首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We cloned the gene for an extracellular α-amylase, AmyE, from the hyperthermophilic bacterium Thermotoga neapolitana and expressed it in Escherichia coli. The molecular mass of the enzyme was 92 kDa as a monomer. Maximum activity was observed at pH 6.5 and temperature 75°C and the enzyme was highly thermostable. AmyE hydrolyzed the typical substrates for α-amylase, including soluble starch, amylopectin, and maltooli-gosaccharides. The hydrolytic pattern of AmyE was similar to that of a typical α-amylase; however, unlike most of the calcium (Ca2+)-dependent α-amylases, the activity of AmyE was unaffected by Ca2+. The specific activities of AmyE towards various substrates indicated that the enzyme preferred maltooligosaccharides which have more than four glucose residues. AmyE could not hydrolyze maltose and maltotriose. When maltoheptaose was incubated with AmyE at the various time courses, the products consisting of maltose through maltopentaose was evenly formed indicating that the enzyme acts in an endo-fashion. The specific activity of AmyE (7.4 U/mg at 75° C, pH 6.5, with starch as the substrate) was extremely lower than that of other extracellular α-amylases, which indicates that AmyE may cooperate with other highly active extracellular α-amylases for the breakdown of the starch or α-glucans into maltose and maltotriose before transport into the cell in the members of Thermotoga sp.  相似文献   

2.
Production of α-amylase from local isolate, Penicillium chrysogenum, under solid-state fermentation (SSF) was carried out in this study. Different agricultural by-products, such as wheat bran (WB), sunflower oil meal (SOM), and sugar beet oil cake (SBOC), were used as individual substrate for the enzyme production. WB showed the highest enzyme activity (750 U/gds). Combination of WB, SOM, and SBOC (1:3:1 w/w/w) resulted in a higher enzyme yield (845 U/gds) in comparison with the use of the individual substrate. This combination was used as mixed solid substrate for the production of α-amylase from P. chrysogenum by SSF. Fermentation conditions were optimized. Maximum enzyme yield (891 U/gds) was obtained when SSF was carried out using WB + SOM + SBOC (1:3:1 w/w/w), having initial moisture of 75%, inoculum level of 20%, incubation period of 7 days at 30°C. Galactose (1% w/w), urea and peptone (1% w/w), as additives, caused increase in the enzyme activity.  相似文献   

3.
 Cultivation of the extreme thermophilic anaerobic bacterium Thermotoga thermarum at 77°C on xylan was accompanied by the formation of heat-stable endoxylanase (136U/l), β-xylosidase (44U/l) and α-arabinofuranosidase (10U/l). These enzymes were mainly associated with the cells and could not be released by detergent treatment {0.1–1.0mM 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulphonate (CHAPS)}. Endoxylanases with a molecular weight of 40, 83 and 100kDa were induced when xylan or xylose were used as substrates for growth. In the presence of other sugars like glucose, maltose, arabinose or starch, low concentrations of the low-molecular-weight endoxylanase (40kDa) was detected. Xylose was found to be the best substrate for the induction of β-xylosidase and α-arabinofuranosidase but not for growth. Cultivation of T. thermarum in a dialysis batch fermentor resulted in a significant increase in cell concentration and enzyme level. A total cell count of 1.3×109 cells/ml and 202U/l of endoxylanase were measured when partially soluble birchwood xylan was used as the carbon source. The use of insoluble beechwood xylan as the substrate caused the elevation of the maximal cell concentration and enzyme level up to 2.0×109 cells/ml and 540U/l, respectively. Received: 14 September 1995/Received revision: 15 December 1995/Accepted: 18 December 1995  相似文献   

4.
An extracellular raw-starch-digesting α-amylase was isolated from Geobacillus thermodenitrificans HRO10. The culture conditions for the production of α-amylase by G. thermodenitrificans HRO10 was optimized in 1.2–l bioreactor using full 24 and 32 factorial designs. From the optimal reaction conditions, a model (Y = − 594.206 − 0.178T2 − 8.448pH2 + 6.020TpH − 0.005T2pH2) was predicted, which was then used for α-amylase production. In the bioreactor studies, the enzyme yield under optimized conditions (pH 7.1, 49°C) was 30.20 U/ml, a 51% improvement over the results (19.97 U/ml) obtained when the traditional one-factor-at-a-time method was employed. This α-amylase does not require extraneous calcium ions for activity, which may be a commercially important observation.  相似文献   

5.
In this study, the production of extracellular thermostable α-amylase by newly isolated thermophilic Alicyclobacillus acidocaldarius was detected on LB agar plates containing 1.0% soluble potato starch and incubated at 60°C. This extracellular α-amylase was purified to homogeneity by ammonium sulphate precipitation followed by Sephadex and ion-exchange chromatography. The α-amylase was purified to 8.138 fold homogeneity with a final recovery of 58% and a specific activity of 3,239 U/mg proteins. The purified α-amylase appeared as a single protein band on SDS-PAGE with a molecular mass of 94.5 kDa. Non-denaturing PAGE analysis showed one major band associated with enzyme activity, indicating the absence of isoenzymes. A TLC analysis showed maltose as major end product of the enzyme. The optimum assay temperature and pH for enzyme activity were 60°C and 6.0 respectively; however, the enzyme activity was stable over a wide range of pH and temperatures. The α-amylase retained its activity in the presence of the denaturing agents — SDS, Triton X-100, Tween-20, Tween-80, and was significantly inhibited by EDTA and urea. Calcium ions increased the enzyme activity, while Hg2+, Zn2+, and Co2+ had inhibitory effects. The K m and V max values were found to be 2.9 mg/mL and 7936 U/mL respectively.  相似文献   

6.
From 42 different hot springs in six provinces belonging to distinct geographical regions of Turkey, 451 thermophilic bacilli were isolated and 67 isolates with a high amylase activity were selected to determine the α-glucosidase production capacities by using pNPG as a substrate. α-Glucosidase production capacities of the isolates varied within the range from 77.18 to 0.001 U/g. Eleven of our thermophilic bacilli produced α-glucosidase at significant levels comparable with that of the reference strains tested; thus, five strains, F84b (77.18 U/g), A333 (48.64 U/g), F84a (36.64 U/g), E134 (32.09 U/g), and A343 (10.79 U/g), were selected for further experiments. 16S rDNA sequence analysis revealed that these selected isolates all belonged to thermophilic bacilli 16S rDNA genetic group 5, four of them representing the genus Geobacillus, while strain A343 had an uncultured bacterium as the closest relative. Changes in α-glucosidase levels in the intracellular and extracellular fractions were determined during 48-h cultivation of A333, A343, F84a, F84b, E134, and the reference strain G. stearothermophilus ATCC 12980. According to α-glucosidase production type and enzyme levels in intracellular and extracellular fractions, Geobacillus spp. A333, F84a, and F84b were defined as extracellular enzyme producers, whereas the thermophilic bacterium A343 was found to be an intracellular α-glucosidase producer, similar to ATCC 12980 strain. Geobacillus sp. E134 differed in α-glucosidase production type from all tested isolates and the reference strain; it was described as a membrane-associated cell-bound enzyme producer. In this study, apart from screening a great number of new thermophilic bacilli from the hot springs of Turkey, which have not yet been thoroughly studied, five new thermostable α-1,4-glucosidase-producing bacilli that have biotechnological potential with α-glucosidases located at different cell positions were obtained. The text was submitted by the authors in English.  相似文献   

7.
It has been previously reported that a glucoamylase from Curvularia lunata is able to hydrolyze the terminal 1,2-linked rhamnosyl residues of sugar chains at C-3 position of steroidal saponins. In this work, the enzyme was isolated and identified after isolation and purification by column chromatography including gel filtration and ion-exchange chromatography. Analysis of protein fragments by MALDI-TOF/TOF™ proteomics Analyzer indicated the enzyme to be 1,4-alpha-D-glucan glucohydrolase EC 3.2.1.3, GA and had considerable homology with the glucoamylase from Aspergillus oryzae. We first found that the glucoamylase was produced from C. lunata and was able to hydrolyze the terminal rhamnosyl of steroidal saponins. The enzyme had the general character of glucoamylase, which hydrolyze starch. It had a molecular mass of 66 kDa and was optimally active at 50°C, pH 4, and specific activity of 12.34 U mg of total protein−1 under the conditions, using diosgenin-3-O-α-L-rhamnopyranosyl(1→4)-[α-L-rhamnopyranosyl (1→2)]-β-D-glucopyranoside (compound II) as the substrate. Furthermore, four kinds of commercial glucoamylases from Aspergillus niger were investigated in this work, and they had the similar activity in hydrolyzing terminal rhamnosyl residues of steroidal saponin. This project was supported by the National Natural Science Foundation of China (NSFC; 30572333).  相似文献   

8.
Purification of extracellular α-amylase from Bacillus subtilis KIBGE HAS was carried out by ultrafiltration, ammonium sulfate precipitation and gel filtration chromatography. The enzyme was purified to homogeneity with 96.3-fold purification with specific activity of 13011 U/mg. The molecular weight of purified α-amylase was found to be 56,000 Da by SDS-PAGE. Characteristics of extracellular α-amylase showed that the enzyme had a Km and V max value of 2.68 mg/ml and 1773 U/ml, respectively. The optimum activity was observed at pH 7.5 in 0.1 M phosphate buffer at 50°C. The amino acid composition of the enzyme showed that the enzyme is rich in neutral/non polar amino acids and less in acidic/polar and basic amino acids. The N-terminal protein sequence of 10 residues was found to be as Ser-Ser-Asn-Lys-Leu-Thr-Thr-Ser-Trp-Gly (S-S-N-K-L-T-T-S-W-G). Furthermore, the protein was not N-terminally blocked. The sequence of α-amylase from B. subtilis KIBGE HAS was a novel sequence and showed no homology to other reported α-amylases from Bacillus strain.  相似文献   

9.
A thermophilic Bacillus sp. was isolated that secreted an extracellular, thermostable lipolytic enzyme. The enzyme was purified to 58 folds with a specific activity of 9730 units/mg of protein and yield of 10% activity by ammonium sulphate precipitation, Phenyl Sepharose chromatography, gel-permeation followed by Q Sepharose chromatography. The relative molecular mass of the protein was determined to be 61 kDa by SDS-PAGE and approximately 60 kDa by gel permeation chromatography. The enzyme showed optimal activity at 60–65 C and retained 100% activity after incubation at 60 C and pH 8.0 for 1 h. The optimum pH was determined to be 8.5. It exhibited 50% of its original activity after 65 min incubation at 70 C and 23 min incubation at 80 C. Catalytic function of lipase was activated by Mg++ (10 mM), while mercury (10 mM) inactivated the enzyme completely. No effect on enzyme activity was observed with trypsin and chymotrypsin treatment, while 50% inhibition was observed with thermolysin. It was demonstrated that PMSF, SDS, DTT, EDTA, DEPC, βME (100 mM each) and eserine (10 mM) inhibited the activity of the lipolytic enzyme. With p-nitrophenyl laurate as a substrate, the enzyme exhibited a K m and V max of 0.5 mM and 0.139 μM/min/ml. The enzyme showed preference for short chain triacylglycerol and hydrolyzes triolein at all positions. In contrast to other thermostable Bacillus lipases, this enzyme has very low content of hydrophobic amino acids (22.58 %). Immunological studies showed that the active site and antigen-binding site of enzyme do not overlap.  相似文献   

10.
In this study, a new α-glucosidase gene from Thermoanaerobacter ethanolicus JW200 was cloned and expressed in Escherichia coli by a novel heat-shock vector pHsh. The recombinant α-glucosidase exhibited its maximum hydrolytic activity at 70°C and pH 5.0∼5.5. With p-nitrophenyl-α-D-glucoside as a substrate and under the optimal condition (70°C, pH 5.5), K m and V max of the enzyme was 1.72 mM and 39 U/mg, respectively. The purified α-glucosidase could hydrolyze oligosaccharides with both α-1,4 and α-1,6 linkages. The enzyme also had strong transglycosylation activity when maltose was used as sugar donor. The transglucosylation products towards maltose are isomaltose, maltotriose, panose, isomaltotriose and tetrasaccharides. The enzyme could convert 400 g/L maltose to oligosaccharides with a conversion rate of 52%, and 83% of the oligosaccharides formed were prebiotic isomaltooligosaccharides (containing isomaltose, panose and isomaltotriose).  相似文献   

11.
The complete genome sequence of Bacillus subtilis reveals that sequences encoding several hemicellulases are co-localised with a gene (xynD) encoding a putative family 43 glycoside hydrolase that has not yet been characterised. In this work, xynD has been isolated from genomic DNA of B. subtilis subsp. subtilis ATCC 6051 and cloned for cytoplasmatic expression in Escherichia coli. Recombinant XynD (rXynD) was purified using ion-exchange chromatography and gel permeation chromatography. The enzyme had a molecular mass of approximately 52 kDa, a pI above 9.0 and releases α-l-arabinose from arabinoxylo-oligosaccharides as well as arabinoxylan polymers with varying degree of substitution. Using para-nitrophenyl-α-l-arabinofuranoside as substrate, maximum activity was observed at pH 5.6 and 45°C. The enzyme retained its activity over a large pH range, while activity was lost after pre-incubation above 50°C. Gas–liquid chromatography and proton nuclear magnetic resonance spectrometry analysis indicated that rXynD specifically releases arabinofuranosyl groups from mono-substituted C-(O)-2 and C-(O)-3 xylopyranosyl residues on the xylan backbone. As rXynD did not display endoxylanase, xylosidase or arabinanase activity and was inactive on arabinan, we conclude that this enzyme is best described as an arabinoxylan arabinofuranohydrolase.  相似文献   

12.
In this study, the lipolytic activity of Thermus thermophilus HB8 was examined. The addition of various oils increased the production of extracellular lipolytic activity, while a combination of olive oil and glucose increased both extracellular and intracellular lipolytic activity. The oxygen transfer rate had a significant influence on both biomass and production of extra- or intra-cellular lipolytic activity. The formation of white halos due to the hydrolysis of oleic acid ester (Tween 80) in agar plates containing Nile Blue and the formation of Ca2+-oleate indicated the secretion of lipase. When the cell-free supernatant of cells grown in basal reach medium or the corresponding intracellular extract were electrophoresed under denatured and renatured conditions, using ??-naphthyl acetate and Fast Blue RR, major bands at 56 kDa or 62 and 32 kDa were observed, respectively. The 56 kDa extracellular enzyme was partial purified and characterized. Its peak of activity occurred at 80°C and pH 7.0, while the T1/2 was 1 h at 100°C. The K m of the partial purified enzyme was 1 mM and the V max was 0.044 U/mL/min when using p-nitrophenyl laurate as substrate. The presence of Ca2+ and Hg2+ stimulated lipase activity, whereas Zn2+, Co2+, or EDTA inhibited lipase activity. The highest activity was observed in the presence of coconut oil and p-nitrophenyl laurate (pNPL). Purified lipase was the most stable in the presence of various organic solvents, such as pentanol, chloroform and n-dodecane. Because of the superior thermostability and stability in the presence of organic solvents of T. thermophilus extracellular lipase, this lipase holds great promise for use in industrial applications.  相似文献   

13.
An extracellular polygalacturonase (EC 3.2.1.15) fromGeotrichum candidum ATCC 34614 grown onsauerkraut brine was produced and characterized. Polygalacturonic acid markedly increased the enzyme yield in the brine. The fungus produced the highest activity (290 U/l) in brine with 0.3% (w/v) polygalacturonic acid. The pH and temperature optima of the enzymes were 4.5 to 5.0 and 30°C, respectively. It was stable from pH 4.0 to 5.8 and at 30°C but lost its activity at higher temperatures. The Km and Vmax values for polygalacturonic acid were 4.2 mg/ml and 0.19mm galacturonic acid/min, respectively. The enzyme was not substrate inhibited.  相似文献   

14.
An isolate exhibiting high extracellular lipolytic activity was identified as Pseudomonas gessardii by 16S rDNA gene sequence analysis. The slaughterhouse waste, goat tallow, was used as a lipid substrate for the production of acidic lipase by P. gessardii. The maximum lipase activity of 156 U/ml was observed at an acidic pH of 3.5 and at 0.31 g substrate concentration. The purification steps resulted in the isolation of acidic lipase with a specific activity of 1,473 U/mg and a molecular weight of 94 kDa. One interesting feature of this purified lipase is its stability at highly acidic pH ranging from 2.0 to 5.5 with a high molecular weight. The amino acid composition was determined using HPLC. This acidic lipase has potential applications in the medicinal field as a substitute for pancreatic lipases for enzyme therapy, oleochemical and in biotechnological industries.  相似文献   

15.
This paper reported a novel strain screen strategy for the production of C-7 xylosidase of taxane for the biotransformation of 7-xylosyl-10-deacetylpaclitaxel (7-XAP) to 10-deacetylpaclitaxel (10-DAP) using xylan as the sole carbon and energy source. The C-7 xylosidase produced by the four strains obtained was an extracellular inducible enzyme enabling the biotransformation to be carried out directly in microbial suspension cultures. The four strains were identified as Streptomyces matensi, Arthrobacter nicotianae, Achromobacter piechaudii, and Pseudomonas plecoglossicida by morphological, physiological, and genetical characteristics. Several chemicals were confirmed as activating the enzyme activity, in which magnesium acetate improved the maximal substrate concentration from 0.1 to 0.5 g l−1 at complete transformation in S. matensi suspension cultures. The non-mucous, extracellular activity and high substrate concentration characters of S. matensi facilitate both the upstream production of the enzyme, and downstream extraction and purification of the enzyme and the product.  相似文献   

16.
α-Galactosidase production by a newly isolated actinomycete Streptomyces griseoloalbus under submerged fermentation was investigated. The influence of initial pH of medium, incubation temperature, inoculum age and inoculum size on α-galactosidase formation was studied. Various carbon sources were supplemented in the medium to study their effect on enzyme production. The influence of the concentration of locust bean gum on enzyme production also was optimized. Optimization of process parameters resulted in a highest α-galactosidase activity of 20.4 U/ml. The highest α-galactosidase activity was obtained when the fermentation medium with initial pH 6.0 and containing 1% locust bean gum as growth substrate was inoculated with 10% (v/v) of 72 h grown inoculum and incubated at 30°C. The hydrolysis of flatulence-causing oligosaccharides in soymilk by the enzyme was also investigated. Thin layer chromatographic analysis of enzyme-treated soymilk samples showed the complete hydrolysis of soy oligosaccharides liberating galactose, the final product.  相似文献   

17.
A psychrophilic bacterium Psychrobacter sp. C18 previously isolated from the Southern Okinawa Trough deep-sea sediments showed extracellular lipolytic activity towards tributyrin. A genomic DNA library was constructed and screened to obtain the corresponding lipase gene. The sequenced DNA fragment contains an open reading frame of 945 bp, which was denoted as the lipX gene, from which a protein sequence LipX was deduced of 315 amino acid residues with a molecular mass of 35,028 Da. This protein contained the bacterial lipase GNSMG (GxSxG, x represents any amino acid residue) and HG consensus motifs. The recombinant pET28a(+)/lipX gene was overexpressed in heterologous host Escherichia coli BL21 (DE3) cells to overproduce the lipase protein LipXHis with a 6× histidine tag at its C-terminus. Nickel affinity chromatography was used for purification of the expressed recombinant lipase. The maximum lipolytic activity of the purified recombinant lipase was obtained at temperature of 30°C and pH 8.0 with p-nitrophenyl myristate (C14) as a substrate. Thermostability assay indicated that the recombinant LipXHis is a cold-adapted lipase, which was active in 10% methanol, ethanol, acetone and 30% glycol, and inhibited partially by Zn2+, Co2+, Mn2+, Fe3+ and EDTA. Most non-ionic detergents, such as DMSO, Triton X-100, Tween 60 and Tween 80 enhanced the lipase activity but 1% SDS completely inhibited the enzyme activity. Additionally, the highest lipolytic rate of the recombinant LipXHis lipase was achieved when p-nitrophenyl myristate was used as a substrate, among all the p-nitrophenyl esters tested.  相似文献   

18.
Pyrococcus woesei (DSM 3773) α-amylase gene was cloned into pET21d(+) and pYTB2 plasmids, and the pET21d(+)α-amyl and pYTB2α-amyl vectors obtained were used for expression of thermostable α-amylase or fusion of α-amylase and intein in Escherichia coli BL21(DE3) or BL21(DE3)pLysS cells, respectively. As compared with other expression systems, the synthesis of α-amylase in fusion with intein in E. coli BL21(DE3)pLysS strain led to a lower level of inclusion bodies formation—they exhibit only 35% of total cell activity—and high productivity of the soluble enzyme form (195,000 U/L of the growth medium). The thermostable α-amylase can be purified free of most of the bacterial protein and released from fusion with intein by heat treatment at about 75°C in the presence of thiol compounds. The recombinant enzyme has maximal activity at pH 5.6 and 95°C. The half-life of this preparation in 0.05 M acetate buffer (pH 5.6) at 90°C and 110°C was 11 h and 3.5 h, respectively, and retained 24% of residual activity following incubation for 2 h at 120°C. Maltose was the main end product of starch hydrolysis catalyzed by this α-amylase. However, small amounts of glucose and some residual unconverted oligosaccharides were also detected. Furthermore, this enzyme shows remarkable activity toward glycogen (49.9% of the value determined for starch hydrolysis) but not toward pullulan.  相似文献   

19.
An extracellular β-xylosidase from a newly isolated Fusarium verticillioides (NRRL 26518) was purified to homogeneity from the culture supernatant by concentration by ultrafiltration using a 10,000 cut-off membrane, ammonium sulfate precipitation, DEAE Bio-Gel A agarose column chromatography and SP-Sephadex C-50 column chromatography. The purified β-xylosidase (specific activity, 57 U/mg protein) had a molecular weight (mol. wt.) of 94,500 and an isoelectric point at pH 7.8. The optimum temperature and pH for action of the enzyme were 65°C and 4.5, respectively. It hydrolyzes xylobiose and higher xylooligosaccharides but is inactive against xylan. The purified β-xylosidase had a K m value of 0.85 mM (p-nitrophenol-β-D-xyloside, pH 4.5, 50°C) and was competitively inhibited by xylose with a K i value of 6 mM. It did not require any metal ion for activity and stability. Journal of Industrial Microbiology & Biotechnology (2001) 27, 241–245. Received 20 May 2001/ Accepted in revised form 06 July 2001  相似文献   

20.
A novel raw starch degrading cyclomaltodextrin glucanotransferase (CGTase; E.C. 2.4.1.19), produced by Bacillus firmus, was purified to homogeneity by ultrafiltration, affinity and gel filtration chromatography. The molecular weight of the pure protein was estimated to be 78 000 and 82 000 Da, by SDS-PAGE and gel filtration, respectively. The pure enzyme had a pH optimum in the range 5.5–8.5. It was stable over the pH range 7–11 at 10 °C, and at pH 7.0 at 60 °C. The optimum temperature for enzyme activity was 65 °C. In the absence of substrate, the enzyme rapidly lost its activity above 30 °C. K m and k cat for the pure enzyme were 1.21 mg/ml and 145.17 μM/mg per minute respectively, with soluble starch as the substrate. For cyclodextrin production, tapioca starch was the best substrate used when gelatinized, while wheat starch was the best substrate used when raw. This CGTase could degrade raw wheat starch very efficiently; up to 50% conversion to cyclodextrins was obtained from 150 g/l starch without using any additives. The enzyme produced α-, β- and γ-cyclodextrins in the ratio of 0.2:9.2:0.6 and 0.2:8.6:1.2 from gelatinized tapioca starch and raw wheat starch with 150 g/l concentration respectively, after 18 h incubation. Received: 25 September 1998 / Received revision: 15 December 1998 / Accepted: 21 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号