首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The double abdomen type of embryonic segment pattern can develop in posterior fragments ofCallosobruchus eggs. In this type of pattern, a series of posterior segments is joined in reversed polarity to an equal set from the original pattern persisting in normal polarity. Reversed and non-reversed sets are fused in a plane of mirror symmetry, which shows in the larval cuticle as a symmetry line. This line may be located anywhere in the posterior thorax or the anterior abdomen. The reversed abdomen may be incomplete caudally due to secondary causes. Polarity reversal and concomitant double abdomen formation occurred only when temporary constriction was terminated before cellularization of the blastoderm, and only when the anterior fragment was degenerating. Maximum reversal frequency was 94% of analyzable posterior partial larvae when the constriction was applied slightly anterior to the middle of the egg when the egg contained 4–32 nuclei. Reversal was often restricted to longitudinal strips of the larval cuticle. The longitudinal borderlines between the reversed and the non-reversed strips ran predominantly along the larval midlines. Such borderlines probably existed in the blastoderm anywhere around its circumference, but borderlines in the future mesoderm and serosa would be internalized during gastrulation and dorsal closure, respectively, and the embryonic midlines would then become secondary borderlines visible in the larval cuticle. If a morphogen is involved in segment pattern formation, its transport in the egg must be polarized longitudinally in order to account for reversals restricted to longitudinal cuticular strips.  相似文献   

2.
Summary Transverse fragmentation of the egg ofDrosophila melanogaster results in the formation of partial larvae. Anterior and posterior egg fragments develop the respective partial larval patterns. The partial patterns do not add up to the complete pattern.Fragmentation near the middle of the egg during early cleavage causes a gap of 3–4 segments on average in the larva. This gap is reduced to 2 segments on average if operations are performed at the early syncytial blastoderm stage. Fragmentation near the pole regions from early cleavage stages onwards causes a gap of only 2 larval segments on average. When the egg is fragmented at the columnar cellular blastoderm stage or later, the gap at all positions amounts to the size of one segment or less. A gap is also found after incomplete fragmentation, when the ooplasmic bridge between both egg parts was constricted beyond a certain limit.A specific shift of the segment-forming capacities along the egg axis is observed from syncytial blastoderm stages onwards.After partial longitudinal fragmentation no additional structures are observed. In general, the partial transverse patterns add up to the complete pattern, but minor structures like single denticles are missing near the fragmentation site.The results are discussed with respect to current concepts of segment pattern formation during early embryogenesis in dipterans.  相似文献   

3.
Summary The effect of transverse fragmentation on the segment pattern of the short germ embryo of the locust Schistocerca gregaria has been investigated at two stages subsequent to the formation of the germ anlage. Following fragmentation both anterior and posterior partial embryos were observed, although rarely in a single egg. Anterior partial patterns usually terminated with a segment visible at the time of fragmentation or with the next segment due to appear. Posterior partial patterns began with a wide range of segments depending on the level of fragmentation.Anterior and posterior partial patterns developing in a single egg were usually not complementary and the segments missing sometimes included some segments visible when the embryo was fragmented. Non-complementary patterns resulted following fragmentation in all regions, while complementary patterns only occurred after fragmentation in the visibly-segmented region.The results suggest that following fragmentation isolated posterior portions of the embryo continue to form segments, while isolated anterior regions usually do not. This effect could result from variable damage to an existing pattern of unequally-sized segment primordia, or from the disruption of a process of sequential segmentation in the elongating posterior region of the embryo. The results are broadly compatible with the progress zone model proposed by Summerbell et al. (1973).  相似文献   

4.
Summary

This review deals with the question of how cells in the early embryo of the pea-beetle differentiate into a sequential pattern of segments. Anterior and posterior fragments of an egg have different options for development depending on whether they are exposed, before cellularization, to decaying ooplasm in the complementary fragment. Without such exposure all fragments produce fewer segments than corresponding fragments obtained at cellularization. With exposure a fraction of anterior and posterior fragments produces considerably more segments than corresponding fragments obtained at cellularization. In addition, posterior fragments are uniquely different from anterior ones in that they also produce reversal of segment sequence which can be restricted to longitudinal strips of the larval cuticle.

The difference in reaction to decaying ooplasm between anterior and posterior fragments suggests an asymmetry in the control of metamerization. Lateral inhibition by an asymmetric gradient of a diffusible morphogen can describe these observations [18] except for the restriction of reversal to longitudinal strips. The latter requires either that morphogen transport be polarized, possibly by a voltage gradient in the egg, or that the interpretation of cell position is polarized. The induction of double abdomens with UV-light and RNase suggests that RNA is part of the control mechanism. This and strip-restricted reversal are features shared by eggs of Coleoptera and Diptera.  相似文献   

5.
Each of the trunk segments of the polychaete Eusyllis blomstrandi is equipped with paired epidermal luminescent domains. They luminesce upon mechanical or electrical stimulation. Light emission can be rapidly turned on and off, appears intracellular and is highly coordinated among the trunk segments. Luminescent light is typically emitted in series of flashes. Light emission in a flash starts locally in a group of segments and recruits adjacent segments at a rate as fast as ≤1 ms/segment. The collapse of light emission at the end of a flash is almost simultaneous in all of the segments involved. In the intact worm, the luminescent reaction usually involves only a posterior group of segments. Facilitation becomes manifest as the consecutive flashes in a series increase in brightness and duration and recruit additional anterior segments that were not active in earlier flashes. The flash series stops abruptly instead of decreasing asymptotically in brightness. In posterior fragments, all the segments participate in flashing luminescence, indicating the loss of an inhibitory effect exerted by the anterior end in the case of whole animals. Posterior fragments survive and are still capable of luminescence weeks after fragmentation although they do not regenerate a head. Immediately upon fragmentation of the worm, the posterior fragment luminesces continuously for some seconds while the anterior part quickly stops light emission. This suggests a decoy and/or a predator-alerting function of prolonged, strong luminescence by the moribund posterior fragment to the benefit of the survival of the anterior fragment.  相似文献   

6.
Posterior pole material was incorporated into middle egg fragments of standard length but different mean position along the longitudinal egg axis. Middle egg fragments of rather posterior location formed only posterior pattern elements, i.e., thoracic and abdominal segments. More anterior middle egg fragments, on the other hand, were able to form complete embryos. The results are at variance with basic suppositions of a recent model of pattern formation in the Euscelis egg.  相似文献   

7.
In short and intermediate germ insects, only the anterior segments are specified during the blastoderm stage, leaving the posterior segments to be specified later, during embryogenesis, which differs from the segmentation process in Drosophila, a long germ insect. To elucidate the segmentation mechanisms of short and intermediate germ insects, we have investigated the orthologs of the Drosophila segmentation genes in a phylogenetically basal, intermediate germ insect, Gryllus bimaculatus (Gb). Here, we have focused on its hunchback ortholog (Gb'hb), because Drosophila hb functions as a gap gene during anterior segmentation, referred as a canonical function. Gb'hb is expressed in a gap pattern during the early stages of embryogenesis, and later in the posterior growth zone. By means of embryonic and parental RNA interference for Gb'hb, we found the following: (1) Gb'hb regulates Hox gene expression to specify regional identity in the anterior region, as observed in Drosophila and Oncopeltus; (2) Gb'hb controls germband morphogenesis and segmentation of the anterior region, probably through the pair-rule gene, even-skipped at least; (3) Gb'hb may act as a gap gene in a limited region between the posterior of the prothoracic segment and the anterior of the mesothoracic segment; and (4) Gb'hb is involved in the formation of at least seven abdominal segments, probably through its expression in the posterior growth zone, which is not conserved in Drosophila. These findings suggest that Gb'hb functions in a non-canonical manner in segment patterning. A comparison of our results with the results for other derived species revealed that the canonical hb function may have evolved from the non-canonical hb functions during evolution.  相似文献   

8.
The development of the segment pattern in Smittia embryos can be manipulated experimentally. Centrifugation during intravitelline cleavage leads to a mirror image duplication of most of the head in the absence of abdominal segments (“double cephalons”). Conversely, mirror image duplications of abdominal segments in the absence of head and thorax (“double abdomens”) can be generated by UV-irradiation of the anterior pole before blastoderm formation. By subsequent exposure to blue light, UV-irradiated embryos can be reprogrammed for normal development (photoreversal). We have characterized an “anterior indicator” protein (designated AI1; Mr ? 35,000; IEP ? 4.9). Its synthesis was restricted to anterior fragments of embryos during a late blastoderm stage (BlVI). This protein was synthesized, however, in both anterior and posterior fragments of prospective double cephalons. Conversely, this protein was synthesized neither in anterior nor in posterior fragments of UV-induced double abdomens. Upon photoreversal, the protein was synthesized again in anterior fragments. Thus, synthesis of this protein in a given fragment always indicated development of head and thorax there. Likewise, we have characterized a “posterior indicator protein” (designated PI1, Mr ? 50,000, IEP ? 5.5). Its synthesis during early blastoderm stages (BlI and BlII) was restricted to posterior fragments but not to pole cells in normal embryos. In UV-induced double abdomens, PII was synthesized in both anterior and posterior fragments at stage BlII. Photoreversal again led to restriction of PII synthesis to posterior fragments. Thus, the synthesis of PII in a given fragment at stage BlII always foreshadowed the formation of an abdomen several hours before this can be discerned morphologically. The synthesis of two other proteins (designated a1 and p1) was also restricted, during certain blastoderm stages, to anterior or posterior fragments, respectively. However, UV-irradiation or centrifugation had little or no effect on the synthesis of these proteins. Conversely, programming embryos for double abdomen development by UV-irradiation caused a set of reproducible, and mostly photoreversible, changes in the pattern of proteins synthesized in anterior embryonic fragments. However, the synthesis of most of the affected proteins was not region-specific in normal embryos.  相似文献   

9.
10.
Summary Cytoplasm removal/transplant techniques applied to Drosophila cleavage-stage embryos induced changes in anteroposterior polarity. Removal of anterior cytoplasm or anterior transplantation of posterior cytoplasm caused the anterior formation of posterior (telson) structures, and the replacement of anterior cytoplasm with posterior cytoplasm induced double-abdomen embryos, as reported by Frohnhöfer et al. [J Embryol Exp Morphol 97 (suppl):169–179 (1986)]. Changing the conditions of anterior cytoplasm removal we showed that greater volumes, earlier stages, and removal from the periphery were efficient. In addition we found that double-cephalon embryos are induced by replacing posterior cytoplasm with anterior cytoplasm, while removal of posterior cytoplasm or the posterior transplantation of anterior cytoplasm was without effect. However, introduction of anterior cytoplasm into the posterior of nanos embryos, which are mutants not developing abdominal segments, caused the formation of double-cephalon embryos. Similarly, double-abdomen embryos are produced by introducing posterior cytoplasm into the anterior of bicoid embryos, which are mutants not forming cephalic and thoracic structures. These results are compatible with the initial involvement of separate anterior, posterior and terminal cytoplasmic factors deduced from mutant analysis (Nüsslein-Volhard and Roth 1989).  相似文献   

11.
Segmentation is well understood in Drosophila, where all segments are determined at the blastoderm stage. In the flour beetle Tribolium castaneum, as in most insects, the posterior segments are added at later stages from a posteriorly located growth zone, suggesting that formation of these segments may rely on a different mechanism. Nevertheless, the expression and function of many segmentation genes seem conserved between Tribolium and Drosophila. We have cloned the Tribolium ortholog of the abdominal gap gene giant. As in Drosophila, Tribolium giant is expressed in two primary domains, one each in the head and trunk. Although the position of the anterior domain is conserved, the posterior domain is located at least four segments anterior to that of Drosophila. Knockdown phenotypes generated with morpholino oligonucleotides, as well as embryonic and parental RNA interference, indicate that giant is required for segment formation and identity also in Tribolium. In giant-depleted embryos, the maxillary and labial segment primordia are normally formed but assume thoracic identity. The segmentation process is disrupted only in postgnathal metamers. Unlike Drosophila, segmentation defects are not restricted to a limited domain but extend to all thoracic and abdominal segments, many of which are specified long after giant expression has ceased. These data show that giant in Tribolium does not function as in Drosophila, and suggest that posterior gap genes underwent major regulatory and functional changes during the evolution from short to long germ embryogenesis.  相似文献   

12.
13.
Summary Protein synthesis in egg follicles and blastoderm embryos ofDrosophila melanogaster has been studied by means of two-dimensional gel electrophoresis. Up to 400 polypeptide spots have been resolved on autoradiographs. Stage 10 follicles (for stages see King, 1970) were labelled in vitro for 10 to 60 min with35S-methionine and cut with tungsten needles into an anterior fragment containing the nurse cells and a posterior fragment containing the oocyte and follicle cells. The nurse cells were found to synthesize a complex pattern of proteins. At least two proteins were detected only in nurse cells but not in the oocyte even after a one hour labelling period. Nurse cells isolated from stages 9, 10 and 12 follicles were shown to synthesize stage specific patterns of proteins. Several proteins are synthesized in posterior fragments of stage 10 follicles but not in anterior fragments. These proteins are only found in follicle cells. No oocyte specific proteins have been detected. Striking differences between the protein patterns of anterior and posterior fragments persist until the nurse cells degenerate. In mature stage 14 follicles, labelled in vivo, no significant differences in the protein patterns of isolated anterior and posterior fragments could be detected; this may be due to technical limitations. At the blastoderm stage localized synthesis of specific proteins becomes detectable again. When blastoderm embryos, labelled in vivo, are cut with tungsten needles and the cells are isolated from anterior and posterior halves, differences become apparent. The pole cells located at the posterior pole are highly active in protein synthesis and contribute several specific proteins which are found exclusively in the posterior region of the embryo. In this study synthesis of specific proteins could only be demonstrated at those developmental stages which are characterized by the presence of different cell types within the egg chamber, while no differences were detected when stage 14 follicles were cut and anterior and posterior fragments analyzed separately. The differences in the pattern of protein synthesis by pole cells and blastoderm cells indicate that even the earliest stages of determination are reflected by marked changes at the biochemical level.  相似文献   

14.
15.
Nonuniformity of myocardial systolic and diastolic performance in the normal left ventricle has been recognized by a number of investigators. Lack of homogeneity in diastolic properties might be caused by or related to differences in the distensibility of different regions of the left ventricular (LV) wall. Thus, we compared the end-diastolic transmural pressure-strain relations in both the anterior and posterior LV walls in seven anesthetized dogs during two interventions (pulmonary artery constriction and aortic constriction). Transmural pressure was defined as the difference between LV intracavitary pressure and local pericardial pressure. LV pressure was measured using a micromanometer; pericardial pressures over the LV anterior and posterior walls were measured with balloon transducers. Circumferentially oriented pairs of sonomicrometer crystals were implanted in the midwall of the anterior and posterior walls of the LV to measure segment lengths. Strains were calculated as (L-L0)/L0, where L was the instantaneous segment length and L0 was the segment length when transmural pressure was zero. The pattern of end-diastolic transmural pressure--strain relations was similar in all dogs. The change in strain in the posterior wall was always greater than that in the anterior wall. Opening the pericardium did not affect the difference in distensibility of the anterior and posterior walls. The results suggest that the posterior wall is more compliant than the anterior wall (that is, for a given difference in transmural pressure, the local segment length change of the posterior wall was greater). This seems consistent with other observations, which suggest that the posterior wall might make a greater contribution to diastolic filling.  相似文献   

16.
L(1)giant is a zygotic lethal mutation which affects the embryonic development of both the labial/thoracic segments and a subset of posterior abdominal segments. Using antibodies specific for proteins encoded by several Drosophila genes to identify the compartmental origin of the defects, we show that the requirement of giant activity is different in these two embryonic domains. Anteriorly, the posterior compartment of the labial segment is missing at the blastoderm stage. Posteriorly, cells are specifically deleted by cell death within the anterior compartments of abdominal segments 5–7 during germ band elongation. In mature embryos, posterior compartment structures of the peripheral nervous system of A5–7 are fused. In addition to a different pattern of defect in the two parts of the embryo, the kind of action appears different. Anteriorly, giant resembles a gap mutation in that a particular region is missing from the blastoderm fate map, whereas in the abdominal domain, giant affects the development of anterior compartment-specific structures.  相似文献   

17.
The egg of the leafhopper Euscelis plebejus has been separated into three fragments [for nomenclature, see Sander, K. (1976). Advan. Insect Physiol.12, 125–238] by two constrictions in order to exclude the middle egg part from possible terminal influences on pattern specification. Middle fragments of freshly laid eggs (two pronuclei or one nucleus) differentiate middle segments of the embryonic pattern. The segment composition of those partial patterns varies with the position of the two constrictions. Eggs subdivided at later stages of development produce similar partial patterns in the middle fragment, but with more segments. The mode of segment expression in single and double fragmented eggs is compatible with the assumption that the metameric pattern is differentiated by a sequence of short-range inductions rather than by an extensive gradient field.  相似文献   

18.
The tube-dwelling polychaete Pseudopotamilla reniformis (Sabellidae) forms dense and complex aggregations of flexible tubes on hard substrates in the subtidal zone of the White Sea. No sexual reproduction was observed in this study and recruitment appeared to be due to asexual reproduction by architomy in winter, from October to March. The posterior part of the abdomen undergoes spontaneous fission into from 2 to 4 fragments and depending on their position, the fragments regenerate their anterior ends or both anterior and posterior ends. Regeneration in P. reniformis takes place via a combination of epimorphosis (replacement of missing parts by cell proliferation and the growth of new tissue) and morphallaxis (the remodelling of pre-existing structures without cell proliferation). The morphogenetic events during regenerative restoration include de novo formation of branchial crown, formation of thoracic segments and restoration of the posterior end. Asexual reproduction appears to play a crucial role for formation of P. reniformis aggregations and is very important for the population in the White Sea, at the margin of the species’ range.  相似文献   

19.
The formation of both the anterior most and posterior most segments in higher dipteran embryos involves complex movements of primordia which can be best visualized with the scanning electron microscope. During head formation, the gnathocephalic segments partially involute through the stomodeum. The labial segment forms the floor of the mouth, and the fused maxillary and mandibular segments form the lateral sides of the mouth. The involuted clypeolabrum forms the roof of the mouth. Invaginations of cells for segmentally derived sense organs can be found prior to involution on all the gnathocephalic and thoracic segments as well as on the labrum. The antennal sense organ derives from the lateral surface of the procephalic lobe. Following involution of the mouth parts, the dorsal ridge, which arises just anterior to the first thoracic segment, is drawn over the dorsal procephalic lobe producing the deep dorsal sac. The optic lobes of the brain invaginate anterior to the dorsal ridge just prior to the covering over of the head. The formation of the anal segment is similarly complex. Two rudimentary segments are found posterior to the eighth abdominal segment. During shortening of the germ band, the posterior most segment is drawn around the posterior tip of the embryo to lie ventrally. Two large anal pads form lateral to the anus from this segment. The next segment, following dorsal closure, produces a pair of anal sense organs and a central tuft of setae. Finally, the eighth abdominal segment gives rise to the posterior spiracles. Following dorsal closure these three segments fuse to produce the terminal (anal) segment of the larva.  相似文献   

20.
Summary The mutationbicaudal (Bull, 1966) causes embryos to develop a longitudinal mirror image duplication of the posteriormost abdominal segments, while head and thorax are missing. These embryos occur with varying frequencies among eggs laid by mutant females, irrespective of the paternal genotype. Recombination and deletion mapping indicate thatbicaudal (bic) is a recessive, hypomorphic, maternal-effect mutation mapping at a single locus on the second chromosome ofDrosophila melanogaster close tovg (67.0±0.1). The frequency of bicaudal embryos depends on the age of the mother, her genetic constitution and the temperature at which she is raised. Best producers are very young females hemizygous forbic (bic/Df(2)vg B ) at 28° C. Under these conditions 80% to 90% of the eggs which differentiate can show the bicaudal embryo phenotype. Upon ageing of the mother the frequency of bicaudal embryos declines rapidly, and most of the eggs develop the normal body pattern. Temperature shift experiments suggest a temperature-sensitive period at the onset of vitellogenesis.The mutation causes several types of abnormalities in the segment pattern of theDrosophila embryo, which are interpreted as various degrees of expression of the mutant character. The most frequent abnormal phenotype is the symmetrical bicaudal embryo with one to five abdominal segments duplicated. Less frequent are asymmetrical types, in which the smaller number of segments is always in the anterior reversed part. Other phenotypes are embryos with missing or rudimentary heads, and embryos with irregular gaps in the segment pattern. In bicaudal embryos, the pole cells, formed at the posterior pole of the egg prior to blastoderm formation, are not duplicated at the anterior. The significance of thebicaudal phenotypes for embryonic pattern-formation inDrosophila is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号