首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A detailed kinetic analysis of the catalytic trimer of aspartate transcarbamoylase containing the active site substitution H134A was performed to investigate the role of His 134 in the catalytic mechanism. Replacement of histidine by alanine resulted in decreases in the affinities for the two substrates, carbamoyl phosphate and aspartate, and the inhibitor succinate, by factors of 50, 10, and 6, respectively, and yielded a maximum velocity that was 5% that of the wild-type enzyme. However, the pK values determined from the pH dependence of the kinetic parameters, log V and log (V/K) for aspartate, the pK(i) for succinate, and the pK(ia) for carbamoyl phosphate, were similar for both the mutant and the wild-type enzymes, indicating that the protonated form of His 134 does not participate in binding and catalysis between pH 6.2 and 9.2. 13C and 15N isotope effects were studied to determine which steps in the catalytic mechanism were altered by the amino acid substitutions. The 13(V/K) for carbamoyl phosphate exhibited by the catalytic trimer containing alanine at position 134 revealed an isotope effect of 4.1%, probably equal to the intrinsic value and, together with quantitative analysis of the 15N isotope effects, showed that formation of the tetrahedral intermediate is rate-determining for the mutant enzyme. Thus, His 134 plays a role in the chemistry of the reaction in addition to substrate binding. The initial velocity pattern for the reaction catalyzed by the H134A mutant intersected to the left of the vertical axis, negating an equilibrium ordered kinetic mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The first two steps of the de novo pyrimidine biosynthetic pathway in Saccharomyces cerevisiae are catalyzed by a 240-kDa bifunctional protein encoded by the ura2 locus. Although the constituent enzymes, carbamoyl phosphate synthetase (CPSase) and aspartate transcarbamoylase (ATCase) function independently, there are interdomain interactions uniquely associated with the multifunctional protein. Both CPSase and ATCase are feedback inhibited by UTP. Moreover, the intermediate carbamoyl phosphate is channeled from the CPSase domain where it is synthesized to the ATCase domain where it is used in the synthesis of carbamoyl aspartate. To better understand these processes, a recombinant plasmid was constructed that encoded a protein lacking the amidotransferase domain and the amino half of the CPSase domain, a 100-kDa chain segment. The truncated complex consisted of the carboxyl half of the CPSase domain fused to the ATCase domain via the pDHO domain, an inactive dihydroorotase homologue that bridges the two functional domains in the native molecule. Not only was the "half CPSase" catalytically active, but it was regulated by UTP to the same extent as the parent molecule. In contrast, the ATCase domain was no longer sensitive to the nucleotide, suggesting that the two catalytic activities are controlled by distinct mechanisms. Most remarkably, isotope dilution and transient time measurements showed that the truncated complex channels carbamoyl phosphate. The overall CPSase-ATCase reaction is much less sensitive than the parent molecule to the ATCase bisubstrate analogue, N-phosphonacetyl-L-aspartate (PALA), providing evidence that the endogenously produced carbamoyl phosphate is sequestered and channeled to the ATCase active site.  相似文献   

3.
Aquifex aeolicus, an organism that flourishes at 95 degrees C, is one of the most thermophilic eubacteria thus far described. The A. aeolicus pyrB gene encoding aspartate transcarbamoylase (ATCase) was cloned, overexpressed in Escherichia coli, and purified by affinity chromatography to a homogeneous form that could be crystallized. Chemical cross-linking and size exclusion chromatography showed that the protein was a homotrimer of 34-kDa catalytic chains. The activity of A. aeolicus ATCase increased dramatically with increasing temperature due to an increase in kcat with little change in the Km for the substrates, carbamoyl phosphate and aspartate. The Km for both substrates was 30-40-fold lower than the corresponding values for the homologous E. coli ATCase catalytic subunit. Although rapidly degraded at high temperature, the carbamoyl phosphate generated in situ by A. aeolicus carbamoyl phosphate synthetase (CPSase) was channeled to ATCase. The transient time for carbamoyl aspartate formation was 26 s, compared with the much longer transient times observed when A. aeolicus CPSase was coupled to E. coli ATCase. Several other approaches provided strong evidence for channeling and transient complex formation between A. aeolicus ATCase and CPSase. The high affinity for substrates combined with channeling ensures the efficient transfer of carbamoyl phosphate from the active site of CPSase to that of ATCase, thus preserving it from degradation and preventing the formation of toxic cyanate.  相似文献   

4.
The regulatory enzyme aspartate transcarbamoylase (ATCase), comprising 2 catalytic (C) trimers and 3 regulatory (R) dimers, owes its stability to the manifold interchain interactions among the 12 polypeptide chains. With the availability of a recombinant 70-amino acid zinc-containing polypeptide fragment of the regulatory chain of ATCase, it has become possible to analyze directly the interaction between catalytic and regulatory chains in a complex of simpler structure independent of other interactions such as those between the 2 C trimers, which also contribute to the stability of the holoenzyme. Also, the effect of the interaction between the polypeptide, termed the zinc domain, and the C trimer on the thermal stability and other properties can be measured directly. Differential scanning microcalorimetry experiments demonstrated that the binding of the zinc domain to the C trimer leads to a complex of markedly increased thermal stability. This was shown with a series of mutant forms of the C trimer, which themselves varied greatly in their temperature of denaturation due to single amino acid replacements. With some C trimers, for which tm varied over a range of 30 degrees C due to diverse amino acid substitutions, the elevation of tm resulting from the interaction with the zinc domain was as large as 18 degrees C. The values of tm for a variety of complexes of mutant C trimers and the wild-type zinc domain were similar to those observed when the holoenzymes containing the mutant C trimers were subjected to heat denaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Interaction of a 70-amino acid zinc-binding polypeptide from the regulatory chain of aspartate transcarbamoylase (ATCase) with the catalytic (C) subunit leads to dramatic changes in enzyme activity and affinity for ligand binding at the active sites. The complex between the polypeptide (zinc domain) and wild-type C trimer exhibits hyperbolic kinetics in contrast to the sigmoidal kinetics observed with the intact holoenzyme. Moreover, the Scatchard plot for binding N-(phosphonacetyl)-L-aspartate (PALA) to the complex is linear with a Kd corresponding to that evaluated for the holoenzyme converted to the relaxed (R) state. Additional evidence that the binding of the zinc domain to the C trimer converts it to the R state was attained with a mutant form of ATCase in which Lys 164 in the catalytic chain is replaced by Glu. As shown previously (Newell, J.O. & Schachman, H.K., 1990, Biophys. Chem. 37, 183-196), this mutant holoenzyme, which exists in the R conformation even in the absence of active site ligands, has a 50-fold greater affinity for PALA than the free C subunit. Adding the zinc domain to the C trimer containing the Lys 164-->Glu substitution leads to a 50-fold enhancement in the affinity for the bisubstrate analog yielding a value of Kd equal to that for the holoenzyme. A different mutant ATCase containing the Gln 231 to Ile replacement was shown (Peterson, C.B., Burman, D.L., & Schachman, H.K., 1992, Biochemistry 31, 8508-8515) to be much less active as a holoenzyme than as the free C trimer. For this mutant holoenzyme, the addition of substrates does not cause its conversion to the R state. However, the addition of the zinc domain to the Gln 231-->Ile C trimer leads to a marked increase in enzyme activity, and PALA binding data indicate that the complex resembles the R state of the holoenzyme. This interaction leading to a more active conformation serves as a model of intergenic complementation in which peptide binding to a protein causes a conformational correction at a site remote from the interacting surfaces resulting in activation of the protein. This linkage was also demonstrated by difference spectroscopy using a chromophore covalently bound at the active site, which served as a spectral probe for a local conformational change. The binding of ligands at the active sites was shown also to lead to a strengthening of the interaction between the zinc domain and the C trimer.  相似文献   

6.
7.
13C and 15N isotope effects have been measured for the aspartate transcarbamylase (ATCase) reaction in an effort to elucidate the chemical mechanism of this highly regulated enzyme. The observed 15(V/K(asp))H2O value for the ATCase holoenzyme at saturing carbamyl phosphate and 12 mM L-aspartate is 1.0045 at pH 7.5, and this value remains unchanged in the presence of 5 mM ATP (activator) or 5 mM CTP (inhibitor). The fact that the isotope effect is not changed by the allosteric modifiers supports the conclusion that the kinetic properties of the active form of ATCase are not influenced by ATP or CTP. The observed 15(V/K(asp)) values for the catalytic subunit of ATCase are also the same as those determined for the holoenzyme, suggesting that the chemical mechanisms of both enzyme species are the same. Quantitative analysis of 13C and 15N isotope effects in both H2O and D2O has led to the proposal of a chemical model for the ATCase reaction which involves a precatalytic conformational change to form an activated complex that facilitates deprotonation of L-aspartate by an enzyme functional group. Nucleophilic attack on the carbonyl carbon of carbamyl phosphate by the alpha-amino group of L-aspartate results in the formation of a tetrahedral intermediate. An intramolecular proton transfer leads to formation of products N-carbamyl-L-aspartate and inorganic phosphate.  相似文献   

8.
13C kinetic isotope effects have been measured in carbamyl phosphate for the reaction catalyzed by aspartate transcarbamylase. For the holoenzyme, the value was 1.0217 at zero aspartate, but unity at infinite aspartate, with 4.8 mM aspartate eliminating half of the isotope effect. This pattern proves an ordered kinetic mechanism, with carbamyl phosphate adding before aspartate. The same parameters were observed in the presence of ATP or CTP, showing that there is only one form of active enzyme present, regardless of the presence or absence of allosteric modifiers. These data support the Monod model of allosteric behavior in which the equilibrium between fully active and inactive enzyme is perturbed by selective binding interactions of substrates and modifiers, and there are no enzyme forms having partial activity. Isolated catalytic subunits of the enzyme showed similar 13C isotope effects (1.0240 at zero aspartate, 1.0039 at infinite aspartate, 3.8 mM aspartate causing half of the change from one value to the other), but the finite isotope effect at infinite aspartate shows that the kinetic mechanism is now partly random. With the very slow and poorly bound aspartate analog cysteine sulfinate, the 13C isotope effects were 1.039 for both holoenzyme and catalytic subunits and were not decreased significantly by high levels of cysteine sulfinate. The value of 1.039 is probably close to the intrinsic isotope effect on the chemical reaction, while the kinetic mechanism with this substrate is now fully random because the chemistry is so much slower than release of either reactant from the enzyme.  相似文献   

9.
Here, we report high-resolution X-ray structures of Bacillus subtilis aspartate transcarbamoylase (ATCase), an enzyme that catalyzes one of the first reactions in pyrimidine nucleotide biosynthesis. Structures of the enzyme have been determined in the absence of ligands, in the presence of the substrate carbamoyl phosphate, and in the presence of the bisubstrate/transition state analog N-phosphonacetyl-l-aspartate. Combining the structural data with in silico docking and electrostatic calculations, we have been able to visualize each step in the catalytic cycle of ATCase, from the ordered binding of the substrates, to the formation and decomposition of the tetrahedral intermediate, to the ordered release of the products from the active site. Analysis of the conformational changes associated with these steps provides a rationale for the lack of cooperativity in trimeric ATCases that do not possess regulatory subunits.  相似文献   

10.
The kinetics of the coupled reactions between carbamoyl-phosphate synthetase (CPSase) and both aspartate transcarbamoylase (ATCase) and ornithine transcarbamoylase (OTCase) from the deep sea hyperthermophilic archaeon Pyrococcus abyssi demonstrate the existence of carbamoyl phosphate channeling in both the pyrimidine and arginine biosynthetic pathways. Isotopic dilution experiments and coupled reaction kinetics analyzed within the context of the formalism proposed by Ovádi et al. (Ovádi, J., Tompa, P., Vertessy, B., Orosz, F., Keleti, T., and Welch, G. R. (1989) Biochem. J. 257, 187-190) are consistent with a partial channeling of the intermediate at 37 degrees C, but channeling efficiency increases dramatically at elevated temperatures. There is no preferential partitioning of carbamoyl phosphate between the arginine and pyrimidine biosynthetic pathways. Gel filtration chromatography at high and low temperature and in the presence and absence of substrates did not reveal stable complexes between P. abyssi CPSase and either ATCase or OTCase. Thus, channeling must occur during the dynamic association of coupled enzymes pairs. The interaction of CPSase-ATCase was further demonstrated by the unexpectedly weak inhibition of the coupled reaction by the bisubstrate analog, N-(phosphonacetyl)-L-aspartate (PALA). The anomalous effect of PALA suggests that, in the coupled reaction, the effective concentration of carbamoyl phosphate in the vicinity of the ATCase active site is 96-fold higher than the concentration in the bulk phase. Channeling probably plays an essential role in protecting this very unstable intermediate of metabolic pathways performing at extreme temperatures.  相似文献   

11.
Treatment of the catalytic (C) trimer of Escherichia coli aspartate transcarbamoylase (ATCase) with alpha-chymotrypsin by a procedure similar to that used by Chan and Enns (1978, Can. J. Biochem. 56, 654-658) has been shown to yield an intact, active, proteolytically cleaved trimer containing polypeptide fragments of 26,000 and 8,000 MW. Vmax of the proteolytically cleaved trimer (CPC) is 75% that of the wild-type C trimer, whereas Km for aspartate and Kd for the bisubstrate analog, N-(phosphonacetyl)-L-aspartate, are increased about 7- and 15-fold, respectively. CPC trimer is very stable to heat denaturation as shown by differential scanning microcalorimetry. Amino-terminal sequence analyses as well as results from electrospray ionization mass spectrometry indicate that the limited chymotryptic digestion involves the rupture of only a single peptide bond leading to the production of two fragments corresponding to residues 1-240 and 241-310. This cleavage site involving the bond between Tyr 240 and Ala 241 is in a surface loop known to be involved in intersubunit contacts between the upper and lower C trimers in ATCase when it is in the T conformation. Reconstituted holoenzyme comprising two CPC trimers and three wild-type regulatory (R) dimers was shown by enzyme assays to be devoid of the homotropic and heterotropic allosteric properties characteristic of wild-type ATCase. Moreover, sedimentation velocity experiments demonstrate that the holoenzyme reconstituted from CPC trimers is in the R conformation. These results indicate that the intact flexible loop containing Tyr 240 is essential for stabilizing the T conformation of ATCase. Following denaturation of the CPC trimer in 4.7 M urea and dilution of the solution, the separate proteolytic fragments re-associate to form active trimers in about 60% yield. How this refolding of the fragments, docking, and association to form trimers are achieved is not known.  相似文献   

12.
13C isotope effects have been measured for the aspartate transcarbamylase holoenzyme (ATCase) and catalytic subunit catalyzed reactions in the presence of the bisubstrate analog N-(phosphonoacetyl)-L-aspartate (PALA). For holoenzyme-catalyzed reactions in the physiological direction with very low levels of L-aspartate as substrate, or with L-cysteine sulfinate as substrate, or in the reverse direction with carbamyl-L-aspartate and phosphate as substrates, the isotope effect data show a slight dependence on PALA concentration. Under these conditions, PALA first stimulates the rate and then inhibits it at higher concentrations. The observed isotope effect at maximum stimulation by PALA is slightly smaller than in the absence of the analog, but as the PALA concentration is increased to reduce the rate to its original value, the observed isotope effect also increases and approaches the value of the isotope effect determined in the absence of PALA. These data suggest that the kinetic properties of the active enzyme are affected by the number of active sites occupied by PALA, indicating communication between subunits, and a mathematical model is proposed which explains our experimental observations. In contrast to these results with the holoenzyme, isotope effects measured for the reaction catalyzed by the isolated catalytic subunits are not altered in the presence of PALA. Taken together, these data are consistent with the two-state model for the homotropic regulation of ATCase.  相似文献   

13.
Heavy-atom isotope effects and steady-state kinetic parameters were measured for the catalytic trimer of an active site mutant of aspartate transcarbamoylase, T55A, to assess the role of Thr 55 in catalysis. The binding of carbamoyl phosphate to the T55A mutant was decreased by 2 orders of magnitude relative to the wild-type enzyme whereas the affinities for aspartate and succinate were not markedly altered. This indicates that Thr 55 plays a significant role in the binding of CbmP. If, as had been suggested previously, Thr 55 assists in the polarization of the carbonyl group of CbmP, the carbon isotope effect for the T55A mutant should increase relative to that observed for the wild-type enzyme. However, the opposite is seen, indicating that Thr 55 is not involved in stabilizing the oxyanion in the transition state. Quantitative analysis of a series of 13C and 15N isotope effects suggested that the rate-determining step in the reaction catalyzed by T55A trimer may be a conformational change in the protein subsequent to formation of the Michaelis complex. Thus, Thr 55 may facilitate a conformational change in the enzyme that is a prerequisite for catalysis. An altered active site environment in the binary and Michaelis complexes with T55A trimer is reflected in the pH profiles for log V, log (V/K)asp, and pK(i) succinate, show a displacement in the pK values of ionizing residues involved in aspartate binding and catalysis relative to the wild-type enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The pathway of product release from the R state of aspartate transcarbamoylase (ATCase; EC 2.1.3.2, aspartate carbamoyltransferase) has been determined here by solving the crystal structure of Escherichia coli ATCase locked in the R quaternary structure by specific introduction of disulfide bonds. ATCase displays ordered substrate binding and product release, remaining in the R state until substrates are exhausted. The structure reported here represents ATCase in the R state bound to the final product molecule, phosphate. This structure has been difficult to obtain previously because the enzyme relaxes back to the T state after the substrates are exhausted. Hence, cocrystallizing the wild-type enzyme with phosphate results in a T-state structure. In this structure of the enzyme trapped in the R state with specific disulfide bonds, we observe two phosphate molecules per active site. The position of the first phosphate corresponds to the position of the phosphate of carbamoyl phosphate (CP) and the position of the phosphonate of N-phosphonacetyl-l-aspartate. However, the second, more weakly bound phosphate is bound in a positively charged pocket that is more accessible to the surface than the other phosphate. The second phosphate appears to be on the path that phosphate would have to take to exit the active site. Our results suggest that phosphate dissociation and CP binding can occur simultaneously and that the dissociation of phosphate may actually promote the binding of CP for more efficient catalysis.  相似文献   

15.
Dihydroorotase (DHOase) catalyzes the reversible condensation of carbamoyl aspartate to form dihydroorotate in de novo pyrimidine biosynthesis. The enzyme from Aquifex aeolicus, a hyperthermophilic organism of ancient lineage, was cloned and expressed in Escherichia coli. The purified protein was found to be a 45-kDa monomer containing a single zinc ion. Although there is no other DHOase gene in the A. aeolicus genome, the recombinant protein completely lacked catalytic activity at any temperature tested. However, DHOase formed an active complex with aspartate transcarbamoylase (ATCase) from the same organism. Whereas the k(cat) of 13.8 +/- 0.03 s(-1) was close to the value observed for the mammalian enzyme, the K (m)for dihydroorotate, 3.03 +/- 0.05 mM was 433-fold higher. Gel filtration and chemical cross-linking showed that the complex exists as a 240-kDa hexamer (DHO(3)-ATC(3)) and a 480-kDa duodecamer (DHO(6)-ATC(6)) probably in rapid equilibrium. Complex formation protects both DHOase and ATCase against thermal degradation at temperatures near 100 degrees C where the organism grows optimally. These results lead to the reclassification of both enzymes: ATCase, previously considered a Class C homotrimer, now falls into Class A, whereas the DHOase is a Class 1B enzyme. CD spectroscopy indicated that association with ATCase does not involve a significant perturbation of the DHOase secondary structure, but the visible absorption spectrum of a Co(2+)-substituted DHOase is appreciably altered upon complex formation suggesting a change in the electronic environment of the active site. The association of DHOase with ATCase probably serves as a molecular switch that ensures that free, uncomplexed DHOase in the cell remains inactive. At pH 7.4, the equilibrium ratio of carbamoyl aspartate to dihydroorotate is 17 and complex formation may drive the reaction in the biosynthetic direction.  相似文献   

16.
Aspartate transcarbamylase (EC 2.1.3.2) catalyzes the bi substrate reaction—carbamyl phosphate+ L-aspartate ? carbamyl aspartate ? phosphate, The order of addition of substrates and release of products for the homogeneous aspartate transcarbamylase fromPhaseolus aureuss eedlings has been investigated by using the kinetic methods of analysis. p ]Initial velocity studies indicated that the mechanism might be a sequential one. Product inhibition studies showed that phosphate was a linear competitive inhibitor with respect to carbamyl phosphate and was anS (slope) andI (intercept) linear noncompetitive inhibitor with respect to aspartate. Carbamyl aspartate was a noncompetitive inhibitor with respect to both the substrates. These inhibition patterns agreed with an ordered mechanism of reaction with carbamyl phosphate as the leading substrate and phosphate as the last product to leave the enzyme surface. The presence of dead end complexes and the rapid equilibrium random mechanism were ruled out by the absence of inhibition by the substrate(s) and the linear replot slopevs. the inhibitor concentration. Acetyl phosphate, an analog ue of carbamyl phosphate was a non-competitive inhibitor with respect to aspartate. This result could be explained both in terms of an ordered as well as a random mechanism. On the other hand, succinate, an analog ue of aspartate was an uncompetitive inhibitor with respect to carbamyl phosphate, indicating that the mechanism was ordered. p ]The transition state analog ue, N-(phosphonoacetyl)-L-aspartate, binds much more tightly than either of the two substrates. This analog ue was a linear competitive inhibitor with respect to carbamyl phosphate and a linear noncompetitive inhibitor with respect to aspartate. These results are compatible with an ordered mechanism rather than a random one.  相似文献   

17.
The chemical and kinetic mechanisms of the reaction catalyzed by the catalytic trimer of aspartate transcarbamoylase have been examined. The variation of the kinetic parameters with pH indicated that at least four ionizing amino acid residues are involved in substrate binding and catalysis. The pH dependence of K(ia) for carbamoyl phosphate and the K(i) for N-(phosphonoacetyl)-L- aspartate revealed that a protonated residue with a pK value of 9.0 is required for the binding of carbamoyl phosphate. However, the variation with pH of K(i) for succinate, a competitive inhibitor of aspartate, and for cysteine sulfinate, a slow substrate, showed that a single residue with a pK value of 7.3 must be protonated for binding these analogues and, by inference, aspartate. The profile of log V against pH displayed a decrease in reaction rate at low and high pH, suggesting that two groups associated with the Michaelis complex, a deprotonated residue with a pK value of 7.2 and a protonated group with a pK value of 9.5, are involved in catalysis. By contrast, the catalytically productive form of the enzyme-carbamoyl phosphate complex, as illustrated in the bell-shaped pH dependence of log (V/K)(asp), is one in which a residue with a pK value of 7.0 must be protonated while a group with a pK value of 9.1 is deprotonated. This interpretation is supported by the results from the temperature dependence of the V and V/K profiles and from the pH dependence of pK(i) for the aspartate analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Aspartate transcarbamoylase from Pseudomonadaceae is a class A enzyme consisting of six copies of a 36-kDa catalytic chain and six copies of a 45-kDa polypeptide of unknown function. The 45-kDa polypeptide is homologous to dihydroorotase but lacks catalytic activity. Pseudomonas aeruginosa aspartate transcarbamoylase was overexpressed in Escherichia coli. The homogeneous His-tagged protein isolated in high yield, 30 mg/liter of culture, by affinity chromatography and crystallized. Attempts to dissociate the catalytic and pseudo-dihydroorotase (pDHO) subunits or to express catalytic subunits only were unsuccessful suggesting that the pDHO subunits are required for the proper folding and assembly of the complex. As reported previously, the enzyme was inhibited by micromolar concentrations of all nucleotide triphosphates. In the absence of effectors, the aspartate saturation curves were hyperbolic but became strongly sigmoidal in the presence of low concentrations of nucleotide triphosphates. The inhibition was unusual in that only free ATP, not MgATP, inhibits the enzyme. Moreover, kinetic and binding studies with a fluorescent ATP analog suggested that ATP induces a conformational change that interferes with the binding of carbamoyl phosphate but has little effect once carbamoyl phosphate is bound. The peculiar allosteric properties suggest that the enzyme may be a potential target for novel chemotherapeutic agents designed to combat Pseudomonas infection.  相似文献   

19.
Several 13C isotope effects of relevance to reactions involving carbamate and carbamoyl phosphate have been determined. The fractionation factor of carbamate relative to aqueous CO2 is 1.011; the equilibrium isotope effect on the reaction catalyzed by carbamate kinase is 0.9983. From these data we can calculate that the fractionation factor of carbamoyl phosphate relative to aqueous CO2 is 1.013. The kinetic 13C isotope effect on the decomposition of carbamoyl phosphate to cyanate and phosphate is 1.058. The environment of the carbon atom in carbamate and carbamoyl phosphate and the mechanism of carbamoyl phosphate decomposition are discussed in light of these values.  相似文献   

20.
In contrast to holo-enzyme (c6r6), catalytic subunits (c3) of Escherichia coli aspartate transcarbamylase (carbamoyl-phosphate:L-aspartate carbamoyltransferase, EC 2.1.3.2) do not exhibit allosteric interactions or inhibition effects that complicate kinetic investigations of substrate binding order. Equilibrium isotope-exchange kinetic probes of c3 at pH 7.0 and 30 degrees C produced kinetic saturation patterns consistent with a strongly preferred order random kinetic mechanism, in which carbamoyl phosphate binds prior to aspartate and carbamoyl aspartate is released before Pi. Weak substrate inhibition effects observed with c6r6 did not occur with c3, possibly due to decreased affinity for ligands at the dianion inhibition site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号