-I was suppressed, confirming that the effect is mediated by tyrosine kinase. Cotreatment with the protein kinase A (PKA) inhibitor H89 caused complete reversal of the IGF-I-induced DBH increase and the effects of IGF-I treatment and PKA activation by forskolin were not additive, suggesting that PKA is involved in the signaling initiated by IGF-I in these cells.  相似文献   

5.
6.
Rett syndrome is a neurodevelopmental disorder caused by Mecp2 gene mutations. In RTT patients and Mecp2-null (Mecp2−/Y) mice, norepinephrine (NE) content drops significantly, which may play a role in breathing arrhythmia, sleep disorders and sudden death. However, the underlying mechanisms for the NE defect are not fully understood. The NE defect may result from decreased NE biosynthesis, loss of catecholaminergic neurons or both. Although deficiency in tyrosine hydroxylase (TH) has been demonstrated, it is possible that dopamine β-hydroxylase (DBH), the critical enzyme converting dopamine to NE, is also affected. To test these possibilities, we studied DBH expressions in pontine catecholaminergic neurons of Mecp2−/Y mice identified with breathing abnormalities. In comparison to the wild type, Mecp2−/Y mice at 2 months of age showed ∼50% decrease in the expressions of DBH and TH, at both protein and mRNA levels in the locus coeruleus (LC) region. Consistently, DBH and TH immunoreactivity was markedly decreased in LC neurons of Mecp2−/Y mice. No evidence was found for selective deficiency in TH- or DBH-containing neurons in Mecp2−/Y mice, as almost all TH-positive cells expressed DBH. By counting TH-immunoreactive cells in the LC, we found that the Mecp2−/Y mice lost only ∼5% of the catecholaminergic neurons as compared to wild-type, although their LC volume shrank by ∼15%. These results strongly suggest that the NE defect in Mecp2−/Y mice is likely to result from deficient expression of not only TH but also DBH without significant loss of catecholaminergic neurons in the LC.  相似文献   

7.
The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30 mg/kg subcutaneously per day for 8 days) to C57BL/6N mice were studied on tyrosine hydroxylase (TH), L-3,4-dihydroxyphenylalanine decarboxylase (DDC), and monoamine oxidase (MAO) activities in the striatum, and TH, DDC, dopamine-beta-hydroxylase (DBH), and MAO activities in the hypothalamus. Treatment with MPTP led to a large decrease in TH activity and a parallel decrease in DDC activity in the striatum, as compared with the saline controls. In contrast, MPTP administration did not cause a decrease of the activities of TH, DDC, and DBH in the hypothalamus. There was also no reduction in MAO activities of striatum and hypothalamus. These data indicate that MPTP administration to mice results in specific degeneration of the dopaminergic nigrostriatal pathway and that DDC in the mouse striatum may mainly be localized in the dopaminergic neurons with TH.  相似文献   

8.
9.
The subcellular site of biosynthesis of the catecholamine biosynthetic enzymes was examined. Free and membrane-bound polysomes were prepared from bovine adrenal medulla and mRNA was isolated from these polysomes. Both were active in directing cell-free translations. Immunoprecipitation of cell-free products with specific antisera localized the biosynthesis of the subunits of tyrosine hydroxylase (TH) (apparent Mr = 61,000) and of phenylethanolamine N-methyltransferase (PNMT) (apparent Mr = 32,000) on free polysomes, compared with biosynthesis of subunits of dopamine beta-hydroxylase (DBH) (apparent Mr = 67,000) on membrane-bound polysomes. Cross-reactivity between translation products was observed. Antibodies for DBH recognized a polypeptide with electrophoretic mobility identical to newly synthesized PNMT. However increasing concentrations of antibodies to DBH recognized at most 1/20 of the PNMT formed. The results of this study show the subcellular distribution of the catecholamine synthesizing enzymes is determined by their site of biosynthesis.  相似文献   

10.
In vitro biosynthesis of two human galactosyltransferase polypeptides   总被引:1,自引:0,他引:1  
HeLa cell galactosyltransferase is synthesized as two precursor polypeptides of Mr = 45,000 and Mr = 47,000. The enzyme is present in the Golgi complex as a (mature) Mr = 54,000 glycoprotein. If cells are treated with tunicamycin, two precursor polypeptides are synthesized without N-linked oligosaccharides with molecular weights of 42,000 and 44,000, respectively. To investigate whether the two precursor polypeptides are synthesized on different mRNAs total RNA from HeLa cells was translated in a wheat germ cell-free system. Galactosyltransferase polypeptides were isolated by immunoprecipitation and compared to the polypeptides synthesized in vivo in the presence of tunicamycin. The two in vitro translated polypeptides co-migrate exactly with the polypeptides made in the cells in the presence of tunicamycin, indicating two different mRNAs for galactosyltransferase. The results also indicate that translocation of galactosyltransferase through the membrane of the rough endoplasmic reticulum is not followed by signal peptide cleavage.  相似文献   

11.
Primary Structure of Neuromedin U from the Rat   总被引:2,自引:1,他引:1  
A single human gene has been described to encode multiple tyrosine hydroxylase (TH) mRNAs. The study of this variation has been extended by S1 mapping experiments and by analysis of the 5' region of the TH gene. Four different mRNAs were found to originate solely from alternative splicing of two exons. Comparison of the 5' flanking regions of human and rat genes discloses several highly conserved segments, likely to play an important role in the regulation of TH gene expression.  相似文献   

12.
13.
14.
15.
In the present study, we obtained genetically manipulated nonneuronal cells which synthesize a catecholamine precursor for future use in intracerebral grafting. Human type 1 tyrosine hydroxylase (TH; EC 1.14.16.2) cDNA was inserted into eukaryotic expression vector pKCRH2 and was co-transfected into C6 cells with plasmid pSV2neo. Expression of the TH minigene was screened by immuno-histochemical staining with TH antibody and immunoblot-ting analysis. Several clones of the C6 transfectahts that produce TH molecules were obtained. These cells showed TH activity, and the product, L-3,4-dihydroxyphenylalanine (L-DOPA), was detected intracellulary due to the ajbsence of L-amino acid decarboxylase (EC 4.1.1.28) activity. It was found that a large amount of L-DOPA was released from the cells into the culture medium. These transfectants were transplanted into rat brain, and the expression of TH was examined immunohistochemically. On the 10th day following transplantation, a mass of C6 cells which was heavily stained with TH antibody was observed in the brain. These findings may provide us with an opportunity to investigate the effects of intracerebral transplantation of nonneuronal cells that produce catecholamine or its precursor.  相似文献   

16.
Poly(A)-rich and poly(A)-free RNAs were isolated from autotrophic and heterotrophic cells of the phytoflagellate Chlorogonium elongatum and translated in an mRNA-depleted reticulocyte lysate system. Immunoprecipitation methods were improved to detect large and small subunits of the chloroplast enzyme ribulose-1,5-bisphosphate carboxylase synthesized in vitro. Large-subunit polypeptides were shown to be the translation products of poly(A)-free RNA having the same molecular weight as large subunits made in vivo. Small-subunit polypeptides were synthesized when poly(A)-rich RNA was used as a template. They were made in vitro as a precursor, with an Mr about 6000 larger than mature small subunits. Cells growing heterotrophically in the dark with acetate are provided with lower levels of mRNA activities for the large and the small subunits is at least partially controlled by the amounts of translatable mRNAs.  相似文献   

17.
Polyadenylated RNA prepared from neonatal rat muscle was translated in a rabbit reticulocyte cell-free system. Two sarcoplasmic reticulum proteins, the Ca2+ + Mg2+-dependent adenosine triphosphatase (ATPase) and calsequestrin, were isolated from the translation mixture by immunoprecipitation, followed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. The [35S]methionine-labeled translation products were characterized by molecular weight, peptide mapping, and NH2-terminal sequence analysis. The ATPase synthesized in the cell-free system was found to have the same molecular weight (Mr = 100,000) and [35S]-methionine-labeled peptide map as the mature ATPase. The methionine residue present at the NH2 terminus of the mature ATPase was donated by initiator methionyl-tRNArMet and it became acetylated during translation. These results suggest that the ATPase was synthesized without an NH2-terminal signal sequence. Calsequestrin (Mr - 63,000) was synthesized as a higher molecular weight precursor (Mr = 66,000) that contained an additional [35S]methionine-labeled peptide when compared to mature calsequestrin. The NH2-terminal sequence of the precursor was different from the mature protein. The precursor was processed to a polypeptide with a molecular weight identical with mature calsequestrin when microsomal membranes prepared from canine pancreas were included during translation. These results show that calsequestrin is synthesized with an NH2-terminal signal sequence that is removed during translation. These data add to the evidence that the ATPase and calsequestrin follow distinctly different biosynthetic pathways, even though, ultimately, they are both located in the same membrane.  相似文献   

18.
Proadrenomedullin N-terminal 20 peptide (PAMP) is a novel hypotensive peptide found in the N-terminal portion of the precursor of adrenomedullin (AM). Although PAMP and AM originate from the same precursor and exert both a potent hypotensive action, they seem to control blood pressure through different mechanisms. To gain new insight into the anticholinergic actions of PAMP, we determined the effects of PAMP on the tyrosine hydroxylase (TH)- and dopamine beta-hydroxylase (DBH) mRNA expression in the rat pheochromocytoma cell line PC12 stimulated by nicotine. PAMP (> or =1 microM) significantly inhibited the nicotine-induced increases of TH- and DBH mRNA expression in a concentration-dependent manner. Also, PAMP at the concentrations (> or =1 microM) significantly inhibited nicotine-induced cyclic adenosine monophosphate (cAMP) production. These results indicate that the anticholinergic hypotensive actions of PAMP can be explained, at least in part, by its inhibition of the expression of mRNAs coding for catecholamine-synthesizing enzymes, and that the inhibitory effect is mediated by the cAMP/protein kinase A pathway.  相似文献   

19.
During differentiation of sympathetic neurons in chick embryos, tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) mRNAs become detectable during the same developmental period and are both induced by BMP 4. Later during sympathetic ganglion development, DBH is detectable in TH-positive and -negative cells. Moreover, BMPs reduce DBH mRNA in cultures of sympathetic neurons while leaving TH unaffected. The data provide evidence for a common regulation of TH and DBH early during sympathetic neuron differentiation and indicate that BMPs promote their initial expression but not the maintenance during later development. The time course of Phox2a and 2b expression suggests an evolutionary conserved role in noradrenergic induction. In addition, Phox2a, Phox2b, and c-ret may be involved in the differentiation of cholinergic sympathetic neurons.  相似文献   

20.
This study examined the effect of aging on the relative number of dopamine (DA) nerve terminals in human caudate nucleus, their content of tyrosine hydroxylase (TH) protein, and the relative abundance of TH monomers with different molecular weights. Preliminary studies on brain tissue cryopreservation, performed with rat striatum, indicated that intact synaptosomes can be prepared from fresh tissue slowly frozen in 0.32 M sucrose with 5% dimethyl sulfoxide and then thawed rapidly prior to synaptosome preparation. Synaptosomes were prepared in this manner from postmortem caudate nucleus tissue obtained from normal humans 1 month to 63 years of age. To determine the relative number of DA nerve terminals for each individual, dopaminergic synaptosomes were selectively labeled with a monoclonal antibody to TH and quantified by fluorescence-activated cell sorting. To determine the relative amount of TH protein for each individual, the concentration of TH protein in the same synaptosomal preparations was determined using immunoblots. Our results suggest that caudate TH levels plateau soon after birth and tend to remain relatively stable during aging, since no changes in either the relative number of TH-containing nerve terminals or the concentration of TH protein were found in subjects 15-63 years of age. In light of previous studies showing an age-related loss of DA cell bodies, these findings suggest that remaining DA neurons compensate to maintain caudate levels of TH protein and TH-containing nerve terminals. Immunoblot studies identified three forms of TH monomer (60.6, 61.7, and 65.1 kDa), indicating that mRNAs coding for high molecular mass forms of TH may be actively translated in human brain. No age-related differences in the relative abundance of these forms were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号