首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
3.
4.
5.
基因组编辑技术是进行功能基因组研究的重要工具.锌指核酸酶技术(ZFNs)、类转录激活因子核酸酶技术(TALENs)以及CRISPR/Cas技术是近年来发展起来的3种主流基因组编辑技术.这3种基因组编辑技术的原理都是通过在生物基因组特定位点制造DNA断裂损伤,从而激活机体自身的DNA损伤修复机制,在此过程中引发各种变异.ZFNs是最早发展的通用基因组编辑技术,可用以实施定点敲除和定点敲入变异,但ZFNs技术的发展受限于构建难度大、成本高等缺点.TALENs技术在ZFNs基础上发展而来,较ZFNs技术而言,TALENs技术具备构建灵活度高、成本低等优势.不同于ZFNs与TALENs技术,CRISPR/Cas技术具有独特的DNA靶向机制,这种机制使其非常适合进行多位点编辑.目前,3种技术都在多种物种中成功测试,例如小鼠、斑马鱼、果蝇、线虫和家蚕.在后基因组时代,这些新技术工具必将在未来功能基因组研究中发挥重大作用.  相似文献   

6.
CRISPR/Cas9系统在疾病研究和治疗中的应用   总被引:1,自引:0,他引:1  
基因组编辑技术(Genomeeditingtechnology)是一种通过人工手段在基因组水平对DNA序列进行改造的遗传操作技术,包括特定DNA片段的插入、敲除、替换和点突变。其中,依赖核酸酶的基因组编辑技术的基本原理是在基因组的特定位置产生双链DNA断裂(Double-strandedbreak,DSB)后通过非同源末端连接(Non-homologous end joining,NHEJ)或同源重组(Homologous recombination,HR)的方式进行修复。随着对核酸酶更深入的研究,基因组编辑技术也得到了快速发展,其中最常使用的核酸酶主要包括巨型核酸酶、锌指核酸酶、转录激活因子样效应物核酸酶以及成簇的规律间隔的短回文重复序列相关蛋白(Clusteredregularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas)。文中在介绍上述基因组编辑技术的发展及作用原理的基础上,主要综述了CRISPR/Cas9系统在基因功能鉴定、疾病模型建立、基因治疗和免疫治疗等应用领域的研究进展,并对其未来发展进行了展望。  相似文献   

7.
8.
9.
10.
Crop improvement is very essential to meet the increasing global food demands and enhance food nutrition. Conventional crop-breeding methods have certain limitations such as taking lot of time and resources, and causing biosafety concerns. These limitations could be overcome by the recently emerged-genome editing technologies that can precisely modify DNA sequences at the genomic level using sequence-specific nucleases (SSNs). Among the artificially engineered SSNs, the CRISPR/Cas9 is the most recently developed targeted genome modification system and seems to be more efficient, inexpensive, easy, user-friendly and rapidly adopted genome-editing tool. Large-scale genome editing has not only improved the yield and quality but also has enhanced the disease resistance ability in several model and other major crops. Increasing case studies suggest that genome editing is an efficient, precise and powerful technology that can accelerate basic and applied research towards crop improvement. In this review, we briefly overviewed the structure and mechanism of genome editing tools and then emphatically reviewed the advances in the application of genome editing tools for crop improvement, including the most recent case studies with CRISPR/Cpf1 and base-editing technologies. We have also discussed the future prospects towards the improvement of agronomic traits in crops.  相似文献   

11.
12.
13.
传统的基因组编辑技术是基于胚胎干细胞和同源重组实现生物基因组定向改造,但是该技术打靶效率低,严重制约了生命科学以及医学的研究.因此,研究新的基因组编辑技术十分重要.人工核酸酶介导的基因组编辑技术是通过特异性识别靶位点造成DNA双链断裂,引起细胞内源性的修复机制实现靶基因的修饰.与传统的基因组编辑技术相比,人工核酸酶技术打靶效率高,这对于基因功能的研究、构建人类疾病动物模型以及探索新型疾病治疗方案有着重要的意义.人工核酸酶技术有3种类型:锌指核酸酶(ZFN)、类转录激活因子核酸酶(TALEN)及规律成簇的间隔短回文重复序列(CRISPR).本文将对以上3种人工核酸酶技术的原理以及在生命科学和医学研究的应用进行综述.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Human pluripotent stem cells (hPSCs) are known to acquire genomic changes as they proliferate and differentiate. Despite concerns that these changes will compromise the safety of hPSC-derived cell therapy, there is currently scant evidence linking the known hPSC genomic abnormalities with malignancy. For the successful use of hPSCs for clinical applications, we will need to learn to distinguish between innocuous genomic aberrations and those that may cause tumors. To minimize any effects of acquired mutations on cell therapy, we strongly recommend that cells destined for transplant be monitored throughout their preparation using a high-resolution method such as SNP genotyping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号