首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glial cells support neuronal survival and function by secreting neurotrophic cytokines. Retinal Mueller glial cells (RMGs) support retinal neurons, especially photoreceptors. These highly light-sensitive sensory neurons receive vision, and their death results in blinding diseases. It has been proposed that RMGs release factors that support photoreceptor survival, but the nature of these factors remains to be elucidated. To discover such neurotrophic factors, we developed an integrated work flow toward systematic identification of neuroprotective proteins, which are, like most cytokines, expressed only in minute amounts. This strategy can be generally applied to identify secreted bioactive molecules from any body fluid once a recipient cell for this activity is known. Toward this goal we first isolated conditioned medium (CM) from primary porcine RMGs cultured in vitro and tested for survival-promoting activity using primary photoreceptors. We then developed a large scale, microplate-based cellular high content assay that allows rapid assessment of primary photoreceptor survival concomitant with biological activity in vitro. The enrichment strategy of bioactive proteins toward their identification consists of several fractionation steps combined with tests for biological function. Here we combined 1) size fractionation, 2) ion exchange chromatography, 3) reverse phase liquid chromatography, and 4) mass spectrometry (Q-TOF MS/MS or MALDI MS/MS) for protein identification. As a result of this integrated work flow, the insulin-like growth factor-binding proteins IGFBP5 and IGFBP7 and connective tissue growth factor (CTGF) were identified as likely candidates. Cloning and stable expression of these three candidate factors in HEK293 cells produced conditioned medium enriched for either one of the factors. IGFBP5 and CTGF, but not IGFBP7, significantly increased photoreceptor survival when secreted from HEK293 cells and when added to the original RMG-CM. This indicates that the survival-promoting activity in RMG-CM is multifactorial with IGFBP5 and CTGF as an integral part of this activity.  相似文献   

2.
The retinal Müller glial cells, can enhance the survival and activity of neurons, especially of retinal ganglion cells (RGCs), which are the neurons affected in diseases such as glaucoma, diabetes, and retinal ischemia. It has been demonstrated that Müller glia release neurotrophic factors that support RGC survival, yet many of these factors remain to be elucidated. To define these neurotrophic factors, a quantitative proteomic approach was adopted aiming at identifying neuroprotective proteins. First, the conditioned medium from porcine Müller cells cultured in vitro under three different conditions were isolated and these conditioned media were tested for their capacity to promote survival of primary adult RGCs in culture. Mass spectrometry was used to identify and quantify proteins in the conditioned medium, and osteopontin (SPP1), clusterin (CLU), and basigin (BSG) were selected as candidate neuroprotective factors. SPP1 and BSG significantly enhance RGC survival in vitro, indicating that the survival‐promoting activity of the Müller cell secretome is multifactorial, and that SPP1 and BSG contribute to this activity. Thus, the quantitative proteomics strategy identify proteins secreted by Müller glia that are potentially novel neuroprotectants, and it may also serve to identify other bioactive proteins or molecular markers.  相似文献   

3.
Application of adult bone marrow stromal cells (BMSC) improves functional outcome in animal models of cerebral ischemia, traumatic brain injury, and spinal cord injury. Accumulating evidence suggests that such functional recovery after BMSC treatment is mediated by enhanced trophic support of the injured neurons and improved neuronal plasticity rather than tissue replacement by bone marrow-derived stem cells. Therefore, the aim of the present study was to explore the potential of non-hematopoietic BMSC to stimulate signaling pathways in neurons that mediate trophic effects and neuroprotection. In primary embryonic rat neurons, BMSC conditioned medium (CM) attenuated staurosporine (STS) or amyloid-beta peptide-induced apoptosis in a concentration-dependent manner. The neuroprotective effect of CM required several hours of pretreatment and was abolished by heating over 90 degrees C. Immunoblot analyses revealed that CM enhanced Erk1/2 and Akt phosphorylation in neurons, and the specific MEK1 inhibitor PD98059 or the phosphoinositide-3 kinase (PI3-K) inhibitor Ly294002 abolished the neuroprotective effect of CM. Further, double-conditioned medium (DCM) obtained from BMSC previously stimulated by medium from STS-challenged neurons showed a more potent anti-apoptotic effect compared to the single-conditioned medium. Overall, these findings demonstrate that BMSC trigger endogenous survival signaling pathways in neurons that mediate protection against apoptotic insults. Moreover, the interaction between stressed neurons and BMSC further amplifies the observed neuroprotective effect.  相似文献   

4.
Mouse fibroblast cells overexpressing phosphatidylinositol transfer protein alpha [PI-TPalpha; sense PI-TPalpha (SPIalpha) cells] show a significantly increased rate of proliferation and an extreme resistance toward ultraviolet- or tumor necrosis factor-alpha-induced apoptosis. The conditioned medium (CM) from SPIalpha cells or the neutral lipid extract from CM stimulated the proliferation of quiescent wild-type NIH3T3 cells. CM was also highly effective in increasing resistance toward induced apoptosis in both wild-type cells and the highly apoptosis-sensitive SPIbeta cells (i.e., wild-type cells overexpressing PI-TPbeta). CM from SPIalpha cells grown in the presence of NS398, a specific cyclooxygenase-2 (COX-2) inhibitor, expressed a diminished mitogenic and antiapoptotic activity. This strongly suggests that at least one of the bioactive factor(s) is an eicosanoid. In accordance, SPIalpha cells express enhanced levels of COX-1 and COX-2. The antiapoptotic activity of CM from SPIalpha cells tested on SPIbeta cells was inhibited by approximately 50% by pertussis toxin and suramin as well as by SR141716A, a specific antagonist of the cannabinoid 1 receptor. These inhibitors had virtually no effect on the COX-2-independent antiapoptotic activity of CM from SPIalpha cells. The latter results imply that PI-TPalpha mediates the production of a COX-2-dependent eicosanoid that activates a G-protein-coupled receptor, most probably a cannabinoid 1-like receptor.  相似文献   

5.
Bone marrow-derived mesenchymal stem cells (MSCs) are of therapeutic interest in a variety of neurological diseases. In this study, we wished to determine whether human MSCs secrete factors which protect cultured rodent cortical neurons from death by trophic factor withdrawal or nitric oxide (NO) exposure. Medium conditioned by MSCs attenuated neuronal death under these conditions, a process which was dependent on intact PI3kinase/Akt pathway signaling. Trophic withdrawal and NO exposure in cultured cortical neurons led to reduction in Akt signaling pathways, whereas NO administration activated p38 MAPkinase in neuronal cultures. Addition of MSC-conditioned medium significantly activated the PI3kinase/Akt pathway and in neurons exposed to NO, MSC-conditioned medium reduced p38 signaling. We show that MSCs secrete brain-derived neurotrophic factor (BDNF) and addition of anti-BDNF neutralising antibodies to MSC-conditioned medium attenuated its neuroprotective effect. Exposure of neurons to BDNF increased activation of Akt pathways and protected neurons from trophic factor withdrawal. These observations determine the mechanisms of neuroprotection offered by MSC-derived factors and suggest an important role for BDNF in neuronal protection.  相似文献   

6.
Peptide neuroprotection through specific interaction with brain tubulin   总被引:4,自引:0,他引:4  
This study aimed to identify the neuronal target for the potent neuroprotective peptide NAP. When added to pheochromocytoma cells (neuronal model), NAP was found in the intracellular milieu and was co-localized with microtubules. NAP induced neurite outgrowth and protected primary neurons against microtubule-associated ZnCl2 toxicity. Rapid microtubule reorganization into distinct microtubules ensued after NAP addition to both pheochromocytoma cells and primary cerebral cortical neurons, but not to fibrobalsts. While binding neuronal tubulin and protecting pheochromocytoma cells against oxidative stress, NAP did not bind tubulin extracted from fibroblasts, nor did it protect those cells against oxidative stress. Affinity chromatography identified the brain-specific betaIII-tubulin as a major NAP binding protein. Paclitaxel (a microtubule aggregating agent that interacts with beta-tubulin) reduced NAP tubulin binding. Thus, the underlying mechanism for the neuroprotection offered by NAP is targeting neuronal microtubules that are essential for neuronal survival and function.  相似文献   

7.
Salvianolic acid B (SalB), a bioactive compound isolated from the plant-derived medicinal herb Danshen, has been shown to exert various anti-oxidative and anti-inflammatory activities in several neurological disorders. In this study, we sought to investigate the potential protective effects and associated molecular mechanisms of SalB in Parkinson’s disease (PD) models. To determine the neuroprotective effects of SalB in vitro, MPP+- or lipopolysaccharide (LPS)-induced neuronal injury was achieved using primary cultures with different compositions of neurons, microglia and astrocytes. Our results showed that SalB reduced both LPS- and MPP+-induced toxicity of dopamine neurons in a dose-dependent manner. Additionally, SalB treatment inhibited the release of microglial pro-inflammatory cytokines and resulted in an increase in the expression and release of glial cell line-derived neurotrophic factor (GDNF) from astrocytes. Western blot analysis illustrated that SalB increased the expression and nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). The knockdown of Nrf2 using specific small interfering RNA (siRNA) partially reversed the SalB-induced GDNF expression and anti-inflammatory activity. Moreover, SalB treatment significantly attenuated dopaminergic (DA) neuronal loss, inhibited neuroinflammation, increased GDNF expression and improved the neurological function in MPTP-treated mice. Collectively, these findings demonstrated that SalB protects DA neurons by an Nrf-2 -mediated dual action: reducing microglia activation-mediated neuroinflammation and inducing astrocyte activation-dependent GDNF expression. Importantly the present study also highlights critical roles of glial cells as targets for developing new strategies to alter the progression of neurodegenerative disorders.  相似文献   

8.
Compelling evidence from animal models and clinical studies suggest that transplantation of olfactory ensheathing cells (OECs), specialized glia in the olfactory system, combined with specific training may be therapeutically useful in the central nervous system (CNS) injuries and neurodegenerative diseases. The unique function of OECs could mainly attribute to both production of cell adhesion molecules and secretion of growth factors in OECs, which support neuron survival and neurite outgrowth. However, little is known about whether engulfment of neuronal degenerative debris by OECs also equally contributes to neuronal survival and neurite outgrowth. Furthermore, the molecular mechanisms responsible for neuronal degenerative corpses' removal remain elusive. Here, we used an in vitro model of primary culture of spinal cord neurons to investigate the effect of engulfment of degenerative neuron debris by OECs on neuronal survival and neurite outgrowth and the possible molecular mechanisms. Our results showed that OECs can engulf an amount of degenerated neuron debris, and this phagocytosis can make a substantial contribution to neuron growth, as demonstrated by increased number of neurons with longer neurite length and richer neurite branches when compared with the combination of neuron debris and OEC conditioned medium (OECCM). Moreover, p38 mitogen-activated protein kinase (p38MAPK) signaling pathway may mediate the OEC engulfment of debris because the p38MAPK-specific inhibitor, SB203580, can abrogate all the positive effects of OECs, including clearance of degenerated neuron debris and generation of bioactive molecules, indicating that p38MAPK is required for the process of phagocytosis of the neuron debris. In addition, the OEC phagocytic activity had no influence on its generation of bioactive molecules. Therefore, these findings provide new insight into further investigations on the OEC role in the repair of traumatic CNS injury and neurodegenerative diseases.  相似文献   

9.
10.
The neurotrophic activity of astrocytes and fibroblasts and its regulation by various cytokines were investigated. Astrocyte conditioned medium (ACM) enhanced the survival of neurons and the proliferation of astrocytes in embryonic cortical cultures grown in serum-free defined medium. However, these results were not affected by acidic fibroblast growth factor, interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF alpha), and transforming growth factor-beta 1. In contrast, ACM induced choline acetyltransferase expression in septal cholinergic neurons via nerve growth factor (NGF)-dependent and -independent mechanisms. However, neither acidic nor basic fibroblast growth factor is involved in this biological activity in ACM. The cytokines listed above mainly stimulate NGF-mediated cholinergic neurotrophic activity in ACM. A combination of IL-1 beta and TNF alpha significantly enhanced choline acetyltransferase activity in septal neurons co-cultured with astrocytes, and this effect was found to be mediated by NGF produced by activated astrocytes. Effects of astrocytes on GABAergic neurons were also examined. ACM was found to increase glutamate decarboxylase activity in neuronal cultures from septum in the presence of Ara-C. However, the cytokines did not enhance this activity in ACM. Moreover, a combination of IL-1 beta and TNF alpha had no effect on glutamate decarboxylase activity in septal neurons co-cultured with astrocytes. In a final set of experiments, cholinergic neurotrophic activity in skin-derived fibroblast conditioned medium (FCM) was examined. FCM was found to possess biological activity similar to that of ACM on septal neurons grown in serum-free defined medium with Ara-C. The cytokines also enhanced NGF-mediated cholinergic neurotrophic activity in FCM. Astrocytes and fibroblasts were found to possess NGF-type and non-NGF-type cholinergic neurotrophic activity, and various cytokines were found to regulate the NGF-type cholinergic neurotrophic activity in both types of cells. NGF produced by astrocytes and fibroblasts that are activated by cytokines is likely to be important for development and regeneration of NGF-sensitive neurons in the central and peripheral nervous systems.  相似文献   

11.
Excitatory transmission in the brain is commonly mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. In amyotrophic lateral sclerosis (ALS), AMPA receptors allow cytotoxic levels of calcium into neurons, contributing to motor neuron injury. We have previously shown that oculomotor neurons resistant to the disease process in ALS show reduced AMPA-mediated inward calcium currents compared with vulnerable spinal motor neurons. We have also shown that PTEN (phosphatase and tensin homolog deleted on chromosome 10) knockdown via siRNA promotes motor neuron survival in models of spinal muscular atrophy (SMA) and ALS. It has been reported that inhibition of PTEN attenuates the death of hippocampal neurons post injury by decreasing the effective translocation of the GluR2 subunit into the membrane. In addition, leptin can regulate AMPA receptor trafficking via PTEN inhibition. Thus, we speculate that manipulation of AMPA receptors by PTEN may represent a potential therapeutic strategy for neuroprotective intervention in ALS and other neurodegenerative disorders. To this end, the first step is to establish a fibroblast–iPS–motor neuron in vitro cell model to study AMPA receptor manipulation. Here we report that iPS-derived motor neurons from human fibroblasts express AMPA receptors. PTEN depletion decreases AMPA receptor expression and AMPA-mediated whole-cell currents, resulting in inhibition of AMPA-induced neuronal death in primary cultured and iPS-derived motor neurons. Taken together, our results imply that PTEN depletion may protect motor neurons by inhibition of excitatory transmission that represents a therapeutic strategy of potential benefit for the amelioration of excitotoxicity in ALS and other neurodegenerative disorders.  相似文献   

12.
Neuronal cell death occurs as a programmed, naturally occurring mechanism and is the primary regressive event in central nervous system development. Death of neurons also occurs on an injury-induced basis after trauma and in human neurodegenerative diseases. Classical neurotrophic factors can reverse this phenomenon in experimental models prompting initiation of clinical trials in conditions such as amyotrophic lateral sclerosis and Alzheimer's disease. The glial-derived protease nexin I (PNI), a known promoter of neurite outgrowth in cell culture and a potent inhibitor of serine proteases, also enhances neuronal cell survival. PNI, in nanomolar concentrations, rescues spinal cord motor neurons from both naturally-occurring programmed cell death in the chick embryo as well as following injury in the neonatal mouse. The potent neuromodulator, vasoactive intestinal polypeptide (VIP), influences neuronal survival through glial-mediated factors and also induces secretion of newly synthesized astrocyte PNI. We now report that subnanomolar amounts of PNI enhance neuronal survival in mixed spinal cord cell culture, especially when neuronal cells were made electrically silent by administration of tetrodotoxin. The mediation of this effect is by inhibition of the multifunctional serine protease, thrombin, because hirudin, a thrombin-specific inhibitor, has the same effect. In addition, spinal cord neurons are exquisitely sensitive to thrombin because picomolar and lower levels of the coagulation factor causes neuronal death. Thus, PNI is an astrocyte-derived, thrombin-inhibiting, activity-dependent neurotrophic agent, enhanced secretion of which by VIP may be one approach to treat neurological disorders. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Leptin neuroprotection in the CNS: mechanisms and therapeutic potentials   总被引:1,自引:0,他引:1  
Leptin is well known as a hormone important in the central control of appetitive behaviors via receptor-mediated actions in the hypothalamus, where leptin adjusts food intake to maintain homeostasis with the body's energy stores. Recent evidence has shown that leptin and its receptors are widespread in the CNS and may provide neuronal survival signals. This review summarizes our current knowledge of how leptin functions in the brain and then focuses on the ability of leptin to mitigate neuronal damage in experimental models of human neurological disorders. Damage to the brain by acute events such as stroke, or long-term loss of neurons associated with neurodegenerative diseases, including Parkinson's and Alzheimer's disease, may be amenable to treatment using leptin to limit death of susceptible cells. Leptin-mediated pro-survival signaling is now known to prevent the death of neurons in these models. The signaling cascades that leptin generates are shared by other neuroprotective molecules including insulin and erythropoietin, and are thus a component of the neurotrophic effects mediated by endogenous hormones. Coupled with evidence that leptin dysregulation in human disease also results in enhanced neuronal susceptibility to damage, development of leptin as a therapeutic methodology is an attractive and viable possibility.  相似文献   

14.
Calcitonin gene-related peptide (CGRP) plays a variety of important roles within the nervous system. Increasing CGRP expression could improve the survival of injured neurons and prevent neuronal loss. In this study, we first evaluated in vitro the neuroprotective function of CGRP on mechanically injured cerebellar granule neurons (CGNs) of rats. We then verified this result through exogenous administration of CGRP in a spinal cord transected completely in rats. Finally, we investigated the effect of electro-acupuncture (EA) on CGRP expression following the spinal cord transected completely in rats. We found that EA can improve CGRP expression, and exogenous CGRP may promote the survival of injured neurons, both in vivo and in vitro. Our results suggest that CGRP may be a specific neuropeptide expressed in GV-EA treatment of spinal cord injuries (SCI), and that CGRP may play a neuroprotective role in survival of neurons injured mechanically.  相似文献   

15.
Calcitonin gene-related peptide (CGRP) plays a variety of important roles within the nervous system. Increasing CGRP expression could improve the survival of injured neurons and prevent neuronal loss. In this study, we first evaluated in vitro the neuroprotective function of CGRP on mechanically injured cerebellar granule neurons (CGNs) of rats. We then verified this result through exogenous administration of CGRP in a spinal cord transected completely in rats. Finally, we investigated the effect of electro-acupuncture (EA) on CGRP expression following the spinal cord transected completely in rats. We found that EA can improve CGRP expression, and exogenous CGRP may promote the survival of injured neurons, both in vivo and in vitro. Our results suggest that CGRP may be a specific neuropeptide expressed in GV-EA treatment of spinal cord injuries (SCI), and that CGRP may play a neuroprotective role in survival of neurons injured mechanically.  相似文献   

16.
Whereas uncoupling protein 1 (UCP-1) is clearly involved in thermogenesis, the role of UCP-2 is less clear. Using hybridization, cloning techniques and cDNA array analysis to identify inducible neuroprotective genes, we found that neuronal survival correlates with increased expression of Ucp2. In mice overexpressing human UCP-2, brain damage was diminished after experimental stroke and traumatic brain injury, and neurological recovery was enhanced. In cultured cortical neurons, UCP-2 reduced cell death and inhibited caspase-3 activation induced by oxygen and glucose deprivation. Mild mitochondrial uncoupling by 2,4-dinitrophenol (DNP) reduced neuronal death, and UCP-2 activity was enhanced by palmitic acid in isolated mitochondria. Also in isolated mitochondria, UCP-2 shifted the release of reactive oxygen species from the mitochondrial matrix to the extramitochondrial space. We propose that UCP-2 is an inducible protein that is neuroprotective by activating cellular redox signaling or by inducing mild mitochondrial uncoupling that prevents the release of apoptogenic proteins.  相似文献   

17.
Spinal motoneurons from chick embryos were purified by retrograde transport and fluorescence-activated cell sorting. Growth conditions for motoneurons were studied, with experiments focused on the effects of conditioned media from chick myotubes, fibroblasts, and spinal cord dividing cells. Motoneurons rapidly extended neurites when plated onto polylysine-coated dishes that had been exposed to these conditioned media. Enzymatic analysis of the substratum-binding, neurite outgrowth-promoting activity from myotube-conditioned medium indicated that it contained heparan sulfate and protein. The neurite outgrowth-promoting activity sedimented as a peak centered at a density of 1.34 in associative cesium chloride gradients, and eluted near the void volume of a Sepharose CL-6B column. Inclusion of myotube conditioned medium in the culture medium of motoneurons also enhanced their survival over periods greater than 2 days in culture. This enhancement of survival could not be explained by myotube-conditioned medium providing motoneurons with a continuous supply of the neurite outgrowth-promoting activity. Media conditioned by spinal cord dividing cells and fibroblasts supported motoneuron survival to some extent, but this effect was not as great as that of myotube-conditioned medium.  相似文献   

18.
The mechanisms of motor neuronal death in amyotrophic lateral sclerosis (ALS) remain to be unclear. Phosphatidy-linositol 3-kinase (PI3-K) and its main downstream effector, Akt/protein kinase B (PKB) have been shown to play a central role in neuronal survival against apoptosis supported by neurotrophic factors. In order to investigate a possible impairment of survival signaling, we examined expressions of PI3-K and Akt in the spinal cord of the transgenic mice overexpressing a mutant Cu/Zn superoxide dismutase (SOD1) gene, a valuable model for human ALS. Immunoblotting and immunohistochemical analyses showed that the majority of spinal motor neurons lost the immunoreactivities for both PI3-K and Akt in the early and presymptomatic stage that preceded significant loss of the neurons. The present results suggest that an early decrease of survival signal proteins in the spinal motor neurons may account for the subsequent motor neuronal loss in this animal model of ALS.  相似文献   

19.
Retrograde trophic influences originating in the skeletal musculature have been postulated to be involved in regulating survival and differentiation of embryonic motor neurons and reactive terminal sprouting of mature motor fibres. We have previously described the use of a quantitative immunoassay for neurofilament protein to bioassay in vitro the cell-type-specific neuronotrophic activity of nerve growth factor (NGF) on sensory ganglion neurons. In the present study, the effect of media conditioned by adult human muscle cells (MCM) on the in vitro development of chicken spinal neurons has been studied using a similar approach. Significant increases in neurofilament protein levels in 7-day chicken embryonic spinal cord cultures were found with doses of MCM protein as low as 0.4 microgram/ml, with a dose-response relationship yielding maximal and half-maximal effects at 4 and 1 microgram/ml, respectively. Maximal increases in neurofilament protein levels were associated with an approximate two-fold increase in neuronal cell survival. MCM also induced increases in choline acetyltransferase activity in chick spinal cord cultures. In both the absence and presence of NGF, MCM did not increase neurofilament protein expression in primary cultures of sensory neurons.  相似文献   

20.

Background & Aims

The therapeutic benefits of mesenchymal stem cells (MSCs), such as homing ability, multipotent differentiation capacity and secretion of soluble bioactive factors which exert neuroprotective, anti-inflammatory and immunomodulatory properties, have been attributed to attenuation of autoimmune, inflammatory and neurodegenerative disorders. In this study, we aimed to determine the earliest time point at which locally administered MSC-based therapies avert enteric neuronal loss and damage associated with intestinal inflammation in the guinea-pig model of colitis.

Methods

At 3 hours after induction of colitis by 2,4,6-trinitrobenzene-sulfonate (TNBS), guinea-pigs received either human bone marrow-derived MSCs, conditioned medium (CM), or unconditioned medium by enema into the colon. Colon tissues were collected 6, 24 and 72 hours after administration of TNBS. Effects on body weight, gross morphological damage, immune cell infiltration and myenteric neurons were evaluated. RT-PCR, flow cytometry and antibody array kit were used to identify neurotrophic and neuroprotective factors released by MSCs.

Results

MSC and CM treatments prevented body weight loss, reduced infiltration of leukocytes into the colon wall and the myenteric plexus, facilitated repair of damaged tissue and nerve fibers, averted myenteric neuronal loss, as well as changes in neuronal subpopulations. The neuroprotective effects of MSC and CM treatments were observed as early as 24 hours after induction of inflammation even though the inflammatory reaction at the level of the myenteric ganglia had not completely subsided. Substantial number of neurotrophic and neuroprotective factors released by MSCs was identified in their secretome.

Conclusion

MSC-based therapies applied at the acute stages of TNBS-induced colitis start exerting their neuroprotective effects towards enteric neurons by 24 hours post treatment. The neuroprotective efficacy of MSC-based therapies can be exerted independently to their anti-inflammatory effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号