首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat treatment of highly purified staphylococcal enterotoxin B causes a more rapid loss of immunological activity at 70 to 80 C than at 90 to 100 C. Toxicological results based on intravenous injection of dogs paralleled the results obtained by immunological means (single gel diffusion). The loss of immunological activity did not follow first-order kinetics. Results are given on the effects on heat inactivation of changing pH, ionic strength, and initial concentration of enterotoxin. Disc-gel electrophoresis of purified enterotoxin B showed a major and minor band. The minor band was a size isomer of the major band.  相似文献   

2.
The effect of pH on the thermal inactivation of staphylococcal enterotoxin A was investigated. Analysis of heated toxin by immunodiffusion in gel indicated that enterotoxin A in beef bouillon was inactivated faster at pH 5.3 than at pH 6.2. The z values (slopes) for the heat inactivation curves at pH 6.2 and 5.3 were 49.5 and 55 F (about 27 and 30 C), respectively. Enterotoxin produced and heated in dialyzed Casamino Acids medium and assayed by monkey feeding was more easily inactivated by heat at pH 5.3 than at pH 7.8. Thermal inactivation curves for enterotoxin A in beef bouillon (5 mug/ml, pH 5.3) were determined by two methods, monkey feeding and serological assay. The z values for the curves obtained by these two methods were both 55 F, although loss of biological or toxic activity of the enterotoxin occurred before loss of serological activity.  相似文献   

3.
Enterotoxin B produced by Staphylococus aureus 243 in brain heart infusion broth was concentrated by dialysis against 40% polyethylene glycol (20 M), partially purified on a Sephadex G-100 column and heated at 110 degrees C in thermal death time cans. Various heating menstrua included 0.04 M Veronal buffer (pH 7.4), beef broth, and fractions of beef broth obtained by ultrafiltration or precipitation with ammonium sulfate. The toxin was assayed serologically using the microslide gel double-diffusion method. The time requiring for 90% inactivation at 110 degrees C (D110 value) obtained in buffer and in beef broth was 18 and 60 min, respectively. When the concentration of beef broth was increased fivefold, the D110 increased to 78 min. The apparent protective effect or protein was further investigated using beef broth protein obtained by precipitation with (NH4)2SO4. The D110 values were 51 and 70 min when the protein concentration in the heating menstruum was 3.8 and 7.7 mg/ml, respectively. However, when the beef broth protein was dialyzed against buffer before use as a heating menstrum, the D110 was only 39 or 41 min at comparable protein concentrations. Results indicated a dialyzable factor, whose protective effect was partially destroyed by trypsin and chymotrypsin but did not by disodium ethylenediaminetetraacetate, was involved in the protection of enterotoxin B during heating.  相似文献   

4.
Enterotoxin B produced by Staphylococus aureus 243 in brain heart infusion broth was concentrated by dialysis against 40% polyethylene glycol (20 M), partially purified on a Sephadex G-100 column and heated at 110 degrees C in thermal death time cans. Various heating menstrua included 0.04 M Veronal buffer (pH 7.4), beef broth, and fractions of beef broth obtained by ultrafiltration or precipitation with ammonium sulfate. The toxin was assayed serologically using the microslide gel double-diffusion method. The time requiring for 90% inactivation at 110 degrees C (D110 value) obtained in buffer and in beef broth was 18 and 60 min, respectively. When the concentration of beef broth was increased fivefold, the D110 increased to 78 min. The apparent protective effect or protein was further investigated using beef broth protein obtained by precipitation with (NH4)2SO4. The D110 values were 51 and 70 min when the protein concentration in the heating menstruum was 3.8 and 7.7 mg/ml, respectively. However, when the beef broth protein was dialyzed against buffer before use as a heating menstrum, the D110 was only 39 or 41 min at comparable protein concentrations. Results indicated a dialyzable factor, whose protective effect was partially destroyed by trypsin and chymotrypsin but did not by disodium ethylenediaminetetraacetate, was involved in the protection of enterotoxin B during heating.  相似文献   

5.
Production of staphylococcal enterotoxin in mixed cultures   总被引:1,自引:0,他引:1  
Two Staphylococcus aureus strains were grown in brain-heart infusion (BHI) broth and a meat medium with Bacillus cereus, Streptococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa. Both S. aureus strains grew well and produced enterotoxin in the presence of S. faecalis in BHI broth; however, enterotoxin production was observable in the meat medium only when the S. aureus inoculum was greater than the S. faecalis inoculum. S. aureus FRI-100 grown with B. cereus produced enterotoxin in both media only when the S. aureus inoculum was much higher than the B. cereus inoculum (10 versus 10(4) CFU), whereas S. aureus FRI-196E produced enterotoxin in both media at all inoculum combinations except in the meat medium, when the inocula of the two organisms were the same. S. aureus grown with E. coli in BHI broth produced enterotoxin at all inoculum combinations except when the E. coli inoculum was greater than the S. aureus inoculum; however, in the meat medium, enterotoxin was produced only when the S. aureus inoculum was much greater than the E. coli inoculum (10 versus 10(4) CFU), S. aureus FRI-100 grown with P. aeruginosa in either medium produced enterotoxin only when the S. aureus inoculum was much greater than the P. aeruginosa inoculum (10 versus 10(3) or 10(4) CFU). It can be concluded from these results that enterotoxin production is unlikely in mixed cultures unless the staphylococci outnumber the other contaminating organisms.  相似文献   

6.
Production of staphylococcal enterotoxin in mixed cultures.   总被引:2,自引:0,他引:2       下载免费PDF全文
Two Staphylococcus aureus strains were grown in brain-heart infusion (BHI) broth and a meat medium with Bacillus cereus, Streptococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa. Both S. aureus strains grew well and produced enterotoxin in the presence of S. faecalis in BHI broth; however, enterotoxin production was observable in the meat medium only when the S. aureus inoculum was greater than the S. faecalis inoculum. S. aureus FRI-100 grown with B. cereus produced enterotoxin in both media only when the S. aureus inoculum was much higher than the B. cereus inoculum (10 versus 10(4) CFU), whereas S. aureus FRI-196E produced enterotoxin in both media at all inoculum combinations except in the meat medium, when the inocula of the two organisms were the same. S. aureus grown with E. coli in BHI broth produced enterotoxin at all inoculum combinations except when the E. coli inoculum was greater than the S. aureus inoculum; however, in the meat medium, enterotoxin was produced only when the S. aureus inoculum was much greater than the E. coli inoculum (10 versus 10(4) CFU), S. aureus FRI-100 grown with P. aeruginosa in either medium produced enterotoxin only when the S. aureus inoculum was much greater than the P. aeruginosa inoculum (10 versus 10(3) or 10(4) CFU). It can be concluded from these results that enterotoxin production is unlikely in mixed cultures unless the staphylococci outnumber the other contaminating organisms.  相似文献   

7.
The times and temperatures required to inactivate staphylococcal enterotoxin B were studied by use of the double-gel-diffusion technique to assay enterotoxin. Enterotoxin B (99 +% pure) was suspended in 0.04 M Veronal buffer, dispensed into borosilicate vials, and the vials were sealed and heated in an oil bath. An amount of 30 mug/ml of this toxin was reduced to less than 0.7 mug/ml in 103.0, 87.1, 70.5, 57.2, 39.1, 27.6, 16.4, and 12.0 min, respectively, at temperatures of 96, 99, 101.7, 104.4, 110, 115.6, 121, and 126.7 C. The end point for enterotoxin inactivation by gel diffusion was identical to that by intravenous injection of cats. Limited studies with crude enterotoxin B showed that the crude preparation was slightly more thermostable. The respective D values of crude and purified enterotoxin B were 64.5 and 52.3, 40.5 and 34.4, 29.7 and 23.5, 18.8 and 16.6, and 11.4 and 9.9 min at temperatures of 99, 104.4, 110, 115.6, and 121 C. The z value for purified enterotoxin B was 32.4 C. The experimental activation energy was 20,700 cal/g mole, standard enthalpy of activation at 120 C was 19,900 cal/g mole, standard entropy of activation at 120 C was -21.4 cal/g mole K, and the standard free energy of activation at 120 C was 28,200 cal/g mole.  相似文献   

8.
Forty-four microorganisms were studied for their influence on staphylococcal growth and enterotoxin production. Inhibition was found to be more common than stimulation. Two types of inhibition were observed: inhibition of staphylococcal growth, and inhibition of enterotoxin formation with no apparent effect on growth. By use of a plate test, 12 of the 44 food microorganisms were found to inhibit staphylococcal growth at 35 C. Of the 12, 3 also inhibited growth at 25 C. No significant differences in inhibition were observed with the 15 strains of enterotoxigenic staphylococci. In meat slurries, inhibition of staphylococcal growth was found to be greater at 25 C than at 35 C. Results on inhibition obtained from the plate test could not be correlated with the effect of the organisms in slurries. Environmental conditions were found to affect markedly the influence of food microorganisms on staphylococci. Of the 44 food microorganisms studied, only Bacillus cereus was observed to stimulate significantly staphylococcal growth and enterotoxin formation. Stimulation was more pronounced with Staphylococcus aureus 196E than with other strains of enterotoxigenic staphylococci. Bacillus megaterium and Brevibacterium linens were inhibited by staphylococci. These organisms were completely inhibited when inoculated in mixed cultures with staphylococci. In pure cultures, good staphylococcal growth was found to be accompanied by enterotoxin production; however, in the presence of food microorganisms, good staphylococcal growth occurred without the formation of detectable levels of enterotoxin A.  相似文献   

9.
The inactivation of enterotoxin B by γ irradiation was studied by use of single-and double-gel-diffusion assay techniques. Enterotoxin B (99+% purity) was suspended either in 0.04 m Veronal buffer (pH 7.2) or in milk, dispensed and heat-sealed in borosilicate glass vials, and irradiated essentially at 21 to 26 C with a cobalt-60 source. Parallel titrations of irradiated enterotoxin B in Veronal buffer were made by use of gel-diffusion and cat assay procedures to establish the relative sensitivity of these two assay procedures to irradiated enterotoxin. Results were identical. A dose of 5 Mrad was required to reduce an enterotoxin B concentration of 31 μg/ml in Veronal buffer to less than 0.7 μg/ml. When milk was used as a vehicle, a dose of 20 Mrad was needed to inactivate a 30 μg/ml concentration of enterotoxin B to less than 0.5 μg/ml. With Veronal buffer and milk as vehicles, the D values (dose required to inactivate 90%) for enterotoxin B inactivation were 2.7 and 9.7 Mrad, respectively.  相似文献   

10.
Selective denaturation of meat proteins - essential to reach desired textures - requires cooking temperatures corresponding to their different structure and interactions. Sous-vide cooking allows precise control over the denaturation state of meat proteins (and thus the cooking state of meat products) due to the possibility to cook at very well defined temperatures. Additionally, kinetic effects also play an important role. Differential scanning calorimetry (DSC) has been used here to follow the denaturation state of proteins in pork filet (Musculus psoas major), which had been heat treated at different time (10–2880 min) and temperature (45–74 °C) combinations. Additionally, the water loss (cooking loss) occurring during heat treatments has been determined. Four endothermic peaks have been observed in the DSC curves. Their individual time and temperature dependent enthalpies show that proteins become denatured at temperatures well below the peak temperatures if kept there for long times. This observation is underlined by statistical arguments. Cooking loss increases with time and temperature, while the main water loss occurs during the first 240 min and at temperatures above 60 °C. Due to the different kinetics found for protein denaturation and cooking loss, it is not possible to directly correlate the two quantities.  相似文献   

11.
Efficient release of thermostable β-galactosidase from a recombinant Escherichia coli by the addition of glycine to the culture broth and subsequent thermal treatment was investigated. The enzyme release rate was strongly dependent on glycine concentration. The enzyme release rate was almost proportional to glycine concentrations up to 2% in phosphate buffer; however, inactivation of the enzyme was not observed following incubation for up to 3 h at 70°C even in the presence of 10% glycine. In a preliminary experiment, severe thermal inactivation was observed in the presence of polyethylene glycol (PEG), but glycine was able to suppress the inactivation. Thermal treatment of the cell suspension was effective for the improvement of the enzyme release rate. In the absence of glycine, the enzyme release rate was low at 37 and 45°C, even though the initial release rate was high at 0.5 h and 60°C. The combination of thermal treatment and addition of glycine to the cell suspension significantly improved the initial enzyme release rate and the amount of enzyme released to the extracellular fraction at 37 and 45°C was as high as that at 60°C during a 2-h incubation.  相似文献   

12.
The chaperonin protein cpn60 from Escherichia coli protects the monomeric, mitochondrial enzyme rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) against heat inactivation. The thermal inactivation of rhodanese was studied for four different states of the enzyme: native, refolded, bound to cpn60 in the form of a binary complex formed from unfolded rhodanese, and a thermally perturbed state. Thermal stabilization is observed in a range of temperatures from 25 to 48 degrees C. Rhodanese that had been inactivated by incubation at 48 degrees C, in the presence of cpn60 can be reactivated at 25 degrees C, upon addition of cpn10, K+, and MgATP. A recovery of about 80% was achieved after 1 h of the addition of those components. Thus, the enzyme is protected against heat inactivation and kept in a reactivable form if inactivation is attempted using the binary complex formed between rhodanese folding intermediate(s) and cpn60. The chaperonin-assisted refolding of urea-denatured rhodanese is dependent on the temperature of the refolding reaction. However, optimal chaperonin assisted refolding of rhodanese observed at 25 degrees C, which is achieved upon addition of cpn10 and ATP to the cpn60-rhodanese complex, is independent of the temperature of preincubation of the complex, that was formed previously at low temperature. The results are in agreement with a model in which the chaperonin cpn60 interacts with partly folded intermediates by forming a binary complex which is stable to elevated temperatures. In addition, it appears that native rhodanese can be thermally perturbed to produce a state different from that achieved by denaturation that can interact with cpn60.  相似文献   

13.
The aim of the study was to investigate the decontamination of pig slurry containing exotic viruses of pigs, foot AND mouth disease virus (FMDV), Aujeszky's disease virus (ADV) AND classical swine fever virus (CSFV). Laboratory-scale decontamination experiments showed that FMDV, ADV and CSFV were heat inactivated in slurry within 3 min at 67 degrees C, 3 min at 62 degrees C and 3 min at 60 degrees C and in Glasgow Eagles medium within 5 min at 67 degrees C, 4 min at 65 degrees C and 2 min at 65 degrees C, respectively. At pilot scale, FMDV was heat inactivated at 66 degrees C in water and 61 degrees C in slurry, ADV at 61 degrees C in water or slurry and CSFV at 62 degrees C in water and 50 degrees C in slurry. Treatment of pig slurry for the inactivation of exotic viruses may be achieved through the use of a thermal pilot plant operating in continuous mode. The work demonstrates the suitability of thermal treatment in ensuring the safety of pig slurry following a disease outbreak.  相似文献   

14.
Effects of thermoradiation on bacteria.   总被引:2,自引:2,他引:0       下载免费PDF全文
A 60Co source was used to determine the effects of thermoradiation on Achromobacter aquamarinus, Staphylococcus aureus, and vegetative and spore cells of Bacillus subtilis var. globigii. The rate of inactivation of these cultures, except vegetative-cell populations of B. subtilis, was exponential and in direct proportion to temperature. The D10 (dose that inactivates 90% of the microbial population) value for A. aquamarinus was 8.0 Krad at 25 degrees C and 4.9 Krad at 35 degrees C. For S. aureus, D10 was 9.8 and 5.3 Krad at 35 and 45 degrees C, respectively. Vegetative cells of B. subtilis demonstrated a rapid initial inactivation followed by a steady but decreased exponential rate. The D10 at 25 degrees C was 10.3 Krad, but at 35 and 45 degrees C this value was 6.2 and 3.8 Krad, respectively. Between 0 and 95 Krad, survival curves for B. subtilis spores at 75 degrees C showed slight inactivation, increasing in rat at and above 85 degrees C. The D10 values for spores at 85 and 90 degrees C were 129 and 92 Krad, respectively. Significant synergism between heat and irradiation was noted at 35 degrees C for A. aquamarinus and 45 degrees C for S. aureus. The presence of 0.1 mM cysteine in suspending media afforded protection to both cultures at these critical temperatures. On the other hand, cysteine sensitized B. subtilis spores at radiation doses greater than 100 Krad. The combined effect of heat and irradiation was more destructive to bacteria than either method alone.  相似文献   

15.
Thermal inactivation of glucose oxidase (GOD; beta-d-glucose: oxygen oxidoreductase), from Aspergillus niger, followed first order kinetics both in the absence and presence of additives. Additives such as lysozyme, NaCl, and K2SO4 increased the half-life of the enzyme by 3.5-, 33.4-, and 23.7-fold respectively, from its initial value at 60 degrees C. The activation energy increased from 60.3 kcal mol-1 to 72.9, 76.1, and 88.3 kcal mol-1, whereas the entropy of activation increased from 104 to 141, 147, and 184 cal x mol-1 x deg-1 in the presence of 7.1 x 10-5 m lysozyme, 1 m NaCl, and 0.2 m K2SO4, respectively. The thermal unfolding of GOD in the temperature range of 25-90 degrees C was studied using circular dichroism measurements at 222, 274, and 375 nm. Size exclusion chromatography was employed to follow the state of association of enzyme and dissociation of FAD from GOD. The midpoint for thermal inactivation of residual activity and the dissociation of FAD was 59 degrees C, whereas the corresponding midpoint for loss of secondary and tertiary structure was 62 degrees C. Dissociation of FAD from the holoenzyme was responsible for the thermal inactivation of GOD. The irreversible nature of inactivation was caused by a change in the state of association of apoenzyme. The dissociation of FAD resulted in the loss of secondary and tertiary structure, leading to the unfolding and nonspecific aggregation of the enzyme molecule because of hydrophobic interactions of side chains. This confirmed the critical role of FAD in structure and activity. Cysteine oxidation did not contribute to the nonspecific aggregation. The stabilization of enzyme by NaCl and lysozyme was primarily the result of charge neutralization. K2SO4 enhanced the thermal stability by primarily strengthening the hydrophobic interactions and made the holoenzyme a more compact dimeric structure.  相似文献   

16.
Thermal Inactivation of Staphylococcal Enterotoxins B and C   总被引:3,自引:2,他引:1       下载免费PDF全文
Thermal inactivation profiles of staphylococcal enterotoxins B (SEB) and C (SEC) at 80, 100, and 121 C showed that SEC is more resistant than SEB to heat. After 24 h of incubation at 25 C, some reactivation (recovery of serological reactivity) occurred in toxins that had been inactivated by heat. If the toxin was stirred during heating, reactivation did not occur. An examination of the reactivation kinetics of heat-treated SEC showed that reactivation was temperature dependent. At 25 C, the incubation temperature of heat-treated crude SEC (80 C for 10 min), 100% reactivation occurred after 24 h, whereas at 4 C only slight reactivation was observed. We and others observed that heat-treated toxins initially lost more serological activity when heated at a low temperature (80 C) than at a higher temperature (100 C); in the present study we demonstrate that this is a reversible phenomenon.  相似文献   

17.
The thermal and the combined high pressure–thermal inactivation kinetics of almond β-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21) were investigated at pressures from 0.1 to 600 MPa and temperatures ranging from 30 to 80 °C. Thermal treatments at temperatures higher than 50 °C resulted in significant inactivation with complete inactivation after 2 min of treatment at 80 °C. Both the thermal and high pressure inactivation kinetics were described well by first-order model. Application of pressure increased the inactivation kinetics of the enzyme except at moderate temperatures (50 to 70 °C) and pressures between 0.1 and 100 MPa where slight pressure stabilisation of the enzyme against thermal denaturation was observed. The activation energy for the inactivation of the enzyme at atmospheric pressure was estimated to be 216.2?±?8.6 kJ/mol decreasing to 55.2?±?3.9 kJ/mol at 600 MPa. The activation volumes were negative at all temperature conditions excluding the temperature–pressure range where slight pressure stabilisation was observed. The values of the activation volumes were estimated to be ?29.6?±?0.6, ?29.8?±?1.7, ?20.6?±?3.2, ?41.2?±?4.8, ?36.5?±?1.8, ?39.6?±?4.3, ?31.0?±?4.5 and ?33.8?±?3.9 cm3/mol at 30, 35, 40, 45, 50, 60, 65 and 70 °C, respectively, with no clear trend with temperature. The pressure–temperature dependence of the inactivation rate constants was well described by an empirical third-order polynomial model.  相似文献   

18.
The effect of temperature on the activity and structural stability of an acid phosphatase (EC 3.1.3.2.) purified from castor bean (Ricinus communis L.) seeds have been examined. The enzyme showed high activity at 45 degrees C using p-nitrophenylphosphate (p-NPP) as substrate. The activation energy for the catalyzed reaction was 55.2 kJ mol(-1) and the enzyme maintained 50% of its activity even after 30 min at 55 degrees C. Thermal inactivation studies showed an influence of pH in the loss of enzymatic activity at 60 degrees C. A noticeable protective effect from thermal inactivation was observed when the enzyme was preincubated, at 60 degrees C, with the reaction products inorganic phosphate-P (10 mM) and p-nitrophenol-p-NP(10 mM). Denaturation studies showed a relatively high transition temperature (Tm) value of 75 degrees C and an influence of the combination of Pi (10 mM) and p-NP (10 mM) was observed on the conformational behaviour of the macromolecule.  相似文献   

19.
Several previously untested proteins promote the reversible inactivation of rabbit skeletal muscle phosphofructokinase. Grouped in decreasing order of effectiveness, they include the following: skeletal muscle troponin C greater than troponin, the two smooth muscle myosin light chains, alpha-actinin, and S-100 much greater than parvalbumin and soybean trypsin inhibitor. The efficiency of troponin C in this process may even exceed that previously reported for calmodulin. Sequences near calcium binding site III are apparently involved in the troponin C-phosphofructokinase interaction. Troponin C and calmodulin exert calcium-dependent effects on the physical and chemical properties of muscle phosphofructokinase. When calcium is present, comigration with either protein allows the enzyme to enter the stacking gel during urea-polyacrylamide gel electrophoresis. Both enhance the phosphorylation of phosphofructokinase catalyzed by the cAMP-dependent protein kinase, with phosphate incorporations approaching 2 mol of P/mol of protomer. Reaction occurs at Ser774 and at Ser376--a novel site whose phosphorylation is highly sensitive to troponin C and less so to calmodulin. Maximum phosphorylation has slight effect on the catalytic activity of the enzyme under standard assay conditions. The troponin C induced or calmodulin-induced phosphorylation of phosphofructokinase requires calcium and is strongly inhibited by either fructose 2,6-bisphosphate or fructose 1,6-bisphosphate. Inactivation occurs in the presence or absence of calcium, with generally higher concentrations of effectors required for protection in the latter case. Liver and yeast phosphofructokinases shows little activity loss in the presence of either calmodulin or troponin C. We have developed and tested a general mathematical model for the protein-induced inactivation of phosphofructokinase which may find application to other systems.  相似文献   

20.
Serological tests were used to determine the slope of the thermal inactivation curve of crude enterotoxin A in Veronal buffer (pH 7.2), and the resulting z value was 27.8 C. (50 F). Serological assays also showed that the heat inactivation at each time-temperature depended on the original concentration of enterotoxin A. The usefulness of the Oudin tube serological test for determining end points of inactivation of naturally produced enterotoxin A (not concentrated) is discussed. We concluded that this test cannot be used to determine end points of heat inactivation for enterotoxin A in the minute quantities naturally produced in foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号