首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Summary The effect of the K-sparing diuretic amiloride was assessed electrophysiologically in the isolated cortical collecting tubule of the rabbit, a segment which absorbs Na and secretes K. Low concentrations of amiloride in the perfusate caused a rapid, reversible, decrease in the magnitude of the lumen negative transepithelial potential difference,V te, transepithelial conductanceG te, and equivalent short-circuit current,I sc, with an apparentK 1/2 of approximately 7×10–8 m. The effects of a maximum inhibitory concentration of amiloride (10–5 m) were identical to those observed upon Na removal from lumen and bath (Na removal from the bath alone has no effect). Removal of Na in the presence of 10–5 m amiloride had no affect onV te,G te, orI sc, and is consistent with the view that amiloride blocks the Na conductive pathways of the apical cell membrane. Further, in the absence of Na, the subsequent addition of amiloride had no influence. In tubules where active Na absorption was either spontaneously low, or abolished by removal of Na from lumen and bath, the elevation of K from 5 to 155 meq/liter in the perfusate caused a marked change of theV te in the negative direction and an increase in theG te. These effects could be attributed to a high K permeability of the apical cell membrane and not of the tight junctions. Amiloride (10–5 m) had no effect on these responses to K. It is concluded that amiloride selectively blocks the apical cell membrane Na channels but has no effect on the K conductive pathways(s). This selective nature of amiloride may indicate that Na and K are transported across the apical cell membrane via separate conductive pathways.  相似文献   

2.
Summary The effects of the addition of graded concentrations of amiloride, (A) m , to the mucosal bathing solution on the permeability of the apical membrane of rabbit descending colon to Na (P Na m ) were determined when the Na activity in the mucosal bathing solution, (Na) m , was 18, 32 or 100mm.P Na m was obtained from current-voltage relations determined on tissues bathed with a high-K serosal solution before and after the addition of a maximally inhibitory concentration of amiloride to the mucosal solution as described by Turnheim et al. (Turnheim, K., Thompson, S.M., Schultz. S.G. 1983.J. Membrane Biol. 76:299–309).The results indicate that: (1) As demonstrated previously (Turnheim et al., 1983),P Na m decreases with increasing (Na) m . (2)P Na m also decreases hyperbolically with increasing (A) m . Kinetic analyses of the effect of amiloride onP Na m are consistent with the conclusions that: (i) the stoichiometry between the interaction of amiloride with apical membrane receptors that results in a decrease inP Na m is one-for-one; (ii) there is no evidence for cooperativity between amiloride and these binding sites; (iii) the value of (A) m needed to halveP Na m at a fixed (Na) m is 0.6–1.0 m; and, (iv) this value is independent of (Na) m over the fivefold range studied.These findings are consistent with the notion that the sites with which amiloride interacts to bring about closure of the channels through which Na crosses the apical membrane arekinetically distinct from the sites with which (Na) m interacts to bring about closure (i.e., self-inhibition). In short, the effects of (Na) m and (A) m onP Na m in this tissue appear to be independent and additive.  相似文献   

3.
Summary The conductance of the apical membrane of the toad urinary bladder was studied under voltage-clamp conditions at hyperpolarizing potentials (mucosa negative to serosa). The serosal medium contained high KCl concentrations to reduce the voltage and electrical resistance across the basal-lateral membrane, and the mucosal solution was Na free, or contained amiloride, to eliminate the conductance of the apical Na channels. As the mucosal potential (V m) was made more negative the slope conductance of the epithelium increased, reaching a maximum at conductance of the epithelium increased, reaching a maximum atV m=–100 mV. This rectifying conductance activated with a time constant of 2 msec whenV m was changed abruptly from 0 to –100 mV, and remained elevated for at least 10 min, although some decrease of current was observed. ReturningV m to+100 mV deactivated the conductance within 1 msec. Ion substitution experiments showed that the rectified current was carried mostly by cations moving from cell to mucosa. Measurement of K flux showed that the current could be accounted for by net movement of K across the apical membrane, implying a voltage-dependent conductance to K (G K). Mucosal addition of the K channel blockers TEA and Cs had no effect onG K, while 29mm Ba diminished it slightly. Mucosal Mg (29mm) also reducedG K, while Ca (29mm) stimulated it.G K was blocked by lowering the mucosal pH with an apparent pK1 of 4.5. Quinidine (0.5mm in the serosal bath) reducedG K by 80%.G K was stimulated by ADH (20 mU/ml), 8-Br-cAMP (1mm), carbachol (100 m), aldosterone (5×10–7 m for 18 hr), intracellular Li and extracellular CO2.  相似文献   

4.
Summary The basal-lateral surface of the epithelium of the urinary bladder of the toad (Bufo marinus) was depolarized by exposure of the serosal surface to 85mm KCL and 50mm sucrose. The extent of depolarization appeared to be virtually complete, as evaluated by the invariance in the transepithelial electrical potential difference and conductance on addition of nystatin (a monovalent cation ionophore) to the serosal medium. The Na-specific current (I Na) was defined as the current sensitive to the removal of Na from the mucosal medium or inhibitable by addition of amiloride to this medium. In the presence of the high K-sucrose serosal medium, rapid, serial, stepwise clamping of the transepithelial voltage (V) yielded a curvilinear dependence ofI Na onV; which is taken to represent theI–V curve of the apical Na channels. The constant field equation (Goldman, D.E. 1943;J. Gen. Physiol. 27:37) fits theI–V data points closely, allowing estimates to be made of the permeability to Na of the apical membrane (P Na) and of the intracellular Na activity (Na c ). Exposure of the apical surface to amiloride (5×10–7 m) decreasedP Na in proportion to the decrease inI Na (i.e., 70%) but decreased Na c only 25%. In contrast, an equivalent lent reduction inI Na elicited by exposure of the basallateral surface to ouabain was accompanied by only a 20% decrease inP Na and a sixfold increase in Na c . The effects of amiloride onP Na and ouabain on Na c are consistent with the primary pharmacological actions of these drugs. In addition,P Na appears to be under metabolic control, in that 2-deoxyglucose, a specific inhibitor of glycolysis, decreasedI Na andP Na proportionately, and lowered Na c marginally, effects indistinguishable from those obtained with amiloride.  相似文献   

5.
Summary The24Na efflux (J eff Na ) (i.e., the rate of appearance of24Na in the outer compartment) in the isolated short-circuited toad skin bathed by NaCl-Ringer's solution on both sides is composed of para- and transcellular components of almost equal magnitudes. This relies on the assumption that amiloride acts on the transcellular component only and could block it completely.Ouabain induces a large transient increase of the transcellular component. This increase, which starts within a few minutes after the addition of ouabain, is due to electrical depolarization of the outer barrier, rather than a consequence of blocking Na recirculation across the inner barrier. The subsequent decline ofJ eff Na , which takes place after the ouabain-inducedJ eff Na peak, is due to a progressive block of outer barrier Na channels with time, which can eventually be complete, depending on the duration of action of ouabain. As the external Na concentration was always kept high and constant in these experiments, the results indicate that a rise in cell Na concentration, and not in the outer bathing solution, is the signal that triggers the reduction of outer barrier Na permeability (P 0 Na ).Ouabain has no effect uponJ eff Na with Na-free solution bathing the outer and NaCl-Ringer's solution the inner skin surface, showing the importance of Na penetration across the outer barrier, and not across the inner barrier due to its low Na permeability, in the process of closing the Na channels of this structure.Step changes from Na 115mm to Na-free external solution, or vice-versa, may affect both the outer barrier electrical potential difference (PD0) and cell Na concentration (Na) c . Therefore, the behavior ofJ eff Na depends on which variable (if PD0 or (Na) c regulated outer barrier Na permeability) is most affected by step changes in outer bathing solution Na concentration.Amiloride in the control condition blocks the transcellular component ofJ eff Na . However, in the condition of approximate short-circuiting of the outer barrier and high cellular Na concentration induced by long term effects of ouabain, when the Na channels of the outer barrier are already blocked by elevated cell Na concentration, amiloride may induce the opposite effect, increasing Na permeability of the outer barrier.With outer barrier Na channels completely blocked by high cell Na concentration, PCMB in the outer bathing medium induces a large increase ofJ eff Na , rendering these channels again amiloride sensitive.The results are consistent with the notion that Na efflux from cell compartment to the outer bathing solution goes through the amiloride-sensitive Na channels of the apical border of the superficial cell layer of toad skin, with an apparent Na permeability modulated by cell ionic environment, most probably the cell Na concentration.The ensemble of the present results are consistent with Na permeability regulation taking place at the outer barrier level. However, this precise location could only be made unambiguously by measurements across the individual outer cell membranes.  相似文献   

6.
The Ca2+-activated maxi K+ channel was found in the apical membrane of everted rabbit connecting tubule (CNT) with a patch-clamp technique. The mean number of open channels (NP o ) was markedly increased from 0.007 ± 0.004 to 0.189 ± 0.039 (n= 7) by stretching the patch membrane in a cell-attached configuration. This activation was suggested to be coupled with the stretch-activation of Ca2+-permeable cation channels, because the maxi K+ channel was not stretch-activated in both the cell-attached configuration using Ca2+-free pipette and in the inside-out one in the presence of 10 mm EGTA in the cytoplasmic side. The maxi K+ channel was completely blocked by extracellular 1 μm charybdotoxin (CTX), but was not by cytoplasmic 33 μm arachidonic acid (AA). On the other hand, the low-conductance K+ channel, which was also found in the same membrane, was completely inhibited by 11 μm AA, but not by 1 μm CTX. The apical K+ conductance in the CNT was estimated by the deflection of transepithelial voltage (ΔV t ) when luminal K+ concentration was increased from 5 to 15 mEq. When the tubule was perfused with hydraulic pressure of 0.5 KPa, the ΔV t was only −0.7 ± 0.4 mV. However, an increase in luminal fluid flow by increasing perfusion pressure to 1.5 KPa markedly enhanced ΔV t to −9.4 ± 0.9 mV. Luminal application of 1 μm CTX reduced the ΔV t to −1.3 ± 0.6 mV significantly in 6 tubules, whereas no significant change of ΔV t was recorded by applying 33 μm AA into the lumen of 5 tubules (ΔV t =−7.2 ± 0.5 mV in control vs.ΔV t =−6.7 ± 0.6 mV in AA). These results suggest that the Ca2+-activated maxi K+ channel is responsible for flow-dependent K+ secretion by coupling with the stretch-activated Ca2+-permeable cation channel in the rabbit CNT. Received: 21 August 1997/Revised: 20 March 1998  相似文献   

7.
The intracellular distribution of potassium in Malpighian tubules from Drosophila larva was measured by electron probe X-ray microanalysis of freeze-dried cryosections. Application of amiloride alone to the haemolymph space had no effect on the intracellular potassium concentration in the region of intermediate cytoplasm (between the basal region of basal membrane infoldings and the apical brush border), whereas a potassium increase as well as a chloride increase was observed after simultaneous blocking of the potassium conductance of the basal membrane with barium. Injected bafilomycin and amiloride applied in the haemolymph caused an increase of the potassium content in the basal cytoplasm but not in the microvilli. In addition, the intracellular water portion was decreased by bafilomycin. pH measurements in isolated larval anterior tubules with proton-selective microelectrodes showed that bafilomycin added to the bathing solution caused a decrease in intracellular pH. Addition of amiloride had no significant effect on intracellular pH, but the pH of the luminal fluid was decreased within 1 min by 0.5 pH units. The amiloride-induced luminal pH decrease could be inhibited by the metabolic blocker KCN as well as by bafilomycin. Furthermore, removing potassium from the bathing saline caused a slow luminal acidification, which could be blocked by KCN. Our results support the hypothesis of a functionally coupled transport system in the apical membrane consisting of a bafilomycin-sensitive V-ATPase and a K+-dependent, amiloride-sensitive K+/H+ exchange system.Abbreviation C a element concentration related to water - C d element content related to dry weight - dw dry weight - DMSO dimethylsulphoxide - emf electromotive force - NBD-Cl 7-chloro-4-nitrobenz-2-oxa-1,3-diazole - NEM N-ethylmaleimide - NMDG+ N-methyl-d-glucamine - PD potential difference - pHi intracellular pH value - pHlu luminal pH value - pmf protonmotive force - SD standard deviation - SE standard error - STEM scanning transmission electron microscopy - V a apical potential difference - V b basal potential difference - V t transepithelial potential difference  相似文献   

8.
Summary Effects of a potent synthetic glucocorticoid, methylprednisolone (MP), on transepithelial Na transport were examined in rabbit descending colon. Current-voltage (I–V) relations of the amiloride-sensitive apical Na entry pathway were measured in colonic tissues of control and MP-treated (40 mg im for 2 days) animals. Tissues were bathed mucosally by solutions of various Na activities, (Na)m, ranging from 6.2 to 75.6mm, and serosally by a high K solution. TheseI–V relations conformed to the constant field flux equation permitting determination of the permeability of the apical membrane to Na,P Na m , and the intracellular Na activity, (Na)c. The following empirical relations were observed for both control and MP-treated tissues: (i) Na transport increases hyperbolically with increasing (Na)m obeying simple Michaelis-Mentin kinetics; (ii)P Na m decreased hyperbolically with increasing (Na)m, but was unrelated to individual variations in (Na)c; (iii) (Na)c increased hyperbolically with (Na)m; (iv) both spontaneous and steroid-stimulated variations in Na entry rate could be attributed entirely to parallel variations inP Na m at each mucosal Na activity. Comparison of these empirical, kinetic relations between control and MP-treated tissues revealed: (i) maximal Na current andP Na m were greater in MP tissues, but the (Na)m's at which current andP Na m were half-maximal were markedly reduced; (ii) (Na)c was significantly increased in MP tissues at each (Na)m while the (Na)m at half-maximal (Na)c was unchanged. These results provide direct evidence that glucocorticoids cause marked stimulation of Na absorption across rabbit colon primarily by increasing the Na permeability of the apical membrane. While the mechanism for the increased permeability remains to be determined, the altered relation betweenP Na m and (Na)m suggests possible differences in the conformation or environment of the Na channel in MP-treated tissues.  相似文献   

9.
A method for microperfusion of isolated segments of the midgut epithelium of Drosophila larvae has been developed to characterize cellular transport pathways and membrane transporters. Stereological ultrastructural morphometry shows that this epithelium has unusually long tight junctions, with little or no lateral intercellular volume normally found in most epithelia. Amplification of the apical and basal aspects of the cells, by ≈ 17-fold and ≈ 7-fold, respectively, predicts an almost exclusively transcellular transport system for solutes. This correlates with the high lumen-negative transepithelial potential (Vt) of 38 to 45 mV and high resistance (Rt) of 800 to 1400 Ω • cm2 measured by terminated cable analysis, in contrast to other microperfused epithelia like the renal proximal tubule. Several blockers (amiloride 10−4 M, ouabain 10−4 M, bumetanide 10−4 M), K+-free solutions, or organic solutes such as D-glucose 10 mM or DL-alanine 0.5 mM failed to affect Vt or Rt. Bafilomycin-A1 (3 to 5 μM) decreased Vt by ≈ 40% and short-circuit current (Isc) by ≈ 50%, and decreased intracellular pH when applied from the basal side only, consistent with an inhibition of an electrogenic V-H+-ATPase located in the basal membrane. Gradients of H+ were detected by pH microelectrodes close to the basal aspect of the cells or within the basal extracellular labyrinth. The apical membrane is more conductive than the basal membrane, facilitating secretion of base (presumably HCO3), driven by the basal V-H+-ATPase.  相似文献   

10.
The presence of an electrogenic H+-ATPase has been described in the late distal tubule, a segment which contains intercalated cells. The present paper studies the electrogenicity of this transport mechanism, which has been demonstrated in turtle bladder and in cortical collecting duct. Transepithelial PD (V t ) was measured by means of Ling-Gerard microelectrodes in late distal tubule of rat renal cortex during in vivo microperfusion. The tubules were perfused with electrolyte solutions to which 2 × 10−7 m bafilomycin or 4.6 × 10−8 m concanamycin were added. No significant increase in lumen-negative V t upon perfusion with these inhibitors as compared to control, was observed as well as when 10−3 m amiloride, 10−5 m benzamil or 3 mm Ba2+ were perfused alone or in combination. The effect of an inhibition of electrogenic H+ secretion, i.e., increase in lumen-negative V t by 2–4 mV, was observed only when Cl channels were blocked by 10−5 m 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). This blocker also reduced the rate of bicarbonate reabsorption in this segment from 1.21 ± 0.14 (n= 8) to 0.62 ± 0.03 (8) nmol.cm−2.sec−1 as determined by stationary microperfusion and pH measurement by ion-exchange resin microelectrodes. These results indicate that: (i) the participation of the vacuolar H+ ATPase in the establishment of cortical late distal tubule V t is minor in physiological conditions, but can be demonstrated after blocking Cl channels, thus suggesting a shunting effect of this anion; and, (ii) the rate of H+ secretion in this segment is reduced by a Cl channel blocker, supporting coupling of H+-ATPase with Cl transport. Received: 6 July 1996/Revised: 27 December 1996  相似文献   

11.
Summary Permeability constant ratios among monovalent cations were studied in the resting membrane of a giant axon of a Pacific squid,Loligo opalescens, by observing the relationship between the membrane potential and the ion concentration.The average permeability ratios are: Tl, 1.8; K, 1.0; Rb, 0.72; Cs, 0.16; Na, <0.08; Li, <0.08. These permeability ratios suggest that neither valinomycin nor nonactin are adequate models for the sites producing the resting permeability in the axonal membrane.Cyclic polyetherbis(t-butyl cyclohexyl) 18-crown-6 does not increase the permeability ratioP Cs/P K except when applied at concentrations (5×10–5 m) at which the surfactant properties of this molecule may become significant.  相似文献   

12.
Intracellular ion concentrations were determined in split skins of Rana pipiens using the technique of electron microprobe analysis. Based on the 1 min Br uptake from the apical bath, two types of mitochondria-rich (MR) cells could be distinguished: active cells which rapidly exchanged their anions with the apical bath and inactive cells which did not. Br uptake and frequency of active MR cells were closely correlated with the skin conductance, g t. Replacing Cl in the apical bath with an impermeant anion significantly lowered g t and the Br uptake and Na concentration of active cells. Even larger reductions were observed after apical amiloride (0.1 mm). The inhibition of the Br uptake was reversible by voltage clamping (100 mV, inside positive). Cl removal and amiloride also led to some shrinkage of active cells. The results suggest that the active cell is responsible for a large part of g t. Inactive MR cells had much lower Br and Na concentrations which were not significantly affected by Cl removal, amiloride, or voltage clamping. Principal cells, which represent the main cell type of the epithelium, showed only a minimal Br uptake from the apical side which was not correlated with g t. Moreover, Cl removal had no effect on the Na, Br, and Cl concentrations of principal cells.I wish to thank Cathy Langford for her excellent technical assistance. Financial support was provided by National Institutes of Health grants DK35717 and 1S10-RR0-234501.  相似文献   

13.
The outer sulcus epithelium was recently shown to absorb cations from the lumen of the gerbil cochlea. Patch clamp recordings of excised apical membrane were made to investigate ion channels that participate in this reabsorptive flux. Three types of channel were observed: (i) a nonselective cation (NSC) channel, (ii) a BK (large conductance, maxi K or K Ca ) channel and (iii) a small K+ channel which could not be fully characterized. The NSC channel found in excised insideout patch recordings displayed a linear current-voltage (I-V) relationship (27 pS) and was equally conductive for Na+ and K+, but not permeable to Cl or N-methyl-d-glucamine. Channel activity required the presence of Ca2+ at the cytosolic face, but was detected at Ca2+ concentrations as low as 10−7 m (open probability (P o ) = 0.11 ± 0.03, n= 8). Gadolinium decreased P o of the NSC channel from both the external and cytosolic side (IC50∼ 0.6 μm). NSC currents were decreased by amiloride (10 μm− 1 mm) and flufenamic acid (0.1 mm). The BK channel was also frequently (38%) observed in excised patches. In symmetrical 150 mm KCl conditions, the I-V relationship was linear with a conductance of 268 pS. The Goldman-Hodgkin-Katz equation for current carried solely by K+ could be fitted to the I-V relationship in asymmetrical K+ and Na+ solutions. The channel was impermeable to Cl and N-methyl-d-glucamine. P o of the BK channel increased with depolarization of the membrane potential and with increasing cytosolic Ca2+. TEA (20 mm), charybdotoxin (100 nm) and Ba2+ (1 mm) but not amiloride (1 mm) reduced P o from the extracellular side. In contrast, external flufenamic acid (100 μm) increased P o and this effect was inhibited by charybdotoxin (100 nm). Flufenamic acid inhibited the inward short-circuit current measured by the vibrating probe and caused a transient outward current. We conclude that the NSC channel is Ca2+ activated, voltage-insensitive and involved in both constitutive K+ and Na+ reabsorption from endolymph while the BK channel might participate in the K+ pathway under stimulated conditions that produce an elevated intracellular Ca2+ or depolarized membrane potential. Received: 14 October 1999/Revised: 10 December 1999  相似文献   

14.
Summary The effects of stepwise concentration changes of K+ and HCO 3 in the basolateral solution on the basolateral membrane potential (V bl) of proximal tubule cells of the doubly-perfusedNecturus kidney were examined using conventional microelectrodes. Apparent transference numbers were calculated from changes inV bl after alterations in external K+ concentration from 1.0 to 2.5mm (t K, 1.0–2.5), 2.5 to 10, and in external HCO 3 concentration (at constant pH) from 5 to 10mm (t HCO3, 5–10), 10 to 20, or 10 to 50.t K, 2.5–10 was 0.38±0.02 under control conditions but was sharply reduced to 0.08±0.03 (P>0.001) by 4mm Ba++. This concentration of Ba++ reducedV bl by 9±1 mV (at 2.5 external K+). Perfusion with SITS (5×10–4 m) for 1 hr hyperpolarizedV bl by 10±3 mV and increasedt K, 2.5–10 significantly to 0.52±0.01 (P<0.001). Ba++ application in the presence of SITS depolarizedV bl by 22±3 mV. In control conditionst HCO3, 10–50 was 0.63±0.05 and was increased to 0.89±0.07 (P<0.01) by Ba++ but was decreased to 0.14±0.02 (P<0.001) by SITS. In the absence of apical and basolateral chloride, the response ofV bl to bicarbonate was diminished but still present (t HCO3, 10–20 was 0.35±0.03). Intracellular pH, measured with liquid ion-exchange microelectrodes, increased from 7.42±0.19 to 7.57±0.17 (P<0.02) when basolateral bicarbonate was increased from 10 to 20mm at constant pH. These data show that the effects of bicarbonate onV bl are largely independent of effects on the K+ conductance and that there is a significant current-carrying bicarbonate pathway in the basolateral membrane. Hence, both K+ and HCO 3 gradients are important in the generation ofV bl, and their relative effects vary reciprocally.  相似文献   

15.
16.
Summary Injection of small pulses of concentrate solutions of salts or drugs into the outer bathing fluid led to sudden increases of its solute concentration. Vigorous stirring of the outer bathing solution was used to minimize the thickness of the unstirred layer adjacent to the outer skin surface. Pulses of 1m NaCl injected into the outer compartment induced sharp increases of the SCC following a time course variable with the magnitude of the pulse and the particular condition of each skin. Comparison of the spontaneous decline of the SCC with the decline induced by a small dose of amiloride, where an increase inR was observed, indicates that the spontaneous decline cannot be explained simply as a reduction of the Na permeability of the apical membrane by self-inhibition of feedback inhibition of the apical membrane Na channels. Reduction of the driving force for Na movement into the epithelial cells must play an important role in the process. Reversibility of the amiloride inhibition of the SCC was highly dependent upon the ionic strength of the solution used to rinse and wash out the inhibitor from the outer skin surface. With H2O, the amiloride molecules washed out slowly as compared to NaCl or KCl solutions. Na or K have the same ability to dislodge the amiloride molecules from their binding sites. This effect is apparently of a purely electrostatic nature.  相似文献   

17.
Electrogenic 2 Na+/1 H+ exchange in crustanceans   总被引:4,自引:0,他引:4  
Summary Hepatopancreatic brush border membrane vesicles of the freshwater prawn,Macrobrachium rosenbergii and the marine lobster,Homarus americanus exhibited22Na uptake which was Cl-independent, amiloride sensitive, and stimulated by a transmembrane H gradient (H i >H o ). Sodium influx by vesicles of both species were sigmoidal functions of [Na] o , yielding Hill coefficients that were not significantly different (P>0.5) than 2.0. Estimations of half-saturation constants (K Na) were 82.2mm (prawn) and 280.1mm (lobster), suggesting a possible adaptation of this transporter to environmental salinity.Trans-stimulation andcis-inhibition experiments involving variable [H] suggested that the exchangers in both species possessed single internal cation binding sites (pK 6.5–6.7) and two external cation binding sites (prawn, pK 4.0 and 5.7; lobster pK 3.5 and 6.1). Similarcis inhibition studies using amiloride as a competitive inhibitor of Na uptake supported the occurrence of dual external sites (prawn,K i 50 and 1520 m; lobsterK i 9 and 340 m). Electrogenic Na/H exchange by vesicles from both crustaceans was demonstrated using equilibrium shift experiments where a transmembrane potential was used as the only driving force for the transport event. Transport stoichiometries of the antiporters were determined using Static Head analysis where driving forces for cation transfer were balanced using a 101 Na gradient, a 1001 H gradient, and a stoichiometry of 2.0. These electrogenic 2 Na/1 H exchangers appear thermodynamically capable of generating sufficient gastric acidification for organismic digestive activities.  相似文献   

18.
We used ion-sensitive, double-barrel microelectrodes to measure changes in hepatocyte transmembrane potential (V m), intracellular K+, Cl-, and Na+ activities (a i k, a Cl i and a Na i ), and water volume during l-alanine uptake. Mouse liver slices were superfused with control and experimental Krebs physiological salt solutions. The experimental solution contained 20 m l-alanine, and the control solution was adjusted to the same osmolality (305 mOsm) with added sucrose. Hepatocytes also were loaded with 50 mm tetramethylammonium ion (TMA+) for 10 min. Changes in cell water volume during l-alanine uptake were determined by changes in intracellular, steady-state TMA+ activity measured with the K+ electrode. Hepatocyte control V m was -33±1 mV. l-alanine uptake first depolarized V m by 2±0.2 mV and then hyperpolarized V m by 5 mV to-38±1 mV (n = 16) over 6 to 13 min. During this hyperpolarization, a Na i increased by 30% from 19±2 to 25±3 mm (P < 0.01), and a K i did not change significantly from 83±3 mm. However, with added ouabain (1 mm) l-alanine caused only a 2-mV increase in V m, but now a K i decreased from 61±3 to 54±5 mm (P < 0.05). Hyperpolarization of V m by l-alanine uptake also resulted in a 38% decrease of a Cl i from 20±2 to 12±3 mm (P < 0.001). Changes in V m and V ClV m voltage traces were parallel during the time of l-alanine hyperpolarization, which is consistent with passive distribution of intracellular Cl with the V m in hepatocytes. Added Ba2+ abolished the l-alanineinduced hyperpolarization, and a Cl i remained unchanged. Hepatocyte water volume during l-alanine uptake increased by 12±3%. This swelling did not account for any changes in ion activities following l-alanine uptake. We conclude that hepatocyte a K i is regulated by increased Na+-K+ pump activity during l-alanine uptake in spite of cell swelling and increased V m due to increased K+ conductance. The hyperpolarization of V m during l-alanine uptake provides electromotive force to decrease a Cl i . The latter may contribute to hepatocyte volume regulation during organic solute transport.This work was supported by grant AA-08867 from the Alcohol, Drug Abuse, and Mental Health Association.  相似文献   

19.
Summary In studies of apical membrane current-voltage relationships, in order to avoid laborious intracellular microelectrode techniques, tight epithelia are commonly exposed to high serosal K concentrations. This approach depends on the assumptions that high serosal K reduces the basolateral membrane resistance and potential to insignificantly low levels, so that transepithelial values can be attributed to the apical membrane. We have here examined the validity of these assumptions in frog skins (Rana pipiens pipiens). The skins were equilibrated in NaCl Ringer's solutions, with transepithelial voltageV t clamped (except for brief perturbations V t) at zero. The skins were impaled from the outer surface with 1.5m KCl-filled microelectrodes (R el>30 M). The transepithelial (short-circuit) currentl i and conductanceg t=–I t/V t, the outer membrane voltageV o (apical reference) and voltage-divider ratio (F o=V o/V t), and the microelectrode resistanceR el were recorded continuously. Intermittent brief apical exposure to 20 m amiloride permitted estimation of cellular (c) and paracellular (p) currents and conductances. The basolateral (inner) membrane conductance was estimated by two independent means: either from values ofg i andF o before and after amiloride or as the ratio of changes (–I c/V i) induced by amiloride. On serosal substitution of Na by K, within about 10 min,I c declined andg t increased markedly, mainly as a consequence of increase ing p. The basolateral membrane voltage (V i(=–V o) was depolarized from 75±4 to 2±1 mV [mean±sem (n=6)], and was partially repolarized following amiloride to 5±2 mV. The basolateral conductance increased in high serosal K, as estimated by both methods. Essentially complete depolarization of the basolateral membrane and increase in its conductance in response to high [K] were obtained also when the main serosal anion was SO4 or NO3 instead of Cl. On clampingV t over the range 0 to +125 mV in K2SO4-depolarized skins, the quasi-steady-stateV o V t relationship was linear, with a mean slope of 0.88±0.03. The above results demonstrate that, in a variety of conditions, exposure to high serosal K results in essentially complete depolarization of the basolateral membrane and a large increase in its conductance.  相似文献   

20.
Summary Microelectrodes were used to investigate the effect of 0.5mm mucosal lanthanum (La3+) on the intracellular potential and the resistance of outer and inner isolated frog skin (Rana esculenta) cell membranes. Under short-circuit conditions, the transapical membrane potentialV o sc (mean value=–65.4±3.2 mV, inside negative) hyperpolarized to –108.7±2.3 mV in control skins, after addition of the sodium blocker amiloride. Current-voltage curves for the outer and inner membranes were constructed from the amiloride-inhibitable current versus the outer membrane potentialV o or the inner membrane potentialV t . The outer, and to a lesser degree the inner, membrane showed a characteristic nonlinearity with two slope resistances. Addition of La3+ to the outer medium increased the short-circuit current to 190% of the control value.V o sc concomitantly changed to –28±3.5 mV and outer and inner membrane resistances fell, considerably attenuating the nonlinearity seen in control skins. La3+ is suggested to raise the conductance by its effect on the surface potential. A secondary long-term inhibitory effect of La3+ on short-circuit current has been observed. It is ascribed to the penetration of La3+ into the sodium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号