首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In this study we 1) describe the abundance of Anopheles and culicine immatures in different water body types in urban Malindi, Kenya, 2) compare Anopheles immature density in relation to culicine immature density, and 3) identify characteristics that influence the likelihood of water bodies being co-colonized by Anopheles and culicines. Entomological and environmental cross-sectional surveys conducted in 2001 and 2002 were used in the analysis. A total of 889 Anopheles and 7,217 culicine immatures were found in diverse water body types in 2001 and 2002. Car-track pools (n = 45) and unused swimming pools (n = 25) comprised 61% (70 of 115) of all water bodies found and served as the main habitats for Anopheles immatures. Of the 38 water bodies found containing Anopheles immature mosquitoes, 63% (24 of 38) were car-track pools and unused swimming pools. Culicine immatures utilized several water body types as habitats. We found that Anopheles and culicine immatures had higher density when occurring individually compared to when they occurred simultaneously. We determined that season, permanency, and water body area size influenced the likelihood of water bodies being simultaneously positive for Anopheles and culicines. Though Anopheles immatures were found in diverse water body types, their numbers were low compared to culicine immatures. The low density of Anopheles immatures suggests that Anopheles larval control is an achievable goal in Malindi.  相似文献   

2.
As part of investigations on potential linkages between irrigation and malaria transmission, all surface water bodies in and around three villages along an irrigation distributary in South Punjab, Pakistan, were surveyed for anopheline mosquito larvae (Diptera: Culicidae) from April 1999 to March 2000. Samples were characterized according to exposure to sunlight, substratum, presence of vegetation, fauna, inorganic matter and physical water condition (clear/turbid/foul). Also water temperature, dissolved oxygen (DO), electroconductivity (EC) and pH of sites were recorded. A total of 37982 Anopheles larvae of six morphological types were collected from 2992 samples taken from irrigation/agricultural and village/domestic aquatic habitats. Anopheles subpictus Grassi sensu lato was by far the most abundant (74.3%), followed by An. culicifacies Giles s.l. (4.1%), An. stephensi Liston s.l. (2.6%), An. pulcherrimus Theobald (1.8%), An. peditaeniatus Leicester (0.3%) and An. nigerrimus Giles (0.1%). The four most abundant species were significantly associated with waterlogged fields and communal village drinking-water tanks. Habitat characteristics most correlated with occurrence of anophelines were the physical water condition and the absence/presence of fauna, particularly predators. Occurrence and abundance of Anopheles immatures were not significantly correlated with water temperature, DO, EC or pH. Malaria vectors of the Anopheles culicifacies complex occurred at relatively low densities, mainly in irrigated and waterlogged fields. In South Punjab, where rainfall is very low, it should be possible to reduce anopheline breeding through water management, as larvae develop mainly in water bodies that are directly or indirectly related to the extensive canal-irrigation system.  相似文献   

3.
Urban malaria cases are becoming common in Africa as more people move into cities and industrialization proceeds. While many species of Anopheles mosquitoes vector malaria in rural areas, only a few are found within cities. The success of anthropophilic species in cities, such as members of the An. gambiae complex, may be explained by limitations on colonization by predator species in urban environments. Habitats that are temporal or structurally simple have lower predator survivorship in a variety of ecosystems, but these have not been investigated previously in an urban area. Areas within and around the Kenyan coastal town of Malindi were previously sampled for the presence of standing water using a geographic sampling strategy with probability proportional to size sampling of planned well-drained, unplanned poorly-drained, planned poorly-drained, unplanned well-drained, and peri-urban locations. Standing aquatic habitats in these areas were reassessed. During monthly sampling, presence/absence of mosquitoes and predator taxa were noted, as were ecological habitat variables: structural complexity and presence of water. Lambda statistics were calculated to associate predator guilds, habitat types, location variables, and ecological variables. All predator guilds found in habitats were strongly associated with habitat type, as were the structural complexity and temporal nature of the habitats. Types of habitat were heterogeneously distributed throughout Malindi, with swimming pools as a common habitat type in planned urban areas and tire track pools a common habitat type in peri-urban areas of Malindi. Predator colonization of aquatic habitats in Malindi was strongly influenced by habitat type, and not associated with location characteristics. Ecological variables were affected by the type of habitats, which are co-associated with planning and drainage in Malindi. While habitat types are distributed heterogeneously within Malindi, habitats with low predation pressure are available for mosquito colonization in both urban and peri-urban areas. The temporal, peri-urban tire track pools and the structural simplicity of urban swimming pools may discourage predator colonization, thereby increasing the probability of malaria vectors in these areas of Malindi. Future studies should evaluate habitats for use in malaria surveillance and experimentally test the effects of structural complexity and temporal nature of urban habitats on the densities of mosquito larvae and their aquatic predators.  相似文献   

4.
We report the identification of genomic sequences in various anopheline mosquitoes (family Culicidae: suborder Nematocera: order Diptera) showing homology to the class II, short inverted-terminal-repeat (ITR) transposable element P from Drosophila melanogaster (family Drosophilidae; suborder Brachycera: order Diptera). Anopheles gambiae appears to have at least six distinct P elements. Other anopheline species, including four additional members of the An. gambiae species complex (An. arabiensis, An. merus, An. melas and An. quadriannulatus), Anopheles stephensi (all subgenus Cellia), An. quadrimaculatus (subgenus Anopheles) and Anopheles albimanus (subgenus Nyssorhynchus) also possess P elements similar to those found in An. gambiae. Ten distinct P element types were identified in the genus Anopheles. At least two of the An. gambiae elements appears to be intact and potentially functional. Phylogenetic analysis of the anopheline P elements reveals them to belong to a distinctly different clade from the brachyceran P elements.  相似文献   

5.
Malaria vector control targeting the larval stages of mosquitoes was applied successfully against many species of Anopheles (Diptera: Culicidae) in malarious countries until the mid-20th Century. Since the introduction of DDT in the 1940s and the associated development of indoor residual spraying (IRS), which usually has a more powerful impact than larval control on vectorial capacity, the focus of malaria prevention programmes has shifted to the control of adult vectors. In the Afrotropical Region, where malaria is transmitted mainly by Anopheles funestus Giles and members of the Anopheles gambiae Giles complex, gaps in information on larval ecology and the ability of An. gambiae sensu lato to exploit a wide variety of larval habitats have discouraged efforts to develop and implement larval control strategies. Opportunities to complement adulticiding with other components of integrated vector management, along with concerns about insecticide resistance, environmental impacts, rising costs of IRS and logistical constraints, have stimulated renewed interest in larval control of malaria vectors. Techniques include environmental management, involving the temporary or permanent removal of anopheline larval habitats, as well as larviciding with chemical or biological agents. This present review covers large-scale trials of anopheline larval control methods, focusing on field studies in Africa conducted within the past 15 years. Although such studies are limited in number and scope, their results suggest that targeting larvae, particularly in human-made habitats, can significantly reduce malaria transmission in appropriate settings. These approaches are especially suitable for urban areas, where larval habitats are limited, particularly when applied in conjunction with IRS and other adulticidal measures, such as the use of insecticide treated bednets.  相似文献   

6.
Larval ecology is an important aspect of the population dynamics of anopheline mosquitoes (Diptera: Culicidae), the vectors of malaria. Anopheles larvae live in pools of stagnant water and adult fitness may be correlated with the nutritional conditions under which larvae develop. A study was conducted in Mbita, Western Kenya, to investigate how properties of the soil substrate of Anopheles gambiae breeding pools can influence development of this mosquito species. An. gambiae eggs from an established colony were dispensed into experimental plastic troughs containing soil samples from a range of natural Anopheles larval habitats and filtered Lake Victoria water. The duration of larval development (8-15 days), pupation rate (0-79%), and adult body size (20.28-26.91 mm3) varied among different soil types. The total organic matter (3.61-21.25%), organic carbon (0.63-7.18%), and total nitrogen (0.06-0.58%) levels of the soils were positively correlated with pupation rate and negatively correlated with development time and adult body size.  相似文献   

7.
Dispersion of Anopheles gambiae s.l. from larval breeding places was examined in the town of Ougadougou, Burkina Faso. A suitable study area was chosen, characterized by high concentration of larval breeding places along a water reservoir. Mosquito density per room was calculated from the results of pyrethrum spray catches carried out on a series of seven groups of collecting stations along a transect from 100 to 1050 m from the water reservoir area. High density and uniform distribution of houses and human host in the urban area appear associated with a remarkably low degree of dispersion since most of An. gambiae s.l. were collected within 200 m (males) or 300 m (females) from the breeding sites. Malaria transmission is consequently very focal in these conditions.  相似文献   

8.

Background

Urbanization has a great impact on the composition of the vector system and malaria transmission dynamics. In Dakar, some malaria cases are autochthonous but parasite rates and incidences of clinical malaria attacks have been recorded at low levels. Ecological heterogeneity of malaria transmission was investigated in Dakar, in order to characterize the Anopheles breeding sites in the city and to study the dynamics of larval density and adult aggressiveness in ten characteristically different urban areas.

Methods

Ten study areas were sampled in Dakar and Pikine. Mosquitoes were collected by human landing collection during four nights in each area (120 person-nights). The Plasmodium falciparum circumsporozoite (CSP) index was measured by ELISA and the entomological inoculation rates (EIR) were calculated. Open water collections in the study areas were monitored weekly for physico-chemical characterization and the presence of anopheline larvae. Adult mosquitoes and hatched larvae were identified morphologically and by molecular methods.

Results

In September-October 2007, 19,451 adult mosquitoes were caught among which, 1,101 were Anopheles gambiae s.l. The Human Biting Rate ranged from 0.1 bites per person per night in Yoff Village to 43.7 in Almadies. Seven out of 1,101 An. gambiae s.l. were found to be positive for P. falciparum (CSP index = 0.64%). EIR ranged from 0 infected bites per person per year in Yoff Village to 16.8 in Almadies. The An. gambiae complex population was composed of Anopheles arabiensis (94.8%) and Anopheles melas (5.2%). None of the An. melas were infected with P. falciparum. Of the 54 water collection sites monitored, 33 (61.1%) served as anopheline breeding sites on at least one observation. No An. melas was identified among the larval samples. Some physico-chemical characteristics of water bodies were associated with the presence/absence of anopheline larvae and with larval density. A very close parallel between larval and adult densities was found in six of the ten study areas.

Conclusion

The results provide evidence of malaria transmission in downtown Dakar and its surrounding suburbs. Spatial heterogeneity of human biting rates was very marked and malaria transmission was highly focal. In Dakar, mean figures for transmission would not provide a comprehensive picture of the entomological situation; risk evaluation should therefore be undertaken on a small scale.  相似文献   

9.
Field observations have demonstrated that gravid Anopheles gambiae Giles s.s. (Diptera: Culicidae) are selective in their choice of oviposition sites. For example, immature stages of An. gambiae s.s. are rarely found in water that contains Culex quinquefasciatus Say immatures. The possibility that this may, in part at least, reflect a response by ovipositing An. gambiae s.s. females to volatile signals associated with Culex juveniles was evaluated by testing the response of An. gambiae s.s. females to varying densities of Cx. quinquefasciatus egg rafts and/or larvae in oviposition choice assays. For comparison, the oviposition choices of Cx. quinquefasciatus to conspecific egg rafts and/or larvae were similarly assayed. At a low density of Cx. quinquefasciatus egg rafts (1-15 egg rafts/100 mL water), An. gambiae s.s. females laid more eggs in the treatment water than in the control, with a maximum of twice as many in the treatment water at 5 egg rafts/100 mL water. At higher egg raft densities and in all treatments that included Cx. quinquefasciatus larvae, oviposition decreased significantly in the treatment dishes in a density-dependent manner. As previous studies have indicated, ovipositing Cx. quinquefasciatus females were attracted to and laid egg rafts in dishes containing conspecific egg rafts and, interestingly, also in dishes containing larvae.  相似文献   

10.
Anopheline larval habitats associated with a swamp, were examined in a highland area (1910 m elevation) of western Kenya. A significant association was found between occurrence of Anopheles gambiae Giles s.s. (Diptera: Culicidae) larvae and two factors, habitat size and vegetation type. Over 80% of An. gambiae s.s. larvae were found in small isolated pools, characterized by short plants, occurring in both swamp margins and roadside ditches. However, Anopheles gambiae s.s. was not found in habitats marked by papyrus and floating plants. The larval habitat of An. gambiae s.s. was characterized by warmer daytime temperatures of water, which were significantly affected by habitat size and plant size. The density of indoor resting An. gambiae s.s. was 0.22 per house and negatively associated with distance from the swamp. These results indicate that the practice of swamp cultivation, in populated areas of the African highlands, increases availability and enhances habitat conditions for the malaria vector.  相似文献   

11.
Abstract. A method is presented for the rapid isolation of eye-colour mutants in anopheline mosquitoes based on their inability to undergo a background-stimulated morphological colour change. For application of this method, larval mosquitoes, whose grandfathers had been mutagenized, were reared in black containers and examined with the naked eye en masse during the third or fourth instar. The vast majority of larvae became dark-coloured; however, rare exceptional pale larvae were observed and examined individually microscopically. Approximately half of the pale types examined were eye-colour mutants. By this method, seven sex-linked mutations in the mosquito Anopheles gambiae s.s. were easily isolated. Additional existing anopheline eye-colour mutants in An. gambiae and An. stephensi were tested and were found to be unable to undergo colour change. Several applications of this simple technique are suggested.  相似文献   

12.
Increased human population in the Western Kenya highlands has led to reclamation of natural swamps resulting in the creation of habitats suitable for the breeding of Anopheles gambiae, the major malaria vector in the region. Here we report on a study to restore the reclaimed swamp and reverse its suitability as a habitat for malaria vectors. Napier grass-shaded and non-shaded water channels in reclaimed sites in Western Kenya highlands were studied for the presence and density of mosquito larvae, mosquito species composition, and daily variation in water temperature. Shading was associated with 75.5% and 88.4% (P < 0.0001) reduction in anopheline larvae densities and 78.1% and 88% (P < 0.0001) reduction in Anopheles gambiae sensu lato (s.l.) densities in two sites, respectively. Shading was associated with a 5.7°C, 5.0°C, and 4.7°C, and 1.6°C, 3.9°C, and 2.8°C (for maximum, minimum, and average temperatures, respectively) reduction (P < 0.0001) in water temperatures in the two locations, respectively. An. gambiae s.l. was the dominant species, constituting 83.2% and 73.1%, and 44.5% and 42.3%, of anophelines in non-shaded and shaded channels, respectively, in the two sites, respectively. An. gambiae sensu stricto (s.s.) constituted the majority (97.4%) of An. gambiae s.l., while the rest (2.6%) comprised of Anopheles arabiensis. Minimum water temperature decreased with increasing grass height (P = 0.0039 and P = 0.0415 for Lunyerere and Emutete sites, respectively). The results demonstrate how simple environmental strategies can have a strong impact on vector densities.  相似文献   

13.
Anopheline larvae generally inhabit the near-surface of aquatic habitats, but they dive and remain at the bottom of these habitats for some time. This study examined forced and voluntary diving behavior and submergence tolerance in the three major African malaria vectors, Anopheles gambiae Giles, An. arabiensis Patton, and An. funestus Giles. The former two species occur sympatrically in temporal and shallow water bodies, while the latter occurs in permanent deeper water bodies. Anopheles funestus was the most tolerant of submergence, but the larvae tended to halt their descent before reaching the bottom by attaching onto a wall. The difference in diving behavior between An. funestus and the two species in the An. gambiae complex may be an adaptation to their contrasting breeding sites, because the former species must spend considerable energy to surface in its typical breeding sites. Both An. gambiae and An. arabiensis reached the bottom and crawled along the substrate, but An. gambiae voluntarily crawled more often than An. arabiensis. The possible importance of asymmetric bottom-feeding between these two sympatric species is discussed.  相似文献   

14.

Introduction

High malaria transmission heterogeneity in an urban environment is basically due to the complex distribution of Anopheles larval habitats, sources of vectors. Understanding 1) the meteorological and ecological factors associated with differential larvae spatio-temporal distribution and 2) the vectors dynamic, both may lead to improving malaria control measures with remote sensing and high resolution data as key components. In this study a robust operational methodology for entomological malaria predictive risk maps in urban settings is developed.

Methods

The Tele-epidemiology approach, i.e., 1) intensive ground measurements (Anopheles larval habitats and Human Biting Rate, or HBR), 2) selection of the most appropriate satellite data (for mapping and extracting environmental and meteorological information), and 3) use of statistical models taking into account the spatio-temporal data variability has been applied in Dakar, Senegal.

Results

First step was to detect all water bodies in Dakar. Secondly, environmental and meteorological conditions in the vicinity of water bodies favoring the presence of Anopheles gambiae s.l. larvae were added. Then relationship between the predicted larval production and the field measured HBR was identified, in order to generate An. gambiae s.l. HBR high resolution maps (daily, 10-m pixel in space).

Discussion and Conclusion

A robust operational methodology for dynamic entomological malaria predictive risk maps in an urban setting includes spatio-temporal variability of An. gambiae s.l. larval habitats and An. gambiae s.l. HBR. The resulting risk maps are first examples of high resolution products which can be included in an operational warning and targeting system for the implementation of vector control measures.  相似文献   

15.
A study was undertaken to identify the major larval habitats of the Anopheles gambiae (Giles) complex in rural Gambia. Mosquito larvae and pupae were sampled along transects and in specific habitats in the central region of the country during the rainy seasons of 1996 and 1997. The sampling showed that the major breeding sites were located on the flooded alluvial soils bordering the river. The largest numbers of larvae were found during September, one month after the peak rains. Polymerase chain reaction analysis of specimens showed that Anopheles melas (Theobald) was the dominant species in the flooded areas (81.5%), followed by A. gambiae sensu stricto (Giles) (18.0%) and A. arabiensis (Patton) (0.5%). By sampling in specific habitats it was evident that A. arabiensis was mainly breeding in rain-fed rice fields along the edge of the alluvial soils. Anopheles melas and A. gambiae s.s. often coexisted but whereas A. melas were found in water with a salinity of up to 72% sea water (25.2 g NaCl l(-1)), A. gambiae s.s. only occurred in water with up to 30% sea water (10.5 g NaCl l(-1)). Anopheles melas larvae were found in association with plant communities dominated by sedges and grasses (Eleocharis sp., Paspalum sp., Sporobolus sp.) and sea-purslane Sesuvium portulacastrum (L.) and the presence of cattle hoof prints, whereas A. gambiae s.s. larvae mainly occurred in association with Paspalum sp. and Eleocharis sp. The study showed that even during the peak rainy season, breeding of the A. gambiae complex is almost entirely restricted to the extensive alluvial areas along the river.  相似文献   

16.
Algae are important food resources of the larvae of the African malaria vectors, Anopheles gambiae Giles and Anopheles arabiensis Patton (Anopheles gambiae sensu lato), and other zooplankton, but empirical evidence remains meager about the agal flora in ephemeral water bodies. The animals present in natural aquatic habitats in western Kenya were sampled from July to November 2002 to study abiotic and biotic environmental factors determining A. gambiae sl larval abundance. The five highest concentrations of third and fourth instars and pupae (hereafter referred to as old-stage larvae) were sampled in conjunction with the unicellular epizoic green algae, Rhopalosolen species (Chlorophyta; Chlorophyceae). Canonical correspondence analysis revealed that the presence of Rhopalosolen species was the most important determinant of the animal assemblage. The density of old-stage A. gambiae sl larvae was positively correlated with the presence of Rhopalosolen species, but the density of first and second instars of A. gambiae sl was not. The water bodies with Rhopalosolen sp. yielded larger mosquitoes in spite of the higher density of larvae. We demonstrated that the productivity of water bodies in terms of the larvae of malaria vectors can differ in magnitude depending on the agal flora. We discuss phytoplankton as a regulator of mosquito larval populations.  相似文献   

17.
Infections with the Berok strain of Plasmodium cynomolgi were induced in Macaca mulatta, Macaca fascicularis, Macaca nemestrina, Aotus lemurinus griseimembra, Aotus azarae boliviensis, and Saimiri boliviensis monkeys. Transmission was obtained with sporozoites developing in Anopheles peditaeniatus, Anopheles maculatus, Anopheles quadrimaculatus, Anopheles culicifacies, and Anopheles dirus mosquitoes. This strain of P. cynomolgi offers significant potential for a number of experimental studies. The parasite induces high-density parasite counts in both Old World and New World monkeys; rhesus monkeys readily support the development of gametocytes infectious to different anopheline mosquitoes routinely maintained in the laboratory; the gametocytes are infective to laboratory-maintained Anopheles albimanus, a vector rarely susceptible to plasmodia of Old World monkeys; encapsulated oocysts are produced in An. culicifacies as well as in Anopheles gambiae; and the parasite has been adapted to long-term in vitro culture.  相似文献   

18.
Previously we have purified and characterized a major glutathione S-transferase (GST) activity, GST-4a, from the Thai mosquito Anopheles dirus B, a model mosquito for study of anopheline malaria vectors [Prapanthadara, L. Koottathep, S., Promtet, N., Hemingway, J. and Ketterman, A.J. (1996) Insect Biochem. Mol. Biol. 26:3, 277-285]. In this report we have purified an isoenzyme, GST-4c, which has the greatest DDT-dehydrochlorinase activity. Three additional isoenzymes, GST-4b, GST-5 and GST-6, were also partially purified and characterized for comparison. All of the Anopheles GST isoenzymes preferred 1-chloro-2,4-dinitrobenzene (CDNB) as an electrophilic substrate. In kinetic studies with CDNB as an electrophilic substrate, the V(max) of GST-4c was 24.38 micromole/min/mg which was seven-fold less than GST-4a. The two isoenzymes also possessed different K(m)s for CDNB and glutathione. Despite being only partially pure GST-4b had nearly a four-fold greater V(max) for CDNB than GST-4c. In contrast, GST-4c possessed the greatest DDT-dehydrochlorinase specific activity among the purified insect GST isoenzymes and no activity was detected for GST-5. Seven putative GST substrates used in this study were not utilized by An. dirus GSTs, although they were capable of inhibiting CDNB conjugating activity to different extents for the different isoenzymes. Bromosulfophthalein and ethacrynic acid were the most potent inhibitors. The inhibition studies demonstrate different degrees of interaction of the An. dirus isoenzymes with various insecticides. The GSTs were inhibited more readily by organochlorines and pyrethroids than by the phosphorothioates and carbamate. In a comparison between An. dirus and previous data from An. gambiae the two anopheline species possess a similar pattern of GST isoenzymes although the individual enzymes differ significantly at the functional level. The available data suggests there may be a minimum of three GST classes in anopheline insects.  相似文献   

19.
The authors have elaborated a formula to calculate the average number of times an anopheline parous female bites in one day ("L") according to its gonotrophic cycle and more specially to its behaviour before and after oviposition (parameters "alpha" and "A". The formula was applied to Anopheles gambiae observed at Djoumouna village (L = 0.40) and to Anopheles nili observed at M'Pola village (L = 0.30). The value obtained has then to be multiplied by the anthropophilic index to obtain the "a" parameter of MacDonald (1957) when studying malaria transmission in a village. On the other hand such a formula allowed a better evaluation of biting frequency of a vector, thus of risks of transmission of diseases, according to the respective situation of human houses and water storages. An important point which ahs to be born in mind when planning artificial permanent reservoirs.  相似文献   

20.
The species composition of malaria vector mosquitoes belonging to the Anopheles gambiae complex (Diptera: Culicidae) from >40 localities in Sudan, representing most ecological situations, was determined by analysis of ovarian polytene chromosomes. Of 2162 females, 93% were identified as An. arabiensis Patton and 7% were An. gambiae Giles sensu stricto. No hybrids were found between the two species. Anopheles arabiensis occurred in all but two sites, whereas An. gambiae s.s. was effectively limited to the southernmost, more humid localities. For chromosomal paracentric inversions, the degree of polymorphism was low in An. gambiae s.s. (inversions 2La, 2Rb and 2Rd), higher in An. arabiensis (inversions Xe, 2Ra, b, bc, d1, s; 3Ra, d). Anopheles gambiae samples from Sudan were all apparently panmictic, i.e. they did not show restricted gene flow such as observed among West African populations (interpreted as incipient speciation). Chromosomal inversion patterns of An. gambiae in southern Sudan showed characteristics of intergrading Savanna/Forest populations similar to those observed in comparable eco-climatic situations of West Africa. Anopheles arabiensis was polymorphic for inversion systems recorded in West Africa (2Ra, 2Rb, 2Rdl, 3Ra) and for a novel 2Rs polymorphism, overlapping with inversion systems 2Rb and 2Rd1. Samples carrying the 2Rs inversion were mostly from Khashm-el-Girba area in central-eastern Sudan. In the great majority of the samples all polymorphic inversions were found to be in Hardy-Weinberg equilibrium. Sudan populations of An. arabiensis should therefore be considered as generally panmictic. Anopheles arabiensis shows more inversion polymorphism in west than in east African populations. Sudan populations have more evident similarities with those from westwards than those from eastwards of the Great Rift Valley. The possible influence of the Rift on evolution of An. arabiensis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号