首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The minor U12-dependent class of eukaryotic nuclear pre-mRNA introns is spliced by a distinct spliceosomal mechanism that requires the function of U11, U12, U5, U4atac, and U6atac snRNAs. Previous work has shown that U11 snRNA plays a role similar to U1 snRNA in the major class spliceosome by base pairing to the conserved 5'' splice site sequence. Here we show that U6atac snRNA also base pairs to the 5'' splice site in a manner analogous to that of U6 snRNA in the major class spliceosome. We show that splicing defective mutants of the 5'' splice site can be activated for splicing in vivo by the coexpression of compensatory U6atac snRNA mutants. In some cases, maximal restoration of splicing required the coexpression of compensatory U11 snRNA mutants. The allelic specificity of mutant phenotype suppression is consistent with Watson-Crick base pairing between the pre-mRNA and the snRNAs. These results provide support for a model of the RNA-RNA interactions at the core of the U12-dependent spliceosome that is strikingly similar to that of the major class U2-dependent spliceosome.  相似文献   

2.
The U6 spliceosomal snRNA forms an intramolecular stem-loop structure during spliceosome assembly that is required for splicing and is proposed to be at or near the catalytic center of the spliceosome. U6atac snRNA, the analog of U6 snRNA used in the U12-dependent splicing of the minor class of spliceosomal introns, contains a similar stem-loop whose structure but not sequence is conserved between humans and plants. To determine if the U6 and U6atac stem-loops are functionally analogous, the stem-loops from human and budding yeast U6 snRNAs were substituted for the U6atac snRNA structure and tested in an in vivo genetic suppression assay. Both chimeric U6/U6atac snRNA constructs were active for splicing in vivo. In contrast, several mutations of the native U6atac stem-loop that either delete putatively unpaired residues or disrupt the putative stem regions were inactive for splicing. Compensatory mutations that are expected to restore base pairing within the stem regions restored splicing activity. However, other mutants that retained base pairing potential were inactive, suggesting that functional groups within the stem regions may contribute to function. These results show that the U6atac snRNA stem-loop structure is required for in vivo splicing within the U12-dependent spliceosome and that its role is likely to be similar to that of the U6 snRNA intramolecular stem-loop.  相似文献   

3.
U12 snRNA is required for branch point recognition in the U12-dependent spliceosome. Using site-specific cross-linking, we have captured an unexpected interaction between the 5' end of the U12 snRNA and the -2 position upstream of the 5' splice site of P120 and SCN4a splicing substrates. The U12 snRNA nucleotides that contact the 5' exon are the same ones that form the catalytically important helix Ib with U6atac snRNA in the spliceosome catalytic core. However, the U12/5' exon interaction is transient, occurring prior to the entry of the U4atac/U6atac.U5 tri-snRNP to the spliceosome. This suggests that the helix Ib region of U12 snRNA is positioned near the 5' splice site early during spliceosome assembly and only later interacts with U6atac to form helix Ib. We also provide evidence that U12 snRNA can simultaneously interact with 5' exon sequences near 5' splice site and the branch point sequence, suggesting that the 5' splice site and branch point sequences are separated by <40 to 50 A in the complex A of the U12-dependent spliceosome. Thus, no major rearrangements are subsequently needed to position these sites for the first step of catalysis.  相似文献   

4.
The rate of excision of U12-type introns has been reported to be slower than that of U2-type introns, suggesting a rate-limiting bottleneck that could down-regulate genes containing U12-type introns. The mechanistic reasons for this slower rate of intron excision are not known, but lower abundance of the U12-type snRNPs and slower rate of assembly or catalytic activity have been suggested. To investigate snRNP abundance we concentrated on the U4atac snRNA, which is the least abundant of the U12-type snRNAs and is limiting the formation of U4atac/U6atac complex. We identified mouse NIH-3T3 cell line isolates in which the level of both U4atac snRNA and U4atac/U6atac complexes is reduced to 10%-20% of the normal level. We used these cell lines to investigate splicing efficiency by transient transfection of a reporter gene containing a U12-type intron and by quantitative PCR analysis of endogenous genes. The splicing of the reporter U12-type intron was very inefficient, but the activity could be restored by overexpression of U4atac snRNA. Using these U4atac-deficient NIH-3T3 cells, we confirmed the results of previous studies showing that U12-type introns of endogenous genes are, indeed, excised more slowly than U2-type introns, but we found that the rate did not differ from that measured in cells displaying normal levels of U4atac snRNA. Thus our results suggest that the cellular abundance of the snRNPs does not limit U12-type intron splicing under normal conditions.  相似文献   

5.
U4atac snRNA forms a base-paired complex with U6atac snRNA. Both snRNAs are required for the splicing of the minor U12-dependent class of eukaryotic nuclear introns. We have developed a new genetic suppression assay to investigate the in vivo roles of several regions of U4atac snRNA in U12-dependent splicing. We show that both the stem I and stem II regions, which have been proposed to pair with U6atac snRNA, are required for in vivo splicing. Splicing activity also requires U4atac sequences in the 5' stem-loop element that bind a 15.5 kDa protein that also binds to a similar region of U4 snRNA. In contrast, mutations in the region immediately following the stem I interaction region, as well as a deletion of the distal portion of the 3' stem-loop element, were active for splicing. Complete deletion of the 3' stem-loop element abolished in vivo splicing function as did a mutation of the Sm protein binding site. These results show that the in vivo sequence requirements of U4atac snRNA are similar to those described previously for U4 snRNA using in vitro assays and provide experimental support for models of the U4atac/U6atac snRNA interaction.  相似文献   

6.
Splicing of rare, U12-type or AT-AC introns is mediated by a distinct spliceosome that assembles from U11, U12, U4atac, U6atac, and U5 snRNPs. Although in human cells the protein composition of minor and major snRNPs is similar, differences, particularly in U11 and U12 snRNPs, have been recently described. We have identified an Arabidopsis U11 snRNP-specific 35K protein as an interacting partner of an RS-domain-containing cyclophilin. By using a transient expression system in Arabidopsis protoplasts, we show that the 35K protein incorporates into snRNP. Oligo affinity selection and glycerol gradient centrifugation revealed that the Arabidopsis 35K protein is present in monomeric U11 snRNP and in U11/U12-di snRNP. The interaction of the 35K protein with Arabidopsis SR proteins together with its strong sequence similarity to U1-70K suggests that its function in splicing of minor introns is analogous to that of U1-70K. Analysis of Arabidopsis and Oryza sativa genome sequences revealed that all U11/U12-di-snRNP-specific proteins are conserved in dicot and monocot plants. In addition, we have identified an Arabidopsis gene encoding the homolog of U4atac snRNA and a second Arabidopsis gene encoding U6atac snRNA. Secondary structure predictions indicate that the Arabidopsis U4atac is able to form dimeric complexes with both Arabidopsis U6atac snRNAs. As revealed by RNaseA/T1 protection assay, the U4atac snRNA gene is expressed as an ~160-nt RNA, whereas the second U6atac snRNA gene seems to be a pseudogene. Taken together, our data indicate that recognition and splicing of minor, AT-AC introns in plants is highly similar to that in humans.  相似文献   

7.
Splicing of U12-dependent introns requires the function of U11, U12, U6atac, U4atac, and U5 snRNAs. Recent studies have suggested that U6atac and U12 snRNAs interact extensively with each other, as well as with the pre-mRNA by Watson-Crick base pairing. The overall structure and many of the sequences are very similar to the highly conserved analogous regions of U6 and U2 snRNAs. We have identified the homologs of U6atac and U12 snRNAs in the plant Arabidopsis thaliana. These snRNAs are significantly diverged from human, showing overall identities of 65% for U6atac and 55% for U12 snRNA. However, there is almost complete conservation of the sequences and structures that are implicated in splicing. The sequence of plant U6atac snRNA shows complete conservation of the nucleotides that base pair to the 5' splice site sequences of U12-dependent introns in human. The immediately adjacent AGAGA sequence, which is found in human U6atac and all U6 snRNAs, is also conserved. High conservation is also observed in the sequences of U6atac and U12 that are believed to base pair with each other. The intramolecular U6atac stem-loop structure immediately adjacent to the U12 interaction region differs from the human sequence in 9 out of 21 positions. Most of these differences are in base pairing regions with compensatory changes occurring across the stem. To show that this stem-loop was functional, it was transplanted into a human suppressor U6atac snRNA expression construct. This chimeric snRNA was inactive in vivo but could be rescued by coexpression of a U4atac snRNA expression construct containing compensatory mutations that restored base pairing to the chimeric U6atac snRNA. These data show that base pairing of U4atac snRNA to U6atac snRNA has a required role in vivo and that the plant U6atac intramolecular stem-loop is the functional analog of the human sequence.  相似文献   

8.
U12-dependent introns are spliced by the so-called minor spliceosome, requiring the U11, U12, and U4atac/U6atac snRNPs in addition to the U5 snRNP. We have recently identified U6-p110 (SART3) as a novel human recycling factor that is related to the yeast splicing factor Prp24. U6-p110 transiently associates with the U6 and U4/U6 snRNPs during the spliceosome cycle, regenerating functional U4/U6 snRNPs from singular U4 and U6 snRNPs. Here we investigated the involvement of U6-p110 in recycling of the U4atac/U6atac snRNP. In contrast to the major U6 and U4/U6 snRNPs, p110 is primarily associated with the U6atac snRNP but is almost undetectable in the U4atac/U6atac snRNP. Since p110 does not occur in U5 snRNA-containing complexes, it appears to be transiently associated with U6atac during the cycle of the minor spliceosome. The p110 binding site was mapped to U6 nucleotides 38 to 57 and U6atac nucleotides 10 to 30, which are highly conserved between these two functionally related snRNAs. With a U12-dependent in vitro splicing system, we demonstrate that p110 is required for recycling of the U4atac/U6atac snRNP.  相似文献   

9.
The influenza virus NS1 protein inhibits the splicing of the major class of mammalian pre-mRNAs (GU-AG Introns) by binding to a specific stem-bulge in U6 snRNA, thereby blocking the formation of U4/U6 and U2/U6 complexes. The splicing of the minor class of AT-AC introns takes place on spliceosomes that do not contain U6 snRNA, but rather U6atac snRNA-a highly divergent U6 snRNA counterpart. Nonetheless, we demonstrate that the NS1 protein inhibits AT-AC splicing in vitro, and specifically binds to only U6atac snRNA among the five minor class snRNAs. Chemical modification/interference assays show that the NS1 protein binds to the stem-bulge near the 3'' end of U6atac snRNA, encompassing nt 82-95 and nt 105-114. Although the sequence of this stem-bulge differs significantly from the sequence of the stem-bulge to which the NS1 protein binds in U6 snRNA, RNA competition experiments Indicate that U6 and U6atac snRNAs likely share the same binding site on the NS1 protein. Previously, the region of U6atac snRNA containing this 3'' stem-bulge had not been implicated in any interactions of this snRNA with either U4atac or U12 snRNA. However, as assayed by psoralen crosslinking, we show that the NS1 protein inhibits the formation of U12/U6atac complexes, but not the formation of U4atac/U6atac complexes. We can conclude that the inhibition of AT-AC splicing results largely from the inhibition of formation of U12/U6atac complexes caused by the binding of the NS1 protein to the 3'' stem-bulge of U6atac snRNA.  相似文献   

10.
Activation of the spliceosome for splicing catalysis requires the dissociation of U4 snRNA from the U4/U6 snRNA duplex prior to the first step of splicing. We characterize an evolutionarily conserved 15.5 kDa protein of the HeLa [U4/U6.U5] tri-snRNP that binds directly to the 5' stem-loop of U4 snRNA. This protein shares a novel RNA recognition motif with several RNP-associated proteins, which is essential, but not sufficient for RNA binding. The 15.5kD protein binding site on the U4 snRNA consists of an internal purine-rich loop flanked by the stem of the 5' stem-loop and a stem comprising two base pairs. Addition of an RNA oligonucleotide comprising the 5' stem-loop of U4 snRNA (U4SL) to an in vitro splicing reaction blocked the first step of pre-mRNA splicing. Interestingly, spliceosomal C complex formation was inhibited while B complexes accumulated. This indicates that the 15.5kD protein, and/or additional U4 snRNP proteins associated with it, play an important role in the late stage of spliceosome assembly, prior to step I of splicing catalysis. Our finding that the 15.5kD protein also efficiently binds to the 5' stem-loop of U4atac snRNA indicates that it may be shared by the [U4atac/U6atac.U5] tri-snRNP of the minor U12-type spliceosome.  相似文献   

11.
Important general insights into the mechanism of pre-mRNA splicing have emerged from studies of the U12-dependent spliceosome. Here, photochemical cross-linking analyses during U12-dependent spliceosome assembly have surprisingly revealed that an upstream 5' exon region is required for establishing two essential catalytic core interactions, U12/U6atac helix Ib and U6atac/5' splice site contacts, but not for U5/5' exon interactions or partial unwinding of U4atac/U6atac. A novel intermediate, representing an alternative pathway for catalytic core formation, is a ternary snRNA complex containing U4atac/U6atac stem II and U12/U6atac helix Ia that forms even without U6atac replacing U11 at the 5' splice site. A powerful oligonucleotide displacement method suggests that the blocked complexes analyzed to deduce the interdependence of these multiple RNA exchanges are authentic intermediates in U12-dependent spliceosome assembly.  相似文献   

12.
U12 snRNA is analogous to U2 snRNA of the U2-dependent spliceosome and is essential for the splicing of U12-dependent introns in metazoan cells. The essential region of U12 snRNA, which base pairs to the branch site of minor class introns is well characterized. However, other regions which are outside of the branch site base pairing region are not yet characterized and the requirement of these structures in U12-dependent splicing is not clear. U12 snRNA is predicted to form an intricate secondary structure containing several stem-loops and single-stranded regions. Using a previously characterized branch site genetic suppression assay, we generated second-site mutations in the suppressor U12 snRNA to investigate the in vivo requirement of structural elements in U12-dependent splicing. Our results show that stem-loop IIa is essential and required for in vivo splicing. Interestingly, an evolutionarily conserved stem-loop IIb is dispensable for splicing. We also show that stem-loop III, which binds to a p65 RNA binding protein of the U11-U12 di.snRNP complex, is essential for in vivo splicing. The data validate the existence of proposed stem-loops of U12 snRNA and provide experimental support for individual secondary structures.  相似文献   

13.
14.
Shukla GC  Padgett RA 《Molecular cell》2002,9(5):1145-1150
Both spliceosomal and self-splicing group II introns require the function of similar small, metal binding RNA stem-loop elements located in U6 or U6atac snRNAs of the spliceosome or domain 5 (D5) of group II introns. Here we report that two different D5 elements can functionally replace the U6atac snRNA stem-loop in an in vivo splicing assay. For efficient function in vivo, a single base pair from the upper helical section of the D5 sequence had to be removed. Introducing the equivalent base pair deletion into the D5 element of a group II intron reduced but did not eliminate self-splicing activity. Our results strengthen the case that these RNA elements play similar roles in the catalytic centers of both the spliceosome and a self-splicing ribozyme.  相似文献   

15.
U6 and U6atac snRNAs play analogous critical roles in the major U2-dependent and minor U12-dependent spliceosomes, respectively. Previous results have shown that most of the functional cores of these two snRNAs are either highly similar in sequence or functionally interchangeable. Thus, a mechanism must exist to restrict each snRNA to its own spliceosome. Here we show that a chimeric U6 snRNA containing the unique and highly conserved 3′ end domain of U6atac snRNA is able to function in vivo in U12-dependent spliceosomal splicing. Function of this chimera required the coexpression of a modified U4atac snRNA; U4 snRNA could not substitute. Partial deletions of this element in vivo, as well as in vitro antisense experiments, showed that the 3′ end domain of U6atac snRNA is necessary to direct the U4atac/U6atac.U5 tri-snRNP to the forming U12-dependent spliceosome. In vitro experiments also uncovered a role for U4atac snRNA in this targeting.  相似文献   

16.
The U2 and U6 snRNAs contribute to the catalysis of intron removal while U5 snRNA loop 1 holds the exons for ligation during pre-mRNA splicing. It is unclear how different exons are positioned precisely with U5 loop 1. Here, we investigate the role of U2 and U6 in positioning the exons with U5 loop 1. Reconstitution in vitro of spliceosomes with mutations in U2 allows U5-pre-mRNA interactions before the first step of splicing. However, insertion in U2 helix Ia disrupts U5-exon interactions with the intron lariat-3' exon splicing intermediate. Conversely, U6 helix Ia insertions prevent U5-pre-mRNA interactions before the first step of splicing. In vivo, synthetic lethal interactions have been identified between U2 insertion and U5 loop 1 insertion mutants. Additionally, analysis of U2 insertion mutants in vivo reveals that they influence the efficiency, but not the accuracy of splicing. Our data suggest that U2 aligns the exons with U5 loop 1 for ligation during the second step of pre-mRNA splicing.  相似文献   

17.
Pairing between U2 snRNA and the branch site of spliceosomal introns is essential for spliceosome assembly and is thought to be required for the first catalytic step of splicing. We have identified an RNA comprising the 5' end of U2 snRNA and the 3' exon of the ACT1-CUP1 reporter gene, resulting from a trans-splicing reaction in which a 5' splice site-like sequence in the universally conserved branch site-binding region of U2 is used in trans as a 5' splice site for both steps of splicing in vivo. Formation of this product occurs in functional spliceosomes assembled on reporter genes whose 5' splice sites are predicted to bind poorly at the spliceosome catalytic center. Multiple spatially disparate splice sites in U2 can be used, calling into question both the fate of its pairing to the branch site and the details of its role in splicing catalysis.  相似文献   

18.
S M Berget  B L Robberson 《Cell》1986,46(5):691-696
The requirement for individual U RNAs in splicing and polyadenylation was investigated using oligonucleotide-directed cleavage of snRNAs in in vitro processing extracts. Cleavage of U1, U2, or U4 RNA inhibited splicing but not polyadenylation of short precursor RNAs. Thus each snRNA and the snRNP in which it is assembled participates in the splicing reaction. Splicing activity was recovered when extracts containing cleaved U RNAs were mixed in pairwise combinations, indicating that U1, U2, and U4/U6 snRNPs independently interact with the assembling spliceosome. The involvement of multiple snRNPs in the splicing of simple precursor RNAs suggests that the spliceosome is a large complex assembly consisting of multiple snRNPs whose activity is dependent on the structural integrity of the individual U RNAs.  相似文献   

19.
In the U12-dependent spliceosome, the U4atac/U6atac snRNP represents the functional analogue of the major U4/U6 snRNP. Little information is available presently regarding the protein composition of the former snRNP and its association with other snRNPs. In this report we show that human U4atac/U6atac di-snRNPs associate with U5 snRNPs to form a 25S U4atac/U6atac.U5 trimeric particle. Comparative analysis of minor and major tri-snRNPs by using immunoprecipitation experiments revealed that their protein compositions are very similar, if not identical. Not only U5-specific proteins but, surprisingly, all tested U4/U6- and major tri-snRNP-specific proteins were detected in the minor tri-snRNP complex. Significantly, the major tri-snRNP-specific proteins 65K and 110K, which are required for integration of the major tri-snRNP into the U2-dependent spliceosome, were among those proteins detected in the minor tri-snRNP, raising an interesting question as to how the specificity of addition of tri-snRNP to the corresponding spliceosome is maintained. Moreover, immunodepletion studies demonstrated that the U4/U6-specific 61K protein, which is involved in the formation of major tri-snRNPs, is essential for the association of the U4atac/U6atac di-snRNP with U5 to form the U4atac/U6atac.U5 tri-snRNP. Subsequent immunoprecipitation studies demonstrated that those proteins detected in the minor tri-snRNP complex are also incorporated into U12-dependent spliceosomes. This remarkable conservation of polypeptides between minor and major spliceosomes, coupled with the absence of significant sequence similarity between the functionally analogous snRNAs, supports an evolutionary model in which most major and minor spliceosomal proteins, but not snRNAs, are derived from a common ancestor.  相似文献   

20.
Activation of a cryptic 5' splice site by U1 snRNA   总被引:1,自引:0,他引:1       下载免费PDF全文
In the course of analyzing 5' splice site mutations in the second intron of Schizosaccharomyces pombe cdc2, we identified a cryptic 5' junction containing a nonconsensus nucleotide at position +2. An even more unusual feature of this cryptic 5' junction was its pattern of activation. By analyzing the profile of splicing products for an extensive series of cdc2 mutants in the presence and absence of compensatory U1 alleles, we have obtained evidence that the natural 5' splice site participates in activation of the cryptic 5' splice site, and that it does so via base pairing to U1 snRNA. Furthermore, the results of follow-up experiments strongly suggest that base pairing between U1 snRNA and the cryptic 5' junction itself plays a dominant role in its activation. Most remarkably, a mutant U1 can activate the cryptic 5' splice site even in the presence of a wild-type sequence at the natural 5' junction, providing unambiguous evidence that this snRNA redirects splicing via base pairing. Although previous work has demonstrated that U5 and U6 snRNAs can activate cryptic 5' splice sites through base pairing interactions, this is the first example in which U1 snRNA has been implicated in the final selection of a cryptic 5' junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号