首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inositol phospholipids phosphatidylinositol, phosphatidylinositol 4-phosphate (PIP), and phosphatidylinositol 4,5-bisphosphate (PIP2) comprise 14.8, 1.2, and 0.3 mol %, respectively, of Dunaliella salina phospholipids. In isolated plasma membrane fractions, PIP and PIP2 are highly concentrated, together comprising 9.5 mol % of plasmalemma phospholipids. The metabolism of these inositol phospholipids and phosphatidic acid (PA) is very rapid under normal growth conditions. Within 5 min after introduction of 32Pi into the growth medium, over 75% of lipid-bound label was found in these quantitatively minor phospholipids. Within 2 min after a sudden hypoosmotic shock, the levels of PIP2 and PIP dropped to 65 and 79%, respectively, of controls. Within the same time frame, PA rose to 141% of control values. These data suggest that a rapid breakdown of the polyphosphoinositides may mediate the profound morphological and physiological changes which allow this organism to survive drastic hypoosmotic stress. In contrast to hypoosmotic shock, hyperosmotic shock induced a rise in PIP2 levels to 131% of control values, whereas the level of PA dropped to 56% of controls after 4 min. These two different types of osmotic stress affect inositol phospholipid metabolism in a fundamentally opposite manner, with only hypoosmotic shock inducing a net decrease in polyphosphoinositides.  相似文献   

2.
Phosphoinositide and inositol metabolism was compared in glioma (C6), neuroblastoma (N1E-115) and neuroblastoma X glioma hybrid (NG 108-15) cells. All cell lines had similar proportions of phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), and phosphatidylinositol 4,5-bisphosphate (PIP2). Neuroblastoma and hybrid cells had almost identical phospholipid and phosphoinositide compositions and similar activities for the enzymes metabolizing polyphosphoinositides (PI kinase, PIP phosphatase, PIP kinase, PIP2 phosphatase, PIP2 phosphodiesterase). Glioma cells differed by having greater proportions of ethanolamine plasmalogen and sphingomyelin, lower PIP kinase, 3-5-fold higher PIP phosphatase activity and 10-15-fold greater PIP2 phosphodiesterase activity. Higher PIP phosphatase and PIP2 diesterase activities appear to be characteristic of cells of glial origin, since similar activities were found in primary cultures of astroglia. Glioma cells also metabolize inositol differently. In pulse and pulse-chase experiments, glioma cells transported inositol into a much larger water-soluble intracellular pool and maintained a concentration gradient 30-times greater than neuroblastoma cells. Label in intracellular inositol was less than in phosphoinositides in neuroblastoma and exchanged rapidly with extracellular inositol. In glioma, labeling of intracellular inositol greatly exceeded that of phosphoinositides. As a consequence, radioactivity in prelabeled phosphoinositides could not be effectively chased from glioma cells by excess unlabeled inositol. Such differences between cells of neuronal and glial origin suggest different and possibly supportive roles for these two cell types in maintaining functions regulated through phosphoinositide-linked signalling systems in the central nervous system.  相似文献   

3.
Angiotensin II acts on cultured rat aortic vascular smooth muscle cells to stimulate phospholipase C-mediated hydrolysis of membrane phosphoinositides and subsequent formation of diacylglycerol and inositol phosphates. In intact cells, angiotensin II induces a dose-dependent increase in diglyceride which is detectable after 5 s and sustained for at least 20 min. Angiotensin II (100 nM)-stimulated diglyceride formation is biphasic, peaking at 15 s (227 +/- 19% control) and at 5 min (303 +/- 23% control). Simultaneous analysis of labeled inositol phospholipids shows that at 15 s phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP) decline to 52 +/- 6% control and 63 +/- 5% control, respectively, while phosphatidylinositol (PI) remains unchanged. In contrast, at 5 min, PIP2 and PIP have returned toward control levels (92 +/- 2 and 82 +/- 4% control, respectively), while PI has decreased substantially (81 +/- 2% control). The calcium ionophore ionomycin (15 microM) stimulates diglyceride accumulation but does not cause PI hydrolysis. 4 beta-Phorbol 12-myristate 13-acetate, an activator of protein kinase C, inhibits early PIP and PIP2 breakdown and diglyceride formation, without inhibiting late-phase diglyceride accumulation. Thus, angiotensin II induces rapid transient breakdown of PIP and PIP2 and delayed hydrolysis of PI. The rapid attenuation of polyphosphoinositide breakdown is likely caused by a protein kinase C-mediated inhibition of PIP and PIP2 hydrolysis. While in vascular smooth muscle stimulated with angiotensin II inositol 1,4,5-trisphosphate formation is transient, diglyceride production is biphasic, suggesting that initial and sustained diglyceride formation from the phosphoinositides results from different biochemical and/or cellular processes.  相似文献   

4.
To clarify the signal transduction mechanism of the erbB gene (virus oncogene) products leading to cell growth and transformation, the alteration of signal transduction induced by enhanced inositol phospholipid metabolism was studied in chick embryo fibroblast cells (CEF cells) transformed by gag-fused erbB gene-carrying virus (GEV cells). The incorporations of 32P into phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate were markedly increased in GEV cells. In GEV cells, the activities of lipid kinases such as phosphatidylinositol (PI), PIP, and diacylglycerol (DG) kinases were also increased. The activities of other important enzymes involved in inositol phospholipid metabolism, such as CDP-DG:myo-inositol transferase and phospholipase C, were not changed in GEV cells. Increased inositol phospholipid metabolism might lead to the production of second messengers, such as 1,2-DG and inositol 1,4,5-trisphosphate. Indeed, the 1,2-DG content was also increased in GEV cells. Moreover, the activity of protein kinase C (the Ca2+/phospholipid-dependent enzyme), which should be stimulated by 1,2-DG, was elevated in GEV cells; the protein kinase C activity in the membrane fraction of GEV cells was especially high. When CEF cells were treated with tetradecanoylphorbol acetate, protein kinase C activator, plus Ca2+ ionophore, [3H]thymidine incorporation was markedly stimulated, and maximal stimulation was observed with 1 nM Ca2+ ionophore A23187 plus 100 nM TPA. On the other hand, when GEV cells were treated with TPA plus Ca2+ ionophore A23187, [3H]thymidine incorporation was consistently inhibited. Next, studies were made to determine whether the erbB gene product itself had kinase activity on PI, PIP, and DG after membranes were mildly solubilized with Triton X-100 to prevent inactivation of these kinases. Immunoprecipitates of a GEV cell lysate with antisera that reacted with the erbB gene product had PI kinase activity, whereas no activity was detected in those of lysates of uninfected CEF cells. However, the activity was very weak compared with the total cellular activity. No difference in the PIP and DG kinase activities of immunoprecipitates of cell lysates of uninfected CEF cells and GEV cells was observed. These results suggest that the erbB gene product enhances inositol phospholipid metabolism and subsequent signal transduction, but that the erbB gene product is not involved directly in lipid kinases, although it is closely associated with lipid kinase.  相似文献   

5.
When human platelets were incubated for 5 min with [32P]orthophosphate and then stimulated with serotonin, the 32P content of phosphatidylinositol (PI) increased within seconds, compared with the control. The 32P content of phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) only slightly increased during the first minute after addition of serotonin and became more apparent on prolonged stimulation. These changes were not caused by serotonin-induced change in the specific activity of ATP. Using inorganic phosphate determination for the chemical quantification of different inositol phospholipid pools, we found that the platelet PI content remained nearly constant; the amount of PIP increased while that of PIP2 decreased. When the platelets were first prelabeled for 80 min with [32P]orthophosphate, the changes in 32P-labeled inositol phospholipids after addition of serotonin were similar to their changes in mass. When the platelet inositol phospholipids were labeled with myo-[2-3H]inositol, serotonin induced an increase in [3H]inositol phosphates. From these data, it is concluded in addition to the earlier-reported effects on phospholipid metabolism (de Chaffoy de Courcelles, D. et al. (1985) J. Biol. Chem. 260, 7603-7608) that serotonin induces: a very rapid formation of PI; and alterations in inositol phospholipid interconversion that cannot be explained solely as a resynthesis process of PIP2.  相似文献   

6.
Inositol Phospholipid Hydrolysis by Rat Sciatic Nerve Phospholipase C   总被引:2,自引:1,他引:1  
Rat sciatic nerve cytosol contains a phosphodiesterase of the phospholipase C type that catalyzes the hydrolysis of inositol phospholipids, with preferences of phosphatidylinositol 4'-phosphate (PIP) greater than phosphatidylinositol (PI) much greater than phosphatidylinositol 4',5'-bisphosphate (PIP2), at a pH optimum of 5.5-6.0 and at maximum rates of 55, 13, and 0.7 nmol/min/mg protein, respectively. Analysis of reaction products by TLC and formate exchange chromatography shows that inositol 1,2-cyclic phosphate (83%) and diacylglycerol are the major products of PI hydrolysis. [32P]-PIP hydrolysis yields inositol bisphosphate, inositol phosphate, and inorganic phosphate, indicating the presence of phosphodiesterase, phosphomonoesterase, and/or inositol phosphate phosphatase activities in nerve cytosol. Phosphodiesterase activity is Ca2+-dependent and completely inhibited by EGTA, but phosphomonoesterase activity is independent of divalent cations or chelating agents. Phosphatidylcholine (PC) and lysophosphatidylcholine (lysoPC) inhibit PI hydrolysis. They stimulate PIP and PIP2 hydrolysis up to equimolar concentrations, but are inhibitory at higher concentrations. Both diacylglycerols and free fatty acids stimulate PI hydrolysis and counteract its inhibition by PC and lysoPC. PIP2 is a poor substrate for the cytosolic phospholipase C and strongly inhibits hydrolysis of PI. However, it enhances PIP hydrolysis up to an equimolar concentration.  相似文献   

7.
It is not clear if luteinizing hormone (LH) stimulates breakdown as well as synthesis of phosphoinositides in ovarian tissue. Possibly, LH stimulation results in hydrolysis of ovarian phosphoinositides in discrete subcellular compartments while increasing their synthesis at other sites. To investigate this hypothesis, we determined the effects of LH on phosphoinositide metabolism in whole homogenates and mitochondria of ovarian follicles. Medium (3-7 mm) follicles from porcine ovaries were preincubated for 2 h in phosphate (PO4)-free medium with 32PO4, and incubated without or with LH (1 microgram/ml). Phosphatidylinositol (PI) and related compounds, phosphatidic acid (PA), phosphatidylinositol phosphate (PIP) and phosphatidylinositol bisphosphate (PIP2), accounted for 40% of the radiolabeled phospholipids in whole homogenates and over 60% in mitochondria from preincubated follicles. After 5 min, LH caused a significant decrease in radiolabeling of PIP2 and PIP in mitochondria, but not in whole homogenates. Luteinizing hormone increased radiolabeling of PIP2, PIP, PI and PA within 10 min in whole homogenates, and within 20 to 30 min in mitochondria. This delayed increase in radiolabeling of mitochondrial phosphoinositides after LH treatment was accompanied by decreases in PIP2, PIP and PI radiolabeling in whole homogenates. Follicles also were preincubated for 4 h with [3H]inositol, then for 15 min with 10 mM LiCl (an inhibitor of inositol phosphate hydrolysis). Inositol phosphate accumulation in 30 min was 2.7 times higher in homogenates of LH-treated follicles then in untreated follicles. Also, LH significantly decreased inositol bisphosphate, but did not change inositol trisphosphate accumulation. Accumulation of inositol phosphates in mitochondria was not measurable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
N Banik  U Ganguly 《FEBS letters》1988,236(2):489-492
Rat intestinal epithelial cells were labelled with [32P]Pi and extracted, and the phospholipids were analysed by thin-layer chromatography. 32P-incorporation in phosphatidylinositol (PI) and phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-phosphate (PIP2) were measured in control and heat stable enterotoxin (ST)-treated cells. ST was found to induce rapid degradation of PIP and PIP2. The degradation of inositol lipids was accompanied by an increase of water soluble inositol phosphate (IP1, IP2, IP3) compounds. There was a two-fold increase of radioactivity in IP2 and IP3 but no significant change was observed in IP1. Phospholipase C activity was increased tenfold with substrate PIP2 in ST-pretreated cells. The present study indicates that ST triggers another second messenger system by increasing the PIP2 hydrolysis with the enzyme phospholipase C.  相似文献   

9.
Levels of phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol (PI), phosphatidic acid, diacylglycerol (DAG), triacylglycerol (TAG), and free fatty acids (FFAs), as well as their fatty acid composition, were determined in rat forebrain during ischemia and postischemic recirculation. Cerebral energy state and electroencephalograms (EEGs) were also studied. Fifteen minutes of ischemia resulted in a decrease in PIP2 and PIP contents but not in PI content, concurrent with an enlargement of the FFA and DAG pools. The latter were enriched in stearate and arachidonate. Prolongation of ischemia did not produce further changes in content of any of the inositol phospholipids, but the increase in levels of FFAs and DAG continued. At the end of 45 min of ischemia, levels of both PIP2 and PIP decreased by 45-50%, and the total phosphoinositide content (PIP2 + PIP + PI) decreased by 21%, whereas levels of FFAs and DAG increased to 14- and 3.6-fold of control levels, respectively. During ischemia, the TAG-palmitate level decreased, but the TAG-arachidonate level increased; the tissue energy state deteriorated severely; and the EEG was suppressed. A 30-min recirculation period after 15 or 45 min of ischemia led to increases in PIP2, PIP, and total phosphoinositide contents, whereas levels of FFAs and DAG promptly decreased toward control values. The TAG-arachidonate level peaked and the TAG-palmitate level returned to a low control value during early recirculation. The ischemic changes in tissue lipids were completely reversed within 3 h of recirculation after both periods of ischemia. Adenylates were fully phosphorylated with as little as 30 min of reflow. The EEG activity partially recovered during reflow after 15 min of ischemia, whereas it remained depressed after prolonged ischemia. Thus, phosphodiesteric cleavage of PIP2 and PIP followed by deacylation of DAG is likely to contribute to the production of FFAs in early ischemia. Deacylation of undetermined lipids plays a role for the increment in levels of FFAs in the later period of ischemia. The rapid postischemic increase in levels of PIP2 and PIP indicates active synthesis not only from existing PI, but probably also by means of accumulated FFAs and DAG. These results indicate that the impaired resynthesis of inositol phospholipids cannot be a cause of the poor EEG activity after prolonged ischemia. Degradation and resynthesis of polyphosphoinositides and formation of TAG-arachidonate may be important for modulation of free arachidonic acid levels in the brain during temporary ischemia.  相似文献   

10.
The hormonal regulation of phosphoinositide levels in isolated hepatocytes was studied using chemical means. Extracted inositol phospholipids were adsorbed to neomycin-coated glass beads and then eluted and quantitated by charring after separation by thin layer chromatography on silica gel. The amounts (in nanograms/mg wet weight) of phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), and phosphatidylinositol (PI) were 20 +/- 1, 16 +/- 1, and 1790 +/- 140, respectively). Incubation of the cells with 100 nM vasopressin decreased the value for PIP2 to 10 +/- 0.2 at 15 s, 12 +/- 1.5 at 1 min, and 14 +/- 2.1 at 5 and 30 min. In contrast, the hormone increased 1,2-diacylglycerol plus phosphatidate by over 200 ng/mg wet weight at 5 min under similar conditions (Bocckino, S. B., Blackmore, P. F., Wilson, P. B., and Exton, J. H. (1987) J. Biol. Chem. 262, 15309-15315). PIP2 was also significantly decreased at 15 s by angiotensin II (100 nM), ATP (100 microM), and epinephrine (1 microM). In contrast, PIP was not significantly changed, and PI was significantly decreased (by approximately 15%) at later times (15 and 30 min). The changes in phosphoinositide mass were well correlated with changes in labeled phosphoinositides in hepatocytes previously incubated with [3H]inositol for 90 min. The amounts of inositol phospholipids in liver plasma membranes (in micrograms/mg protein) were 2.1 +/- 0.2 for PIP2, 0.24 +/- 0.03 for PIP, and 23 +/- 4 for PI. Comparison of these values with those for whole cells suggests that PIP2 is enriched in the plasma membrane, whereas PIP is present elsewhere in the cell. The fatty acid composition of whole cell PIP2 showed significant differences from that of PI. The percentages of palmitic, stearic, linoleic, and arachidonic acids were, respectively, 14, 41, 10, and 25 for PIP2 and 10, 34, 7, and 37 for PI. Vasopressin treatment for 15 s did not alter the fatty acid composition of PIP2. The corresponding fatty acid percentages for liver plasma membranes were 13, 41, 11, and 21 for PIP2 and 8, 34, 0, and 40 for PI. The fatty acid composition of PIP in whole cells and plasma membranes resembled that of PIP2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The addition of human platelet-derived growth factor (PDGF) to confluent, quiescent cultures of human diploid fibroblasts induced the rapid breakdown of cellular polyphosphoinositides. The levels of 32P-labeled phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), and phosphatidylinositol (PI) decreased by 30 to 40% within 1 min after exposure of the cells to PDGF. The levels of PIP and PIP2 returned to their initial values within 3 and 10 min, respectively, after PDGF addition. The level of PI continued to increase after it had returned to control values and was up threefold within 30 min after PDGF addition. In cells prelabeled with myo-[3H]inositol PDGF caused an eightfold increase in the levels of inositol trisphosphate (IP3) within 2 min. Lesser increases, twofold and 1.3-fold, respectively, were seen in levels of inositol bisphosphate (IP2) and inositol monophosphate (IP). Within 10 min after PDGF addition the levels of all three inositol phosphates had decreased to control values. The levels of IP3 measured 2 min after PDGF addition depended on the PDGF concentration and were maximal at 5-10 ng/ml of PDGF. Similar concentrations of PDGF stimulate maximal cell growth and DNA synthesis in these cells.  相似文献   

12.
The incorporation of phosphatidyl[2-3H]inositol ([3H]PI) from vesicles or microsomal membranes into rat liver nuclei is greatly stimulated by phosphatidylinositol transfer protein (PI-TP). The nuclei are able to phosphorylate [3H]PI, with the production of phosphatidylinositol 4-phosphate (PIP). Recovery of tritiated inositol trisphosphate, inositol phosphate, glycerophosphoinositol and inositol, suggests that in isolated nuclei a large set of enzymes of the PI cycle is present, similar to the enzymes involved in the plasma membrane PI cycle. Incubation with [gamma-32P]ATP shows that isolated nuclei are able to phosphorylate endogenous PI to PIP and phosphatidylinositol 4,5-bisphosphate (PIP2). In the presence of exogenous PI and detergent the synthesis of PIP is increased, indicating that in nuclei the PI pool is suboptimal for the PI-kinase activity. The present study suggests that PI-TP may be involved in providing substrates for PI metabolism at the nuclear level.  相似文献   

13.
Phospholipase C (PLC)-mediated degradation of polyphosphoinositides (phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP] was found to be present in rat heart ventricular soluble and total membrane fractions (100,000g supernatant and pellet). Distribution of polyphosphoinositide-specific phospholipase C activity between the membrane and soluble fraction was approximately 63 and 33% of total activity, respectively, whereas, phosphatidylinositol (PI) degradation could be detected only in the soluble fraction. Optimal PIP2-PLC activity occurred at a pCa2+ of 4.5. A similar peak in PIP-PLC activity could be demonstrated in soluble and membrane preparations; however, the rate of PIP degradation in the soluble fraction continued to increase at the highest calcium level tested (pCa2+ 3). With the exception of Sr2+, other noncalcium polycations did not support homogenate PIP2-PLC activity. In the presence of Ca2+, addition of Mg2+, La3+, or Sr2+ (10(-3) M) inhibited PIP2-PLC while Mn2+ and Gd3+ stimulated activity. In both the total membrane and soluble fractions, maximal polyphosphoinositide degradation occurs at pH 5.5 and 6.8. The detergents deoxycholate, cholate, and saponin exert a biphasic effect on PIP2-PLC activity (stimulating at lower concentrations and inhibiting at higher concentrations). The deoxycholate effect is observed in both the cytosolic and membrane fractions. Neutral and cationic detergents inhibit PIP2-PLC activity in a concentration-dependent manner. Similar to cytosolic PI-PLC activity, PIP2-PLC appears to depend on intact sulfhydryl groups. In the presence of a mixture of all three inositol phospholipids or the three phosphoinositides plus noninositol phospholipids, polyphosphoinositides are preferentially degraded.  相似文献   

14.
Thyrotropin releasing hormone (TRH) caused significant breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2) in GH3 cells, but vasoactive intestinal peptide (VIP) did not. However, VIP enhanced the TRH-induced hydrolysis of PIP2, the conversion of phosphatidylinositol 4-phosphate (PIP) to PIP2 and the accumulation of phosphatidic acid (PA). On the other hand, the tumor promoter, tetradecanoyl phorbol acetate (TPA), suppressed the TRH-induced hydrolysis of PIP2. In the membrane fraction, the addition of cAMP inhibited the PI kinase activity in a dose-dependent manner, but stimulated the PIP kinase activity. TPA did not affect the PI and PIP kinase activities at all. VIP enhanced the first spike phase of the TRH-induced increase in the intracellular Ca2+ level, while TPA inhibited such Ca2+ mobilization. These results suggested that cAMP-increasing agents enhanced inositol phospholipid metabolism and Ca2+ mobilization induced by TRH in GH3 cells but that TPA inhibited them.  相似文献   

15.
The distribution of phosphoinositides and phosphatidic acid (PA) between the outer and inner layers of the human erythrocyte membrane was investigated by using two complementary methodologies: hydrolysis by phospholipase A2 (PLA2) and immunofluorescence detection with monoclonal antibodies against polyphosphoinositides. The contents of phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP) and PA were decreased by 15-20% after 60 min incubation with PLA2, while that of phosphatidylinositol (PI) was increased. Studies with 32P-labelled cells revealed that PLA2 treatment led to indirect effects on the metabolism of these phospholipids. Therefore, the asymmetric distribution of phosphoinositides and PA was inferred from the data obtained in ATP-depleted erythrocytes. In these cells with arrested phosphoinositide metabolism, the asymmetric distribution of the major phospholipids was maintained: PLA2 hydrolyzed approx. 20% of PI, PIP2 and PA (but no PIP) indicating their localization in the outer layer of the membrane. This finding was confirmed by immunofluorescence studies with antibodies specific to each phosphoinositide. External addition of anti-PIP2 but not anti-PIP gave a positive reaction both in control and in ATP-depleted erythrocytes. A pretreatment of cells with PLA2 led to a decrease in the intensity of anti-PIP2 staining. These results demonstrate that significant fractions of PIP2, PI and PA are localized on the outer surface of the erythrocyte membrane.  相似文献   

16.
Addition of the guanine nucleotide analogue guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) to [3H]inositol-labeled NRK cell homogenates resulted in rapid breakdown of cellular polyphosphoinositides. GTP gamma S stimulated phospholipase C, resulting in a more than 4-fold increase in the hydrolysis rates of phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bis(phosphate) (PIP2). No significant effect of GTP gamma S on direct phosphatidylinositol (PI) hydrolysis was detected. There was an increase in water-soluble inositols, with inositol tris(phosphate) (IP3) levels increasing at least 10 times over the decrease seen in PIP2, indicating that PIP kinase activity was also accelerated following GTP gamma S addition. Inositol 1,4,5-tris(phosphate) peaked rapidly after GTP gamma S addition (less than 2 min) while inositol 1,3,4-tris-(phosphate) was produced more slowly and leveled off after approximately 10 min. The differential equations describing conversion between intermediates in the PI turnover pathway were solved and fitted to data obtained from both [3H]inositol and [32P]phosphate fluxes by nonlinear least-squares analysis. GTP gamma S effects on the pseudo-first-order rate constants for the lipase, kinase, and phosphatase steps were determined from the analysis. From these measurements it can be estimated that, in the presence of GTP gamma S and calcium buffered to 130 nM, hydrolysis of PIP2 accounts for at least 10 times as much diacylglycerol as direct PI breakdown despite the 100-fold excess of PI over PIP2. From the kinetic model it is predicted that small changes in the activities of PI and PIP kinases can have large but different effects on the level of IP3 and diacylglycerol following GTP gamma S addition. These results argue that regulation of PI and PIP kinases may be important for determining both cellular IP3 and diacylglycerol levels.  相似文献   

17.
The activity of phosphatidylinositol (PI) kinase and the content and fatty acid composition of inositol phospholipids (IPLs) were analyzed in the livers of rats that had been continuously infused with Escherichia coli endotoxin (ET) or saline for 30 h. Maximal enzymatic activity in total liver membrane fractions was observed in the presence of 1 mM ATP, 20 mM MgCl2, exogenously added 0.3 mM PI and Triton X-100 (0.25%). The activity of PI kinase for endogenous and exogenous PI was 43 and 79% higher respectively, in ET- as compared with saline-infused rats. The Km of the enzyme for ATP was not altered (0.175 mM), while the apparent Vmax was higher for ET- as compared with saline-infused rats (0.48 and 0.38 nmol of phosphatidylinositol 4-phosphate formed/mg protein per min, respectively). The ET-induced higher activity of PI kinase was paralleled by a 68-78% increase in the content of polyphosphoinositides (PPI), while PI content was unchanged. All IPLs from livers of endotoxemic rats had a lower content of arachidonic acid. We demonstrate for the first time that ET can directly and/or indirectly stimulate the net synthesis of PPI in liver cells. This effect could serve to modulate the PPI derived signals by increasing the availability of the substrate phosphatidylinositol 4,5-bisphosphate.  相似文献   

18.
Aggregation of the high affinity receptor for IgE (Fc epsilon RI) on the surface of mast cells results in the rapid hydrolysis of membrane inositol phospholipids by phospholipase C (PLC). Although at least seven isoenzymes of PLC have been characterized in different mammalian cells, the isoenzyme involved in Fc epsilon RI-mediated signal transduction and the mechanism of its activation have not been demonstrated. We now report that PLC-gamma 1 is translocated to the membrane of mast cells after aggregation of Fc epsilon RI. Activation of rat basophilic leukemia cells, a rat mast cell line, with oligomeric IgE resulted in an increase in PLC activity in washed membrane preparations in a cell free assay containing exogenous [3H]phosphatidylinositol (PI). The increase in PLC activity has the same dose-response to oligomeric IgE as receptor mediated hydrolysis of inositol lipids (PI hydrolysis) in intact cells. Analysis by Western blot probed with anti-PLC-gamma 1 antibody revealed that there is a three- to fourfold increase in PLC-gamma 1 in membranes from activated cells. The increase in PLC activity is augmented a further 20% by the addition of orthovanadate to the incubation medium suggesting that a tyrosine phosphatase is involved in the down-regulation of this phenomenon. These findings demonstrate translocation of PLC-gamma 1 to the membrane following activation of a receptor which does not contain intrinsic tyrosine kinase activity. Activation of PLC-gamma 1 by this pathway may account for Fc epsilon RI-mediated PI hydrolysis.  相似文献   

19.
In Saccharomyces cerevisiae, cAMP-dependent phosphorylation plays an essential role at the start of the cell cycle. It has also recently been demonstrated that the breakdown of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate and diacylglycerol is a requisite process for cell proliferation (Uno, I., Fukami, K., Kato, H., Takenawa, T., and Ishikawa, T. (1988) Nature 333, 188-190). To clarify the relationship between the cAMP- and inositol phospholipid-mediated signal transduction systems, alterations in the inositol phospholipid metabolism of cAMP mutants were examined. The incorporation of [32P]Pi into phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) was markedly reduced in ras2, which produces low levels of cAMP, and increased in bcy1, which produces cAMP-independent protein kinase. The incorporation of [32P]Pi into ATP and phosphatidylinositol (PI) was almost the same in wild type, ras1, ras2, and bcy1 yeast strains. The addition of exogenous cAMP to cyr1-2 caused a tremendous increase in [32P]Pi incorporation into PIP and PIP2 without any effect on incorporation into ATP and PI, suggesting that cAMP plays an important role in polyphosphoinositide synthesis. We therefore examined the activities of PI and PIP kinases, the enzymes that catalyze the sequential steps from PI to PIP2 via PIP. The activities of both kinases were found to be very low in the membranes of cry1-2 and ras2 but very high in the membranes of bcy1 and ras1 ras2 bcy1 strain cells. The addition of cAMP to cyr1-2 cells caused the activation of PI and PIP kinases. Furthermore, the treatment of membranes with cAMP or dibutyryl cAMP caused the activation of PI kinase in wild type, ras1, cry1-2, and ras2 strains, but not in bcy1 strain cells. The effect was most prominent in membranes from cyr1-2 and ras2 cells. These results show that cAMP-dependent phosphorylation enhances polyphosphoinositide synthesis through activation of PI and PIP kinase, an effect which may lead to the enhanced production of inositol 1,4,5-trisphosphate and diacylglycerol.  相似文献   

20.
Cyclic AMP-increasing agents such as PGE2 and dibutyryl cAMP inhibited the fMLP-induced inositol phospholipids metabolism mainly through the suppression of the conversion of phosphatidylinositol(PI) to phosphatidylinositol 4,5-bisphosphate(PIP2). A part of this inhibition was found to be caused by the inhibitory effect of cAMP on PI kinase using isolated plasma membranes. On the other hand, 12-O-tetradecanoyl phorbol acetate(TPA) mainly inhibited the conversion of phosphatidylinositol 4-phosphate(PIP) to PIP2 without a significant effect on the fMLP-induced breakdown of PIP2, though direct effect of TPA on PI and PIP kinases was not demonstrated in isolated plasma membranes. Concerning Ca2+ mobilization, both cAMP-increasing agents and TPA inhibited the fMLP-induced second phase of Ca2+ elevation, while they did not affect the first phase of Ca2+ rapid increase. However, Ca2+ ionophore ionomycin-induced Ca2+ elevation was only inhibitable by TPA but not PGE2. These results suggest that cAMP inhibits the fMLP-induced Ca2+ influx, while TPA stimulates Ca2+ removal from cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号