首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Xu J  Deng X  Disteche CM 《PloS one》2008,3(7):e2553
Jarid1c, an X-linked gene coding for a histone demethylase, plays an important role in brain development and function. Notably, JARID1C mutations cause mental retardation and increased aggression in humans. These phenotypes are consistent with the expression patterns we have identified in mouse brain where Jarid1c mRNA was detected in hippocampus, hypothalamus, and cerebellum. Jarid1c expression and associated active histone marks at its 5'end are high in P19 neurons, indicating that JARID1C demethylase plays an important role in differentiated neuronal cells. We found that XX mice expressed Jarid1c more highly than XY mice, independent of their gonadal types (testes versus ovaries). This increased expression in XX mice is consistent with Jarid1c escape from X inactivation and is not compensated by expression from the Y-linked paralogue Jarid1d, which is expressed at a very low level compared to the X paralogue in P19 cells. Our observations suggest that sex-specific expression of Jarid1c may contribute to sex differences in brain function.  相似文献   

2.
Accidental recombination between the differential segments of the X and Y chromosomes in man occasionally allows transfer of Y-linked sequences to the X chromosome leading to testis differentiation in so-called XX males. Loss of the same sequences by X-Y interchange allows female differentiation in a small proportion of individuals with XY gonadal dysgenesis. A candidate gene responsible for primary sex determination has recently been cloned from within this part of the Y chromosome by Page and his colleagues. The observation that a homologue of this gene is present on the short arm of the X chromosome and is subject to X-inactivation, raises the intriguing possibility that sex determination in man is a quantitative trait. Males have two active doses of the gonad determining gene, and females have one dose. This hypothesis has been tested in a series of XX males, XY females and XX true hermaphrodites by using a genomic probe, CMPXY1, obtained by probing a Y-specific DNA library with synthetic oligonucleotides based on the predicted amino-acid sequence of the sex-determining protein. The findings in most cases are consistent with the hypothesis of homologous gonad-determining genes, GDX and GDY, carried by the X and Y chromosomes respectively. It is postulated that in sporadic or familial XX true hermaphrodites one of the GDX loci escapes X-inactivation because of mutation or chromosomal rearrangement, resulting in mosaicism for testis and ovary-determining cell lines in somatic cells. Y-negative XX males belong to the same clinical spectrum as XX true hermaphrodites, and gonadal dysgenesis in some XY females may be due to sporadic or familial mutations of GDX.  相似文献   

3.
To achieve a balanced gene expression dosage between males (XY) and females (XX), mammals have evolved a compensatory mechanism to randomly inactivate one of the female X chromosomes. Despite this chromosome-wide silencing, a number of genes escape X inactivation: in women about 15% of X-linked genes are bi-allelically expressed and in mice, about 3%. Expression from the inactive X allele varies from a few percent of that from the active allele to near equal expression. While most genes have a stable inactivation pattern, a subset of genes exhibit tissue-specific differences in escape from X inactivation. Escape genes appear to be protected from the repressive chromatin modifications associated with X inactivation. Differences in the identity and distribution of escape genes between species and tissues suggest a role for these genes in the evolution of sex differences in specific phenotypes. The higher expression of escape genes in females than in males implies that they may have female-specific roles and may be responsible for some of the phenotypes observed in X aneuploidy.  相似文献   

4.
Animals that have XX females and XY or XO males have differing doses of X-linked genes in each sex. Overcoming this is the most immediate and vital aspect of sexual differentiation. A number of systems that accurately compensate for sex-chromosome dosage have evolved independently: silencing a single X chromosome in female mammals, downregulating both X chromosomes in hermaphrodite Caenorhabditis elegans and upregulating the X chromosome in male Drosophila all equalize X-linked gene expression. Each organism uses a largely non-overlapping set of molecules to achieve the same outcome: 1X = 2X.  相似文献   

5.
In vertebrates, sex differences in the brain have been attributed to differences in gonadal hormone secretion; however, recent evidence in mammals and birds shows that sex chromosome-linked genes, independent of gonadal hormones, also mediate sex differences in the brain. In this study, we searched for genes that were differentially expressed between the sexes in the brain of a teleost fish, medaka (Oryzias latipes), and identified two sex chromosome genes with male-biased expression, cntfa (encoding ciliary neurotrophic factor a) and pdlim3a (encoding PDZ and LIM domain 3 a). These genes were found to be located 3–4 Mb from and on opposite sides of the Y chromosome-specific region containing the sex-determining gene (the medaka X and Y chromosomes are genetically identical, differing only in this region). The male-biased expression of both genes was evident prior to the onset of sexual maturity. Sex-reversed XY females, as well as wild-type XY males, had more pronounced expression of these genes than XX males and XX females, indicating that the Y allele confers higher expression than the X allele for both genes. In addition, their expression was affected to some extent by sex steroid hormones, thereby possibly serving as focal points of the crosstalk between the genetic and hormonal pathways underlying brain sex differences. Given that sex chromosomes of lower vertebrates, including teleost fish, have evolved independently in different genera or species, sex chromosome genes with sexually dimorphic expression in the brain may contribute to genus- or species-specific sex differences in a variety of traits.  相似文献   

6.
To clarify the importance of endogenous estrogens during sex differentiation in a teleost fish, the Nile tilapia, we examined the target events for endogenous estrogens and their role during gonadal sex differentiation. The expression of CYP19a (P450arom) precedes any morphological gonadal sex differentiation. Further to these findings, the treatment of XX fry with non-steroidal aromatase inhibitor (AI), Fadrozole, from seven to 14 days after hatching caused complete sex reversal to functional males. The XX sex reversal induced by AI was rescued completely with simultaneous estrogen treatment. We also found that XY fry treated with estrogen, before the appearance of morphological sex differences, caused complete sex reversal from males to females. Taken together, these results suggest that endogenous estrogens are required for ovarian differentiation. To identify the down-stream gene products of estrogen during ovarian differentiation, we performed subtractive hybridization using mRNA derived from normal and estrogen treated XY gonads. Two out of ten gene products were expressed in germ cells, whereas the others were expressed in somatic cells.  相似文献   

7.
Silene latifolia is a dioecious plant with heteromorphic sex chromosomes that have originated only ~10 million years ago and is a promising model organism to study sex chromosome evolution in plants. Previous work suggests that S. latifolia XY chromosomes have gradually stopped recombining and the Y chromosome is undergoing degeneration as in animal sex chromosomes. However, this work has been limited by the paucity of sex-linked genes available. Here, we used 35 Gb of RNA-seq data from multiple males (XY) and females (XX) of an S. latifolia inbred line to detect sex-linked SNPs and identified more than 1,700 sex-linked contigs (with X-linked and Y-linked alleles). Analyses using known sex-linked and autosomal genes, together with simulations indicate that these newly identified sex-linked contigs are reliable. Using read numbers, we then estimated expression levels of X-linked and Y-linked alleles in males and found an overall trend of reduced expression of Y-linked alleles, consistent with a widespread ongoing degeneration of the S. latifolia Y chromosome. By comparing expression intensities of X-linked alleles in males and females, we found that X-linked allele expression increases as Y-linked allele expression decreases in males, which makes expression of sex-linked contigs similar in both sexes. This phenomenon is known as dosage compensation and has so far only been observed in evolutionary old animal sex chromosome systems. Our results suggest that dosage compensation has evolved in plants and that it can quickly evolve de novo after the origin of sex chromosomes.  相似文献   

8.
9.
A brain aromatase gene was identified from the Nile tilapia Oreochromis niloticus. The cDNA sequence of this gene differed from that of the ovarian aromatase gene previously reported from this species. Tissue specific expression for both brain and ovarian aromatase genes was examined in the tissues of adult tilapia. Brain aromatase mRNA was expressed in the brain, kidney, eye, ovary, and testis, but not in the liver and spleen. Ovarian aromatase mRNA was expressed in the brain, spleen, ovary, and testis but not in the eye, kidney, and liver. Differential aromatase gene expression between the sexes was investigated in all-male (XY) and all-female (XX) groups of tilapia fry from fertilisation throughout the sexual differentiation period. Semi-quantitative RT-PCR analysis revealed that the initiation of expression of both aromatase genes lay between 3 and 4 dpf (days post fertilisation) in both sexes. The level of brain aromatase mRNA gradually increased throughout the period studied with little difference between the sexes. This contrasted with marked sexual dimorphism of ovarian aromatase mRNA expression. In females, the expression level was maintained or increased gradually throughout ontogeny, while the level in males was dramatically down-regulated between 15 and 27 dpf. Subsequently, the level of ovarian aromatase mRNA expression fluctuated slightly in both sexes, with the expression in females always being higher than in males. These findings clearly suggest that ovarian aromatase plays a decisive role in sexual differentiation in this species and that this is achieved by down-regulation of the expression of this gene in males. Mol. Reprod. Dev. 59: 359-370, 2001.  相似文献   

10.
We tested the role of sex chromosome complement and gonadal hormones in sex differences in several different paradigms measuring nociception and opioid analgesia using "four core genotypes" C57BL/6J mice. The genotypes include XX and XY gonadal males, and XX and XY gonadal females. Adult mice were gonadectomized and tested 3-4 weeks later, so that differences between sexes (mice with testes vs. ovaries) were attributable mainly to organizational effects of gonadal hormones, whereas differences between XX and XY mice were attributable to their complement of sex chromosomes. In Experiment 1 (hotplate test of acute morphine analgesia), XX mice of both gonadal sexes had significantly shorter hotplate baseline latencies prior to morphine than XY mice. In Experiment 2 (test of development of tolerance to morphine), mice were injected twice daily with 10 mg/kg morphine or saline for 6 days. Saline or the competitive NMDA antagonist CPP (3-(2-carboxypiperazin-4yl) propyl-1-phosphonic acid) (10 mg/kg) was co-injected. On day 7, mice were tested for hotplate latencies before and after administration of a challenge dose of morphine (10 mg/kg). XX mice showed shorter hotplate latencies than XY mice at baseline, and the XX-XY difference was greater following morphine. In Experiment 3, mice were injected with morphine (10 mg/kg) or saline, 15 min before intraplantar injection of formalin (5%/25 microl). XX mice licked their hindpaw more than XY mice within 5 min of formalin injection. The results indicate that X- or Y-linked genes have direct effects, not mediated by gonadal secretions, on sex differences in two different types of acute nociception.  相似文献   

11.
Dosage of the Sts gene in the mouse.   总被引:3,自引:0,他引:3       下载免费PDF全文
In this study we compared steroid sulfatase levels in XO, XX, and XY mice and carried out a clonal analysis in fibroblast cell cultures from mice heterozygous for the steroid sulfatase deficiency gene and heterozygous at the X-linked electrophoretic phosphoglycerate kinase locus. The combined results indicate that the murine steroid sulfatase locus is not dosage compensated and is not subject to X-inactivation. With respect to X-inactivation, it behaves in a somewhat different way from the closely linked sex-reversed gene and the human steroid sulfatase locus.  相似文献   

12.
X inactivation is a fundamental mechanism in eutherian mammals to restore a balance of X-linked gene products between XY males and XX females. However, it has never been extensively studied in a eutherian species with a sex determination system that deviates from the ubiquitous XX/XY. In this study, we explore the X inactivation process in the African pygmy mouse Mus minutoides, that harbours a polygenic sex determination with three sex chromosomes: Y, X, and a feminizing mutant X, named X*; females can thus be XX, XX*, or X*Y, and all males are XY. Using immunofluorescence, we investigated histone modification patterns between the two X chromosome types. We found that the X and X* chromosomes are randomly inactivated in XX* females, while no histone modifications were detected in X*Y females. Furthermore, in M. minutoides, X and X* chromosomes are fused to different autosomes, and we were able to show that the X inactivation never spreads into the autosomal segments. Evaluation of X inactivation by immunofluorescence is an excellent quantitative procedure, but it is only applicable when there is a structural difference between the two chromosomes that allows them to be distinguished.  相似文献   

13.
In order to compare the reproductive capacity of XY male versus XX male (neomales) Eurasian perch (Perca fluviatilis), we determined the sperm quality (sperm concentration and motility) and reproductive characteristics such as gonadosomatic index (GSI), fertilization rate and sex steroid levels (testosterone, T; 17beta-estradiol, E2 and 11-ketotestosterone, 11KT) during the reproductive season. Median GSI was not significantly different between XY males (7.9%) and XX males (7.5%). Fertilization rates ranged between 30.0 and 98.0%. Sperm concentration ranged between 27.9 x 10(9) and 42.0 x 10(9) spermatozoa ml(-1). Median level of T, 11KT and E2 levels increased in the middle of the reproductive season (2136.0, 2409.0 and 3252.0 pg ml(-1), respectively) and decreased at the end (1657.0, 2006.6 and 431.0 pg ml(-1), respectively). Sperm motility was assessed by CASA and expressed by the curvilinear velocity (VCL), straight line velocity (VSL), average path velocity (VAP), linearity (LIN), percentage of motile sperm (% MOT) and motile concentration (MOC). Overall, there were not any significant differences between XY and XX males. In conclusion, no differences of reproductive capacities were observed between XY males and XX males suggesting that the last can be crossed with females to improve the productivity of Eurasian perch by producing all-female stock.  相似文献   

14.
(C57BL x CBA)F1 hybrid female mice were mated with hemizygous Rb(X.2)2Ad males to distinguish the paternal X chromosome. Homozygous tetraploids were produced by blastomere fusion at the 2-cell stage, and 161 of these were transferred to recipients and analysed on the 10th day of gestation. 59 implants contained resorptions and 76 contained either an embryo and/or extraembryonic membranes. 38 (20, XXXX and 18, XXYY) were analysed to investigate their X-inactivation pattern. Embryonic and yolk sac endodermally- and mesodermally-derived samples were analysed by G-banding and by Kanda analysis. In the XX and XY controls, the predicted pattern of X-inactivation was observed, though 12.2% of metaphases in the XX series displayed no X-inactivation. In the XY series the Y chromosome was seen in a high proportion of metaphases. In the XXXX tetraploids, 8 cell lineages were recognized with regard to their X-inactivation pattern, though most belonged to the following 3 categories: (XmXm)XpXp, Xm(XmXp)Xp and XmXm(XpXp). The other categories were only rarely encountered. In the embryonic and mesodermally-derived tissue the ratio of these groups was close to 1:2:1, whereas in the endodermally-derived tissue it was 1:4.11:4.88, due to preferential paternal X-inactivation. A significant but small proportion of all 3 tissues analysed displayed no evidence of X-inactivation. Indirect evidence suggests that this represents a genuine group because of the high efficiency of the Kanda staining. The presence of the Xm(XmXp)Xp category is consistent with the expectation that X-inactivation occurs randomly in 2 of the 4 X chromosomes present. The presence of small numbers of preparations with no evidence of X-inactivation and other unexpected categories suggests that these are probably selected against during development.  相似文献   

15.
The Japanese flounder (Paralichthys olivaceus) is a teleost fish with an XX/XY sex determination system. XX flounder can be induced to develop into phenotypic females or males, by rearing them at 18°C or 27°C, respectively, during the sex differentiation period. Therefore, the flounder provides an excellent model to study the molecular mechanisms underlying temperature-dependent sex determination. We previously showed that cortisol, the major glucocorticoid produced by the interrenal cells in teleosts, causes female-to-male sex reversal by directly suppressing mRNA expression of ovary-type aromatase (cyp19a1), a steroidogenic enzyme responsible for the conversion of androgens to estrogens in the gonads. Furthermore, an inhibitor of cortisol synthesis prevented masculinization of XX flounder at 27°C, suggesting that masculinization by high temperature is due to the suppression of cyp19a1 mRNA expression by elevated cortisol levels during gonadal sex differentiation in the flounder. In the present study, we found that exposure to high temperature during gonadal sex differentiation upregulates the mRNA expression of retinoid-degrading enzyme (cyp26b1) concomitantly with masculinization of XX gonads and delays meiotic initiation of germ cells. We also found that cortisol induces cyp26b1 mRNA expression and suppresses specific meiotic marker synaptonemal complex protein 3 (sycp3) mRNA expression in gonads during the sexual differentiation. In conclusion, these results suggest that exposure to high temperature induces cyp26b1 mRNA expression and delays meiotic initiation of germ cells by elevating cortisol levels during gonadal sex differentiation in Japanese flounder.  相似文献   

16.
We measured diurnal rhythms of food intake, as well as body weight and composition, while varying three major classes of sex-biasing factors: activational and organizational effects of gonadal hormones, and sex chromosome complement (SCC). Four Core Genotypes (FCG) mice, comprising XX and XY gonadal males and XX and XY gonadal females, were either gonad-intact or gonadectomized (GDX) as adults (2.5 months); food intake was measured second-by-second for 7 days starting 5 weeks later, and body weight and composition were measured for 22 weeks thereafter. Gonadal males weighed more than females. GDX increased body weight/fat of gonadal females, but increased body fat and reduced body weight of males. After GDX, XX mice had greater body weight and more fat than XY mice. In gonad-intact mice, males had greater total food intake and more meals than females during the dark phase, but females had more food intake and meals and larger meals than males during the light phase. GDX reduced overall food intake irrespective of gonad type or SCC, and eliminated differences in feeding between groups with different gonads. Diurnal phase of feeding was influenced by all three sex-biasing variables. Gonad-intact females had earlier onset and acrophase (peak) of feeding relative to males. GDX caused a phase-advance of feeding, especially in XX mice, leading to an earlier onset of feeding in GDX XX vs. XY mice, but earlier acrophase in GDX males relative to females. Gonadal hormones and SCC interact in the control of diurnal rhythms of food intake.  相似文献   

17.
Ramachandran V  Herman PK 《Genetics》2011,189(2):441-454
In mammals, X-chromosome inactivation (XCI) equalizes X-linked gene expression between XY males and XX females and is controlled by a specialized region known as the X-inactivation center (Xic). The Xic harbors two chromatin interaction domains, one centered around the noncoding Xist gene and the other around the antisense Tsix counterpart. Previous work demonstrated the existence of a chromatin transitional zone between the two domains. Here, we investigate the region and discover a conserved element, RS14, that presents a strong binding site for Ctcf protein. RS14 possesses an insulatory function suggestive of a boundary element and is crucial for cell differentiation and growth. Knocking out RS14 results in compromised Xist induction and aberrant XCI in female cells. These data demonstrate that a junction element between Tsix and Xist contributes to the initiation of XCI.  相似文献   

18.
19.
20.
To shed light on the biological origins of sex differences in neural tube defects (NTDs), we examined Trp53-null C57BL/6 mouse embryos and neonates at 10.5 and 18.5 days post coitus (dpc) and at birth. We confirmed that female embryos show more NTDs than males. We also examined mice in which the testis-determining gene Sry is deleted from the Y chromosome but inserted onto an autosome as a transgene, producing XX and XY gonadal females and XX and XY gonadal males. At birth, Trp53 nullizygous mice were predominantly XY rather than XX, irrespective of gonadal type, showing that the sex difference in the lethal effect of Trp53 nullizygosity by postnatal day 1 is caused by differences in sex chromosome complement. At 10.5 dpc, the incidence of NTDs in Trp53-null progeny of XY* mice, among which the number of the X chromosomes varies independently of the presence or absence of a Y chromosome, was higher in mice with two copies of the X chromosome than in mice with a single copy. The presence of a Y chromosome had no protective effect, suggesting that sex differences in NTDs are caused by sex differences in the number of X chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号