首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Presynaptic group III metabotropic glutamate receptors (mGluRs) and Ca(2+) channels are the main neuronal activity-dependent regulators of synaptic vesicle release, and they use common molecules in their signaling cascades. Among these, calmodulin (CaM) and the related EF-hand Ca(2+)-binding proteins are of particular importance as sensors of presynaptic Ca(2+), and a multiple of them are indeed utilized in the signaling of Ca(2+) channels. However, despite its conserved structure, CaM is the only known EF-hand Ca(2+)-binding protein for signaling by presynaptic group III mGluRs. Because the mGluRs and Ca(2+) channels reciprocally regulate each other and functionally converge on the regulation of synaptic vesicle release, the mGluRs would be expected to utilize more EF-hand Ca(2+)-binding proteins in their signaling. Here I show that calcium-binding protein 1 (CaBP1) bound to presynaptic group III mGluRs competitively with CaM in a Ca(2+)-dependent manner and that this binding was blocked by protein kinase C (PKC)-mediated phosphorylation of these receptors. As previously shown for CaM, these results indicate the importance of CaBP1 in signal cross talk at presynaptic group III mGluRs, which includes many molecules such as cAMP, Ca(2+), PKC, G protein, and Munc18-1. However, because the functional diversity of EF-hand calcium-binding proteins is extraordinary, as exemplified by the regulation of Ca(2+) channels, CaBP1 would provide a distinct way by which presynaptic group III mGluRs fine-tune synaptic transmission.  相似文献   

2.
Effective control of the Ca2+ homeostasis in any living cell is paramount to coordinate some of the most essential physiological processes, including cell division, morphological differentiation, and intercellular communication. Therefore, effective homeostatic mechanisms have evolved to maintain the intracellular Ca2+ concentration at physiologically adequate levels, as well as to regulate the spatial and temporal dynamics of Ca2+signaling at subcellular resolution. Members of the superfamily of EF-hand Ca2+-binding proteins are effective to either attenuate intracellular Ca2+ transients as stochiometric buffers or function as Ca2+ sensors whose conformational change upon Ca2+ binding triggers protein-protein interactions, leading to cell state-specific intracellular signaling events. In the central nervous system, some EF-hand Ca2+-binding proteins are restricted to specific subtypes of neurons or glia, with their expression under developmental and/or metabolic control. Therefore, Ca2+-binding proteins are widely used as molecular markers of cell identity whilst also predicting excitability and neurotransmitter release profiles in response to electrical stimuli. Secretagogin is a novel member of the group of EF-hand Ca2+-binding proteins whose expression precedes that of many other Ca2+-binding proteins in postmitotic, migratory neurons in the embryonic nervous system. Secretagogin expression persists during neurogenesis in the adult brain, yet becomes confined to regionalized subsets of differentiated neurons in the adult central and peripheral nervous and neuroendocrine systems. Secretagogin may be implicated in the control of neuronal turnover and differentiation, particularly since it is re-expressed in neoplastic brain and endocrine tumors and modulates cell proliferation in vitro. Alternatively, and since secretagogin can bind to SNARE proteins, it might function as a Ca2+ sensor/coincidence detector modulating vesicular exocytosis of neurotransmitters, neuropeptides or hormones. Thus, secretagogin emerges as a functionally multifaceted Ca2+-binding protein whose molecular characterization can unravel a new and fundamental dimension of Ca2+signaling under physiological and disease conditions in the nervous system and beyond.  相似文献   

3.
Calcium-binding protein 7 (CaBP7) is a member of the calmodulin (CaM) superfamily that harbors two high affinity EF-hand motifs and a C-terminal transmembrane domain. CaBP7 has been previously shown to interact with and modulate phosphatidylinositol 4-kinase III-β (PI4KIIIβ) activity in in vitro assays and affects vesicle transport in neurons when overexpressed. Here we show that the N-terminal domain (NTD) of CaBP7 is sufficient to mediate the interaction of CaBP7 with PI4KIIIβ. CaBP7 NTD encompasses the two high affinity Ca2+ binding sites, and structural characterization through multiangle light scattering, circular dichroism, and NMR reveals unique properties for this domain. CaBP7 NTD binds specifically to Ca2+ but not Mg2+ and undergoes significant conformational changes in both secondary and tertiary structure upon Ca2+ binding. The Ca2+-bound form of CaBP7 NTD is monomeric and exhibits an open conformation similar to that of CaM. Ca2+-bound CaBP7 NTD has a solvent-exposed hydrophobic surface that is more expansive than observed in CaM or CaBP1. Within this hydrophobic pocket, there is a significant reduction in the number of methionine residues that are conserved in CaM and CaBP1 and shown to be important for target recognition. In CaBP7 NTD, these residues are replaced with isoleucine and leucine residues with branched side chains that are intrinsically more rigid than the flexible methionine side chain. We propose that these differences in surface hydrophobicity, charge, and methionine content may be important in determining highly specific interactions of CaBP7 with target proteins, such as PI4KIIIβ.  相似文献   

4.
Ca2+/calmodulin-dependent protein kinase II (CaMKII) forms a major component of the postsynaptic density where its functions in synaptic plasticity are well established, but its presynaptic actions are poorly defined. Here we show that CaMKII binds directly to the C-terminal domain of CaV2.1 channels. Binding is enhanced by autophosphorylation, and the kinase-channel signaling complex persists after dephosphorylation and removal of the Ca2+/CaM stimulus. Autophosphorylated CaMKII can bind the CaV2.1 channel and synapsin-1 simultaneously. CaMKII binding to CaV2.1 channels induces Ca2+-independent activity of the kinase, which phosphorylates the enzyme itself as well as the neuronal substrate synapsin-1. Facilitation and inactivation of CaV2.1 channels by binding of Ca2+/CaM mediates short term synaptic plasticity in transfected superior cervical ganglion neurons, and these regulatory effects are prevented by a competing peptide and the endogenous brain inhibitor CaMKIIN, which blocks binding of CaMKII to CaV2.1 channels. These results define the functional properties of a signaling complex of CaMKII and CaV2.1 channels in which both binding partners are persistently activated by their association, and they further suggest that this complex is important in presynaptic terminals in regulating protein phosphorylation and short term synaptic plasticity.  相似文献   

5.
6.
Transient receptor potential (TRP) cation channels, which are conserved across mammals, flies, fish, sea squirts, worms, and fungi, essentially contribute to cellular Ca2+ signaling. The activity of the unique TRP channel in yeast, TRP yeast channel 1 (TRPY1), relies on the vacuolar and cytoplasmic Ca2+ concentration. However, the mechanism(s) of Ca2+-dependent regulation of TRPY1 and possible contribution(s) of Ca2+-binding proteins are yet not well understood. Our results demonstrate a Ca2+-dependent binding of yeast calmodulin (CaM) to TRPY1. TRPY1 activity was increased in the cmd1–6 yeast strain, carrying a non–Ca2+-binding CaM mutant, compared with the parent strain expressing wt CaM (Cmd1). Expression of Cmd1 in cmd1–6 yeast rescued the wt phenotype. In addition, in human embryonic kidney 293 cells, hypertonic shock-induced TRPY1-dependent Ca2+ influx and Ca2+ release were increased by the CaM antagonist ophiobolin A. We found that coexpression of mammalian CaM impeded the activity of TRPY1 by reinforcing effects of endogenous CaM. Finally, inhibition of TRPY1 by Ca2+–CaM required the cytoplasmic amino acid stretch E33–Y92. In summary, our results show that TRPY1 is under inhibitory control of Ca2+–CaM and that mammalian CaM can replace yeast CaM for this inhibition. These findings add TRPY1 to the innumerable cellular proteins, which include a variety of ion channels, that use CaM as a constitutive or dissociable Ca2+-sensing subunit, and contribute to a better understanding of the modulatory mechanisms of Ca2+–CaM.  相似文献   

7.
Ca2+ influx into synaptic compartments during activity is a key mediator of neuronal plasticity. Although the role of presynaptic Ca2+ in triggering vesicle fusion though the Ca2+ sensor synaptotagmin 1 (Syt 1) is established, molecular mechanisms that underlie responses to postsynaptic Ca2+ influx remain unclear. In this study, we demonstrate that fusion-competent Syt 4 vesicles localize postsynaptically at both neuromuscular junctions (NMJs) and central nervous system synapses in Drosophila melanogaster. Syt 4 messenger RNA and protein expression are strongly regulated by neuronal activity, whereas altered levels of postsynaptic Syt 4 modify synaptic growth and presynaptic release properties. Syt 4 is required for known forms of activity-dependent structural plasticity at NMJs. Synaptic proliferation and retrograde signaling mediated by Syt 4 requires functional C2A and C2B Ca2+–binding sites, as well as serine 284, an evolutionarily conserved substitution for a key Ca2+-binding aspartic acid found in other synaptotagmins. These data suggest that Syt 4 regulates activity-dependent release of postsynaptic retrograde signals that promote synaptic plasticity, similar to the role of Syt 1 as a Ca2+ sensor for presynaptic vesicle fusion.  相似文献   

8.
Synaptic transmission relies on rapid calcium (Ca2+) influx into presynaptic terminal via voltage-gated Ca2+ channels. However, smooth ER is present in presynaptic terminals and accumulating evidence indicate that ER Ca2+ signaling may play a modulatory role in synaptic transmission. Most recent publication by Lindhout and colleagues (EMBO J, 38 (2019) e101345) suggested that the fragmentation state of the ER affects synaptic vesicle release. Here we discuss these results as well as several key publications that addressed a connection between ER Ca2+ signaling and synaptic transmission.  相似文献   

9.
Airas JM  Betz H  El Far O 《FEBS letters》2001,494(1-2):60-63
Group III metabotropic glutamate receptors (mGluRs) serve as presynaptic receptors that mediate feedback inhibition of glutamate release via a Ca(2+)/calmodulin (CaM)-dependent mechanism. In vitro phosphorylation of mGluR7A by protein kinase C (PKC) prevents its interaction with Ca(2+)/CaM. In addition, activation of PKC leads to an inhibition of mGluR signaling. Here, we demonstrate that disrupting CaM binding to mGluR7A by PKC in vitro is due to phosphorylation of a highly conserved serine residue, S862. We propose charge neutralization of the CaM binding consensus sequence resulting from phosphorylation to constitute a general mechanism for the regulation of presynaptic mGluR signaling.  相似文献   

10.
Presynaptic Ca(V)2.1 channels, which conduct P/Q-type Ca(2+) currents, initiate synaptic transmission at most synapses in the central nervous system. Regulation of Ca(V)2.1 channels by CaM contributes significantly to short term facilitation and rapid depression of synaptic transmission. Short term synaptic plasticity is diverse in form and function at different synapses, yet CaM is ubiquitously expressed. Differential regulation of Ca(V)2.1 channels by CaM-like Ca(2+) sensor (CaS) proteins differentially affects short term synaptic facilitation and rapid synaptic depression in transfected sympathetic neuron synapses. Here, we define the molecular determinants for differential regulation of Ca(V)2.1 channels by the CaS protein calcium-binding protein-1 (CaBP1) by analysis of chimeras in which the unique structural domains of CaBP1 are inserted into CaM. Our results show that the N-terminal domain, including its myristoylation site, and the second EF-hand, which is inactive in Ca(2+) binding, are the key molecular determinants of differential regulation of Ca(V)2.1 channels by CaBP1. These findings give insight into the molecular code by which CaS proteins differentially regulate Ca(V)2.1 channel function and provide diversity of form and function of short term synaptic plasticity.  相似文献   

11.
Entamoeba histolytica (E. histolytica) is an etiological agent of human amoebic colitis, and it causes a high level of morbidity and mortality worldwide, particularly in developing countries. Ca2+ plays a pivotal role in amoebic pathogenesis, and Ca2+-binding proteins (CaBPs) of E. histolytica appear to be a major determinant in this process. E. histolytica has 27-EF-hand containing CaBPs, suggesting that this organism has complex Ca2+ signaling cascade. E. histolytica CaBPs share (29–47%) sequence identity with ubiquitous Ca2+-binding protein calmodulin (CaM); however, they do not show any significant structural similarity, indicating lack of a typical CaM in this organism. Structurally, these CaBPs are very diverse among themselves, and perhaps such diversity allows them to recognize different cellular targets, thereby enabling them to perform a range of cellular functions. The presence of such varied signaling molecules helps parasites to invade host cells and advance in disease progression. In the past two decades, tremendous progress has been made in understanding the structure of E. histolytica CaBPs by using the X-ray or NMR method. To gain greater insight into the structural and functional diversity of these amoebic CaBPs, we analyzed and compiled all the available literature. Most of the CaBPs has about 150 amino acids with 4-EF hand or EF-hand-like sequences, similar to CaM. In a few cases, all the EF-hand motifs are not capable of binding Ca2+, suggesting them to be pseudo EF-hand motifs. The CaBPs perform diverse cellular signaling that includes cytoskeleton remodeling, phagocytosis, cell proliferation, migration of trophozoites, and GTPase activity. Overall, the structural and functional diversity of E. histolytica CaBPs compiled here may offer a basis to develop an efficient drug to counter its pathogenesis.  相似文献   

12.
Calcium (Ca2+) is an ion vital in regulating cellular function through a variety of mechanisms. Much of Ca2+ signaling is mediated through the calcium-binding protein known as calmodulin (CaM)1,2. CaM is involved at multiple levels in almost all cellular processes, including apoptosis, metabolism, smooth muscle contraction, synaptic plasticity, nerve growth, inflammation and the immune response. A number of proteins help regulate these pathways through their interaction with CaM. Many of these interactions depend on the conformation of CaM, which is distinctly different when bound to Ca2+ (Ca2+-CaM) as opposed to its Ca2+-free state (ApoCaM)3.While most target proteins bind Ca2+-CaM, certain proteins only bind to ApoCaM. Some bind CaM through their IQ-domain, including neuromodulin4, neurogranin (Ng)5, and certain myosins6. These proteins have been shown to play important roles in presynaptic function7, postsynaptic function8, and muscle contraction9, respectively. Their ability to bind and release CaM in the absence or presence of Ca2+ is pivotal in their function. In contrast, many proteins only bind Ca2+-CaM and require this binding for their activation. Examples include myosin light chain kinase10, Ca2+/CaM-dependent kinases (CaMKs)11 and phosphatases (e.g. calcineurin)12, and spectrin kinase13, which have a variety of direct and downstream effects14.The effects of these proteins on cellular function are often dependent on their ability to bind to CaM in a Ca2+-dependent manner. For example, we tested the relevance of Ng-CaM binding in synaptic function and how different mutations affect this binding. We generated a GFP-tagged Ng construct with specific mutations in the IQ-domain that would change the ability of Ng to bind CaM in a Ca2+-dependent manner. The study of these different mutations gave us great insight into important processes involved in synaptic function8,15. However, in such studies, it is essential to demonstrate that the mutated proteins have the expected altered binding to CaM.Here, we present a method for testing the ability of proteins to bind to CaM in the presence or absence of Ca2+, using CaMKII and Ng as examples. This method is a form of affinity chromatography referred to as a CaM pull-down assay. It uses CaM-Sepharose beads to test proteins that bind to CaM and the influence of Ca2+ on this binding. It is considerably more time efficient and requires less protein relative to column chromatography and other assays. Altogether, this provides a valuable tool to explore Ca2+/CaM signaling and proteins that interact with CaM.  相似文献   

13.
Glutamatergic transmission in the central nervous system (CNS) is mediated by ionotropic, ligand-gated receptors (iGluRs), and metabotropic receptors (mGluRs). mGluRs are coupled to GTP-binding regulatory proteins (G-proteins) and modulate different second messenger pathways. Multiple effects have been described following their activation; among others, regulation of fast synaptic transmission, changes in synaptic plasticity, and modification of the threshold for seizure generation. Some of the major roles played by the activation of mGluRs might depend on the modulation of high-voltage-activated (HVA) calcium (Ca2+) currents. Some HVA Ca2+ channels (N-, P-, and Q-type channels) are signaling components at most presynaptic active zones. Their mGluR-mediated inhibition reduces synaptic transmission. The interference, by agonists at mGluRs, on L-type channels might affect the repetitive neuronal firing behavior and the integration of complex events at the somatic level. In addition, the mGluR-mediated effects on voltagegated Ca2+ signals have been suggested to strongly influence neurotoxicity. Rather different coupling mechanisms underlie the relation between mGluRs and Ca2+ currents: Together with a fast, membrane-delimited mechanism of action, much slower responses, involving intracellular second messengers, have also been postulated. In the recent past, the relative paucity of selective agonists and antagonists for the different subclasses of mGluRs had hampered the clear definition of the roles of mGluRs in brain function. However, the recent availability of new pharmacological tools is promising to provide a better understanding of the neuronal functions related to different mGluR subtypes. The analysis of the mGluR-mediated modulation of Ca2+ conductances will probably offer new insights into the characterization of synaptic transmission and the development of neuroprotective agents.  相似文献   

14.
Neuronal calcium sensor-1 (NCS-1) is a major modulator of Ca2+ signaling with a known role in neurotransmitter release. NCS-1 has one cryptic (EF1) and three functional (EF2, EF3, and EF4) EF-hand motifs. However, it is not known which are the regulatory (Ca2+-specific) and structural (Ca2+- or Mg2+-binding) EF-hand motifs. To understand the specialized functions of NCS-1, identification of the ionic discrimination of the EF-hand sites is important. In this work, we determined the specificity of Ca2+ binding using NMR and EF-hand mutants. Ca2+ titration, as monitored by [15N,1H] heteronuclear single quantum coherence, suggests that Ca2+ binds to the EF2 and EF3 almost simultaneously, followed by EF4. Our NMR data suggest that Mg2+ binds to EF2 and EF3, thereby classifying them as structural sites, whereas EF4 is a Ca2+-specific or regulatory site. This was further corroborated using an EF2/EF3-disabled mutant, which binds only Ca2+ and not Mg2+. Ca2+ binding induces conformational rearrangements in the protein by reversing Mg2+-induced changes in Trp fluorescence and surface hydrophobicity. In a larger physiological perspective, exchanging or replacing Mg2+ with Ca2+ reduces the Ca2+-binding affinity of NCS-1 from 90 nM to 440 nM, which would be advantageous to the molecule by facilitating reversibility to the Ca2+-free state. Although the equilibrium unfolding transitions of apo-NCS-1 and Mg2+-bound NCS-1 are similar, the early unfolding transitions of Ca2+-bound NCS-1 are partially influenced in the presence of Mg2+. This study demonstrates the importance of Mg2+ as a modulator of calcium homeostasis and active-state behavior of NCS-1.  相似文献   

15.

Background  

A wide range of stimuli evoke rapid and transient increases in [Ca2+]cyt in plant cells which are transmitted by protein sensors that contain EF-hand motifs. Here, a group of Oryza sativa L. genes encoding calmodulin (CaM) and CaM-like (CML) proteins that do not possess functional domains other than the Ca2+-binding EF-hand motifs was analyzed.  相似文献   

16.
Synaptic ribbons are large proteinaceous scaffolds at the active zone of ribbon synapses that are specialized for rapid sustained synaptic vesicles exocytosis. A single ribbon‐specific protein is known, RIBEYE, suggesting that ribbons may be constructed from RIBEYE protein. RIBEYE knockdown in zebrafish, however, only reduced but did not eliminate ribbons, indicating a more ancillary role. Here, we show in mice that full deletion of RIBEYE abolishes all presynaptic ribbons in retina synapses. Using paired recordings in acute retina slices, we demonstrate that deletion of RIBEYE severely impaired fast and sustained neurotransmitter release at bipolar neuron/AII amacrine cell synapses and rendered spontaneous miniature release sensitive to the slow Ca2+‐buffer EGTA, suggesting that synaptic ribbons mediate nano‐domain coupling of Ca2+ channels to synaptic vesicle exocytosis. Our results show that RIBEYE is essential for synaptic ribbons as such, and may organize presynaptic nano‐domains that position release‐ready synaptic vesicles adjacent to Ca2+ channels.  相似文献   

17.
Calcium (Ca2+) is a second messenger regulating a wide variety of intracellular processes. Using GABA-and glycinergic synapses as examples, this review analyzes two functions of this unique ion: postsynaptic Ca2+-dependent modulation of receptor-operated channels and Ca2+-induced retrograde regulation of neurotransmitter release from the presynaptic terminals. Phosphorylation, rapid Ca2+-induced modulation via intermediate Ca2+-binding proteins, and changes in the number of functional receptors represent the main pathways of short-and long-term plasticity of postsynaptic receptor-operated channel machinery. Retrograde signaling is an example of synaptic modulation triggered by stimulation of postsynaptic cells and mediated via regulation of presynaptic neurotransmitter release. This mechanism provides postsynaptic neurons with efficient tools to control the presynaptic afferents in an activity-dependent mode. Elevation of intracellular Ca2+ in a postsynaptic neuron triggers the synthesis of endocannabinoids (derivatives of arachidonic acid). Their retrograde diffusion through the synaptic cleft and consequent activation of presynaptic G-protein coupled to CB1 receptors inhibits the release of neurotransmitter. These mechanisms of double modulation, which include control over the function of postsynaptic ion channels and retrograde suppression of the release machinery, play an important role in Ca2+-dependent control of the main excitatory and inhibitory synaptic pathways in the mammalian nervous system.  相似文献   

18.
Cav1.4 L-type Ca2+ channels are crucial for synaptic transmission in retinal photoreceptors and bipolar neurons. Recent studies suggest that the activity of this channel is regulated by the Ca2+-binding protein 4 (CaBP4). In the present study, we explored this issue by examining functional effects of CaBP4 on heterologously expressed Cav1.4. We show that CaBP4 dramatically increases Cav1.4 channel availability. This effect crucially depends on the presence of the C-terminal ICDI (inhibitor of Ca2+-dependent inactivation) domain of Cav1.4 and is absent in a Cav1.4 mutant lacking the ICDI. Using FRET experiments, we demonstrate that CaBP4 interacts with the IQ motif of Cav1.4 and that it interferes with the binding of the ICDI domain. Based on these findings, we suggest that CaBP4 increases Cav1.4 channel availability by relieving the inhibitory effects of the ICDI domain on voltage-dependent Cav1.4 channel gating. We also functionally characterized two CaBP4 mutants that are associated with a congenital variant of human night blindness and other closely related nonstationary retinal diseases. Although both mutants interact with Cav1.4 channels, the functional effects of CaBP4 mutants are only partially preserved, leading to a reduction of Cav1.4 channel availability and loss of function. In conclusion, our study sheds new light on the functional interaction between CaBP4 and Cav1.4. Moreover, it provides insights into the mechanism by which CaBP4 mutants lead to loss of Cav1.4 function and to retinal disease.  相似文献   

19.
The CaBP family of EF-hand containing small Ca2+-binding proteins have recently emerged as important regulators of multiple targets essential to normal neuronal function in the mammalian central nervous system. Of particular interest are CaBP7 and CaBP8, abundantly expressed brain proteins that exhibit the greatest sequence divergence from other family members. In this study, we have analysed their sub-cellular localisations in a model neuronal (Neuro2A) cell line and show that both proteins exhibit a membrane distribution distinct from the other CaBPs and consistent with localisation to the trans-Golgi network (TGN). Furthermore, we show that their localisation to the TGN critically depends upon an unusual predicted C-terminal transmembrane domain that if deleted or disrupted has dramatic consequences for protein targeting. CaBP7 and 8, therefore, possess a targeting mechanism that is unique amongst the CaBPs that may contribute to differential functional Ca2+-sensing by these family members.  相似文献   

20.
Caldendrin, L- and S-CaBP1 are CaM-like Ca2+-sensors with different N-termini that arise from alternative splicing of the Caldendrin/CaBP1 gene and that appear to play an important role in neuronal Ca2+-signaling. In this paper we show that Caldendrin is abundantly present in brain while the shorter splice isoforms L- and S-CaBP1 are not detectable at the protein level. Caldendrin binds both Ca2+ and Mg2+ with a global Kd in the low µM range. Interestingly, the Mg2+-binding affinity is clearly higher than in S-CaBP1, suggesting that the extended N-terminus might influence Mg2+-binding of the first EF-hand. Further evidence for intra- and intermolecular interactions of Caldendrin came from gel-filtration, surface plasmon resonance, dynamic light scattering and FRET assays. Surprisingly, Caldendrin exhibits very little change in surface hydrophobicity and secondary as well as tertiary structure upon Ca2+-binding to Mg2+-saturated protein. Complex inter- and intramolecular interactions that are regulated by Ca2+-binding, high Mg2+- and low Ca2+-binding affinity, a rigid first EF-hand domain and little conformational change upon titration with Ca2+ of Mg2+-liganted protein suggest different modes of binding to target interactions as compared to classical neuronal Ca2+-sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号