首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
3.
4.
Tissue-specific expression of the gene coding for trypsin inhibitor BTI-CMe in barley (Itr1) occurs during the first half of endosperm development. In transgenic tobacco, theItr1 promoter drives expression of the β-glucuronidase reporter gene not only in developing endosperm but also in embryo, cotyledons and the meristematic intercotyledonary zone of germinating seedlings. A promoter fragment extending 343 bp upstream of the translation initiation ATG codon was sufficient for full transgene expression, whereas, the proximal 83 bp segment of the promoter was inactive. Possible reasons for the differences in expression patterns are discussed.  相似文献   

5.
6.
Tissue-specific expression of the gene coding for trypsin inhibitor BTI-CMe in barley (Itr1) occurs during the first half of endosperm development. In transgenic tobacco, theItr1 promoter drives expression of the β-glucuronidase reporter gene not only in developing endosperm but also in embryo, cotyledons and the meristematic intercotyledonary zone of germinating seedlings. A promoter fragment extending 343 bp upstream of the translation initiation ATG codon was sufficient for full transgene expression, whereas, the proximal 83 bp segment of the promoter was inactive. Possible reasons for the differences in expression patterns are discussed. These authors have contributed equally to this work  相似文献   

7.
The feasibility of producing plant cell wall polysaccharide-hydrolysing feed enzymes in the endosperm of barley grain was investigated. The coding region of a modified xylanase gene (xynA) from the rumen fungus, Neocallimastix patriciarum, linked with an endosperm-specific promoter from cereal storage protein genes was introduced into barley by Agrobacterium-mediated transformation. Twenty-four independently transformed barley lines with the xylanase gene were produced and analysed. The fungal xylanase was produced in the developing endosperm under the control of either the rice glutelin B-1 (GluB-1) or barley B1 hordein (Hor2-4) promoter. The rice GluB-1 promoter provided an apparently higher expression level of recombinant proteins in barley grain than the barley Hor2-4 promoter in both transient and stable expression experiments. In particular, the mean value for the fungal xylanase activity driven by the GluB-1 promoter in the mature grains of transgenic barley was more than twice that with the Hor2-4 promoter. Expression of the xylanase transgene under these endosperm-specific promoters was not observed in the leaf, stem and root tissues. Accumulation of the fungal xylanase in the developing grains of transgenic barley followed the pattern of storage protein deposition. The xylanase was stably maintained in the grain during grain maturation and desiccation and post-harvest storage. These results indicate that the cereal grain expression system may provide an economic means for large scale production of feed enzymes in the future.  相似文献   

8.
9.
10.
11.
12.
13.
Endosperm accounts for a large proportion of human nutrition and is also a major determinant of seed viability and size, not only in cereals, but also in species with ephemeral endosperms, such as soybean and oilseed rape. The extent of endosperm proliferation early in seed development is a crucial component in setting seed size; therefore, a biotechnological approach for the modification of this trait requires promoters active in early endosperm. To find such promoters, we constructed an array based on cDNAs extracted from developing Arabidopsis seeds enriched for proliferating endosperm. Hybridization with RNA extracted from vegetative and reproductive tissues, including endosperm, and subsequent data filtering yielded sets of endosperm-expressed and endosperm-preferred genes, including many hundreds not previously identified in array experiments designed to detect genes expressed in Arabidopsis seeds. Of eight promoters selected for validation, seven were active in early endosperm, three with no detected activity elsewhere in the plant. Therefore, this strategy has yielded proliferative phase endosperm promoters which should be useful in altering seed size.  相似文献   

14.
15.
16.
17.
18.
19.
Fertilization of the female gametophyte in angiosperm plants initiates a process of coordinated development of embryo, endosperm, and seed coat that ensures the production of a viable seed. Mutant analysis has suggested that communication between the endosperm and the seed coat is an important determinant in this process. In addition, cell groups within the embryo, derived from the apical and from the basal cell, respectively, after zygote division, concertedly establish a functional root meristem, and cells in the apical region of the embryo are hypothesized to repress cell divisions in the basal cell-derived suspensor. The available evidence for these interregional communication events mostly relies on the analysis of mutant phenotypes in Arabidopsis. To provide independent and direct evidence for communication events, we used conditional domain-specific expression of the diphtheria toxin A chain (DTA) in developing Arabidopsis seeds. By using a collection of cell- or tissue-type-specific promoters, we show that the mGAL4:VP16/UAS two-component gene expression allows reliable spatiotemporal and conditional expression of the GFP:GUS reporter and the DTA gene in the developing embryo and endosperm. Expression of DTA in the protoderm of the embryo proper led to excessive proliferation of suspensor cells, sometimes resulting in the formation of secondary embryos. Endosperm-specific expression of DTA caused complete cessation of seed growth, followed by pattern defects in the embryo and embryo arrest. Taken together, the results presented here substantiate the evidence for and underline the importance of interregional communication in embryo and seed development and demonstrate the usefulness of conditional toxin expression as a method complementary to phenotypic analysis of developmental mutants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号