首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ts65Dn mice, trisomic for a portion of chromosome 16 segmentally homologous to human chromosome 21, are an animal model for Down's syndrome and related neurodegenerative diseases, such as dementia of the Alzheimer type. In these mice, cognitive deficits and alterations in number of basal forebrain cholinergic neurons have been described. We have measured in Ts65Dn mice the catalytic activity of the cholinergic marker, choline acetyltransferase (ChAT), as well as the activity of the acetylcholine-degrading enzyme acetylcholinesterase (AChE), in the hippocampus and in cortical targets of basal forebrain cholinergic neurons. In mice aged 10 months, ChAT activity was significantly higher in Ts65Dn mice, compared to 2N animals, in the hippocampus, olfactory bulb, olfactory cortex, pre-frontal cortex, but not in other neocortical regions. At 19 months of age, on the other hand, no differences in ChAT activity were found. Thus, alterations of ChAT activity in these forebrain areas seem to recapitulate those recently described in patients scored as cases of mild cognitive impairment or mild Alzheimer's disease. Other neurochemical markers putatively associated with the disease progression, such as those implicating astrocytic hyperactivity and overproduction of amyloid precursor protein family, were preferentially found altered in some brain regions at the oldest age examined (19 months).  相似文献   

2.
The presence of β-nerve growth factor (NGF) and its cell surface receptor (NGF-R) in the brain has been well established by a variety of experimental techniques in recent years. In particular, the molecular cloning of NGF and NGF-R as well as the development of sensitive two-site ELISA techniques for determining the levels of NGF and antibodies to NGF-R suitable for immunohistochemistry have led to rapid accumulation of data in this field from many laboratories. A main finding is the function of NGF in the cholinergic neurons of the basal forebrain, expressing NGF receptors and responding to the factor by increased activity of choline acetyltransferase, and the production of NGF in cortical areas and hippocampus comprising terminal areas for the cholinergic projections from the basal forebrain. In addition, findings suggest that additional neurons in the brain and spinal cord may utilize NGF, notably during development and possibly also after lesion of the adult CNS. Moreover, observations indicate that endogenous levels of NGF are lowered in the aged rat brain concomitant with losses of NGF-dependent neurons in the basal forebrain. The involvement of NGF in human neurodegenerative diseases is not established but the application of NGF to degenerating cholinergic neurons in Alzheimer patients may prove useful. A promising approach to achieve this goal is the production of biologically active, recombinant NGF.  相似文献   

3.
Many areas of the cerebral cortex process sensory information or coordinate motor output necessary for control of movement. Disturbances in cortical cholinergic system can affect locomotor coordination. Spinal cord injury causes severe motor impairment and disturbances in cholinergic signalling can aggravate the situation. Considering the impact of cortical cholinergic firing in locomotion, we focussed the study in understanding the cholinergic alterations in cerebral cortex during spinal cord injury. The gene expression of key enzymes in cholinergic pathway - acetylcholine esterase and choline acetyl transferase showed significant upregulation in the cerebral cortex of spinal cord injured group compared to control with the fold increase in expression of acetylcholine esterase prominently higher than cholineacetyl transferase. The decreased muscarinic receptor density and reduced immunostaining of muscarinic receptor subtypes along with down regulated gene expression of muscarinic M1 and M3 receptor subtypes accounts for dysfunction of metabotropic acetylcholine receptors in spinal cord injury group. Ionotropic acetylcholine receptor alterations were evident from the decreased gene expression of alpha 7 nicotinic receptors and reduced immunostaining of alpha 7 nicotinic receptors in confocal imaging. Our data pin points the disturbances in cortical cholinergic function due to spinal cord injury; which can augment the locomotor deficits. This can be taken into account while devising a proper therapeutic approach to manage spinal cord injury.  相似文献   

4.
Transient receptor potential vanilloid 4 (TRPV4) is a broadly expressed Ca2+-permeable cation channel in the vanilloid subfamily of transient receptor potential channels. It is activated by warm temperature, lipids downstream of arachidonic acid metabolism, hypoosmolarity, or mechanical stimulation. In the present study, we used SOD1G93A mutant transgenic mice as the animal model of amyotrophic lateral sclerosis (ALS) and investigated the changes of TRPV4 immunoreactivity in the central nervous system of these mice by immunohistochemical studies. An increased expression of TRPV4 was pronounced in the cerebral cortex, hippocampal formation, thalamus, cerebellum and spinal cord of symptomatic SOD1G93A transgenic mice. In the cerebral cortex, TRPV4 immunoreactivity was significantly increased in pyramidal cells of SOD1G93A transgenic mice. In the hippocampal formation, pyramidal cells of the CA1-3 areas and in the granule cells of the dentate gyrus demonstrated increased TRPV4 immunoreactivity. In addition, TRPV4 immunoreactivity was increased in the spinal cord, thalamus and cerebellum of the symptomatic SOD1G93A transgenic mice. This study, which showed increased TRPV4 in different brain and spinal cord regions of SOD1G93A transgenic mice, may provide clues to the understanding of many basic neuronal functions in ALS. These findings suggest a role for TRPV4 in the neuronal functions in ALS but the mechanisms and functional implications of increased TRPV4 require elucidation.  相似文献   

5.
Cholinergic receptors in upper motor neurons of brain stem control locomotion and coordination. Present study unravels cholinergic alterations in brain stem during spinal cord injury to understand signalling pathway changes which may be associated with spinal cord injury mediated motor deficits. We evaluated cholinergic function in brain stem by studying the expression of choline acetyl transferase and acetylcholine esterase. We quantified metabotropic muscarinic cholinergic receptors by receptor assays for total muscarinic, muscarinic M1 and M3 receptor subunits, gene expression studies using Real Time PCR and confocal imaging using FITC tagged secondary antibodies. The gene expression of ionotropic nicotinic cholinergic receptors and confocal imaging were also studied. The results from our study showed metabolic disturbance in cholinergic pathway as choline acetyl transferase is down regulated and acetylcholine esterase is up regulated in spinal cord injury group. The significant decrease in muscarinic receptors showed by decreased receptor number along with down regulated gene expression and confocal imaging accounts for dysfunction of metabotropic acetylcholine receptors in spinal cord injury group. Ionotropic acetylcholine receptor alterations were evident from the decreased gene expression of alpha 7 nicotinic acetylcholine receptors and confocal imaging. The motor coordination was analysed by Grid walk test which showed an increased foot slips in spinal cord injured rats. The significant reduction in brain stem cholinergic function might have intensified the motor dysfunction and locomotor disabilities.  相似文献   

6.
The SOD1-G93A transgenic mouse is a widely used ALS model, but the death of lower motor neurons is the hallmark. Here, we show that the SOD1-G93A transgene and HO-1 are preferentially over-expressed in the lumbar spinal cord, particularly in the activated astrocytes of the transgenic mice. We also show down-regulation of GLT-1 in spite of the proliferating astrocytes. However, GLT-1, SOD1-G93A transgene and HO-1 expression were not obviously changed in the motor cortex. Our data link spinal cord vulnerability to relatively decreased expression of GLT-1, and high expression of the transgene and HO-1 in astrocytes in SOD1-G93A transgenic mice.  相似文献   

7.
8.
Tumour necrosis factor alpha (TNF-alpha) is a pleiotrophic cytokine synthesized primarily by macrophages and monocytes, which exerts a variety of biological activities during inflammatory responses, immune reactions, and wound healing. Within the central nervous system (CNS), the basal levels of TNF-alpha are almost undetectable, but increase after neurological insults. Using transgenic mice expressing high levels of TNF-alpha in the CNS, we investigated the effect of this cytokine on the levels of brain nerve growth factor (NGF), a neurotrophin playing a crucial role in the development, maintenance and regeneration of basal forebrain cholinergic neurons. The immunoenzymatic assay and in situ hybridization revealed that the constitutive expression of NGF decreased in the hippocampus, increased in the hypothalamus, while remained unchanged in the cortex. Moreover, septal cholinergic neurons which receive trophic support from NGF produced in the hippocampus display loss of choline acetyltransferase immunoreactivity, suggesting that the reduced availability of NGF may influence negatively the synthesis of brain cholinergic neurons. These observations indicate that the basal level of brain NGF can be influenced negatively or positively by local expression of TNF-alpha and that this cytokine, through dose-dependent regulation of NGF synthesis and release, may be involved in neurodegenerative events associated with aging.  相似文献   

9.
Two transgenic mouse models expressing mutated human amyloid precursor protein and previously found to display cognitive and behavioural alterations, reminiscent of Alzheimer patients' symptomatology, were scrutinised for putative brain region-specific changes in neurochemical parameters. Brains of NSE-hAPP751m-57, APP23 and wild-type mice were microdissected to perform brain region-specific neurochemical analyses. Impairment of cholinergic transmission, the prominent neurochemical deficit in Alzheimer brain, was examined; acetylcholinesterase and choline acetyltransferase activity levels were determined as markers of the cholinergic system. Since Alzheimer neurodegeneration is not restricted to the cholinergic system, brain levels of biogenic amines and metabolites, and amino acidergic neurotransmitters and systemic amino acids were analysed as well. Cholinergic dysfunction, reflected in reduced enzymatic activity in the basal forebrain nuclei, was restricted to the APP23 model, which also exhibited more outspoken and more widespread changes in other neurotransmitter systems. Significant changes in compounds of the noradrenergic and serotonergic system were observed, as well as alterations in levels of the inhibitory neurotransmitter glycine and systemic amino acids. These observations were clearly in occurrence with the more pronounced histopathological and behavioural phenotype of the APP23 model. As transgenic models often do not represent an end-stage of the disease, some discrepancies with results from post-mortem human Alzheimer brain analyses were apparent; in particular, no significant alterations in excitatory amino acid levels were detected. Our findings of brain region-specific alterations in compound levels indicate disturbed neurotransmission pathways, and greatly add to the validity of APP23 mice as a model for Alzheimer's disease. Transgenic mouse models may be employed as a tool to study early-stage neurochemical changes, which are often not accessible in Alzheimer brain.  相似文献   

10.
Abstract: In a search for behavioral, neuroanatomical, and metabolic characteristics of Alzheimer's disease that may result from cholinergic malfunction, we used transgenic mice overexpressing acetylcholinesterase (AChE) mRNA and active enzyme in brain neurons. Mapping by in situ hybridization revealed that transgenic and host AChE mRNAs were distributed similarly. In a Morris water maze working memory paradigm, adult transgenic mice did not display the characteristic improvement found in control mice either between or within test days and spent less time than control mice in the platform zone. In 5-week-old transgenic mice, the basilar dendritic trees of layer 5 pyramidal neurons from the frontoparietal cortex were essentially as developed as in age-matched controls. However, branching totally ceased after this age, whereas in control adults it continued up to at least 7 months. Therefore, dendritic arbors became smaller in adult transgenic mice than those of controls. Furthermore, the average number of spines was significantly lower on dendritic branches of 7-month-old but not 5-week-old transgenics as compared with controls. Binding of tritiated hemicholinium-3, a blocker of the high-affinity choline uptake characteristic of active cholinergic terminals, was over twofold enhanced in the brain of transgenic mice. In contrast, no differences were observed in the mRNA and ligand binding levels of several different subtypes of nicotinic and muscarinic acetylcholine receptors. These findings suggest that three different hallmarks associated with Alzheimer's disease—namely, progressive cognitive failure, cessation of dendrite branching and spine formation, and enhanced high-affinity choline uptake—are outcomes of cholinergic malfunction.  相似文献   

11.
12.
Evidence thatl-glutamate is a neurotransmitter of corticofugal fibers was sought by measuring changes in several biochemical markers of neurotransmitter function in discrete regions of spinal cord after ablation of sensorimotor cortex in monkeys. One and five weeks after unilateral cortical ablation, samples from six areas of spinal cord (ventral, lateral and dorsal regions of the left and right sides) were analysed for choline acetyltransferase (ChAT) activity and contents of amino acid transmitter candidates-glutamic acid (Glu), aspartic acid (Asp), glycine (Gly), taurine (Tau) and -aminobutyric acid (GABA). During one to five weeks after unilateral cortical ablation of the monkey, prolonged hemiplegia in the contralateral side was observed. Histological examination of the spinal cord 5 weeks after unilateral (left) cortical ablation showed no apparent change in either control (ipsilateral, left) or affected (contralateral, right) sides of the cord as examined by the Klüver-Barrera method. The ChAT activity as a cholinergic marker was scarcely changed in any region of either left (control) or right (affected) side of the spinal cord at one and five weeks after unilateral (left side) ablation of the motor cortex. Amino acid levels in each region of the spinal cord were not significantly changed one week after unilateral ablation of the motor cortex. However, a significant decrease of Glu content was observed in the lateral column of the affected (right) side compared to the control (left) side of cervical and lumbar cord five weeks after cortical ablation of the left motor area. No concomitant alterations of other amino acids were detected. These data strongly suggest thatl-Glu is a neurotransmitter for corticofugal pyramidal tract fibers to anterior horn secondary neurons related to motor control activity in monkey spinal cord.  相似文献   

13.
One of the causes of amyotrophic lateral sclerosis (ALS) is due to mutations in Cu,Zn-superoxide dismutase (SOD1). The mutant protein exhibits a toxic gain of function that adversely affects the function of neurons in the spinal cord, brain stem, and motor cortex. A proteomic analysis of protein expression in a widely used mouse model of ALS was undertaken to identify differences in protein expression in the spinal cords of mice expressing a mutant protein with the G93A mutation found in human ALS. Protein profiling was done on soluble and particulate fractions of spinal cord extracts using high throughput two-dimensional liquid chromatography coupled to tandem mass spectrometry. An integrated proteomics-informatics platform was used to identify relevant differences in protein expression based upon the abundance of peptides identified by database searching of mass spectrometry data. Changes in the expression of proteins associated with mitochondria were particularly prevalent in spinal cord proteins from both mutant G93A-SOD1 and wild-type SOD1 transgenic mice. G93A-SOD1 mouse spinal cord also exhibited differences in proteins associated with metabolism, protein kinase regulation, antioxidant activity, and lysosomes. Using gene ontology analysis, we found an overlap of changes in mRNA expression in presymptomatic mice (from microarray analysis) in three different gene categories. These included selected protein kinase signaling systems, ATP-driven ion transport, and neurotransmission. Therefore, alterations in selected cellular processes are detectable before symptomatic onset in ALS mouse models. However, in late stage disease, mRNA expression analysis did not reveal significant changes in mitochondrial gene expression but did reveal concordant changes in lipid metabolism, lysosomes, and the regulation of neurotransmission. Thus, concordance of proteomic and mRNA expression data within multiple categories validates the use of gene ontology analysis to compare different types of "omic" data.  相似文献   

14.
The establishment of correct neurotransmitter characteristics is an essential step of neuronal fate specification in CNS development. However, very little is known about how a battery of genes involved in the determination of a specific type of chemical-driven neurotransmission is coordinately regulated during vertebrate development. Here, we investigated the gene regulatory networks that specify the cholinergic neuronal fates in the spinal cord and forebrain, specifically, spinal motor neurons (MNs) and forebrain cholinergic neurons (FCNs). Conditional inactivation of Isl1, a LIM homeodomain factor expressed in both differentiating MNs and FCNs, led to a drastic loss of cholinergic neurons in the developing spinal cord and forebrain. We found that Isl1 forms two related, but distinct types of complexes, the Isl1-Lhx3-hexamer in MNs and the Isl1-Lhx8-hexamer in FCNs. Interestingly, our genome-wide ChIP-seq analysis revealed that the Isl1-Lhx3-hexamer binds to a suite of cholinergic pathway genes encoding the core constituents of the cholinergic neurotransmission system, such as acetylcholine synthesizing enzymes and transporters. Consistently, the Isl1-Lhx3-hexamer directly coordinated upregulation of cholinergic pathways genes in embryonic spinal cord. Similarly, in the developing forebrain, the Isl1-Lhx8-hexamer was recruited to the cholinergic gene battery and promoted cholinergic gene expression. Furthermore, the expression of the Isl1-Lhx8-complex enabled the acquisition of cholinergic fate in embryonic stem cell-derived neurons. Together, our studies show a shared molecular mechanism that determines the cholinergic neuronal fate in the spinal cord and forebrain, and uncover an important gene regulatory mechanism that directs a specific neurotransmitter identity in vertebrate CNS development.  相似文献   

15.
In the present study, we performed immunohistochemical studies to investigate the changes of insulin-like growth factor binding protein 2 (IGFBP2) in the central nervous system of SOD1G93A mutant transgenic mice as an in vivo model of amyotrophic lateral sclerosis (ALS). Decreased immunoreactivity for IGFBP2 was observed in the cerebral cortex, hippocampus and brainstem of SOD1G93A transgenic mice. In the cerebral cortex, the number of IGFBP2-positive cells was decreased in the somatomotor area, somatosensory area, auditory area, visual area, entorhinal area, piriform area and prefrontal area. In the hippocampal formation, IGFBP2 immunoreactivity was significantly decreased in the CA1-3 areas and the dentate gyrus. In the brainstem, few IGFBP2-immunoreactive cells were observed in the medullary and pontine reticular formation, vestibular nucleus, trigeminal motor nucleus, facial nucleus, hypoglossal nucleus and raphe nucleus. In the spinal cord, IGFBP2 immunoreactivity was not significantly decreased in SOD1G93A transgenic mice. This study showing decreased IGFBP2 in different brain regions of SOD1G93A transgenic mice may provide clues for understanding differential susceptibility of neural structures in ALS. S. E. Sim and Y. H. Chung have contributed equally to this work.  相似文献   

16.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of unknown origin and characterized by a relentless loss of motor neurons that causes a progressive muscle weakness until death. Among the several pathogenic mechanisms that have been related to ALS, a dysregulation of calcium-buffering proteins in motor neurons of the brain and spinal cord can make these neurons more vulnerable to disease progression. Downstream regulatory element antagonist modulator (DREAM) is a neuronal calcium-binding protein that plays multiple roles in the nucleus and cytosol. The main aim of this study was focused on the characterization of DREAM and glial fibrillary acid protein (GFAP) in the brain and spinal cord tissues from transgenic SOD1G93A mice and ALS patients to unravel its potential role under neurodegenerative conditions. The DREAM and GFAP levels in the spinal cord and different brain areas from transgenic SOD1G93A mice and ALS patients were analyzed by Western blot and immunohistochemistry. Our findings suggest that the calcium-dependent excitotoxicity progressively enhanced in the CNS in ALS could modulate the multifunctional nature of DREAM, strengthening its apoptotic way of action in both motor neurons and astrocytes, which could act as an additional factor to increase neuronal damage. The direct crosstalk between astrocytes and motor neurons can become vulnerable under neurodegenerative conditions, and DREAM could act as an additional switch to enhance motor neuron loss. Together, these findings could pave the way to further study the molecular targets of DREAM to find novel therapeutic strategies to fight ALS.  相似文献   

17.
Amyotrophic lateral sclerosis (ALS) is the most common adult onset motor neuron disease. The etiology and pathogenic mechanisms of the disease remain unknown, and there is no effective treatment. Here we show that intrathecal transplantation of human motor neurons derived from neural stem cells (NSCs) in spinal cord of the SOD1G93A mouse ALS model delayed disease onset and extended life span of the animals. When HB1.F3.Olig2 (F3.Olig2) cells, stable immortalized human NSCs encoding the human Olig2 gene, were treated with sonic hedgehog (Shh) protein for 5–7 days, the cells expressed motor neuron cell type-specific phenotypes Hb9, Isl-1 and choline acetyltransferase (ChAT). These F3.Olig2-Shh human motor neurons were transplanted intrathecally in L5–L6 spinal cord of SOD1G93A mice, and at 4 weeks post-transplantation, transplanted F3.Olig2-Shh motor neurons expressing the neuronal phenotype markers NF, MAP2, Hb9, and ChAT were found in the ventral horn of the spinal cord. Onset of clinical signs in ALS mice with F3.Olig2-Shh motor neuron implants was delayed for 7 days and life span of animals was significantly extended by 20 days. Our results indicate that this treatment modality of intrathecal transplantation of human motor neurons derived from NSCs might be of value in the treatment of ALS patients without significant adverse effects.  相似文献   

18.
We investigated the effects of interruption of the impulse flow in the habenulopeduncular pathways by local infusion of tetrodotoxin on the acetylcholine and choline content in selected dopamine rich regions in the forebrain and midbrain in rats. The tetrodotoxin infusion caused a marked increase in acetylcholine content in the medial frontal cortex, striatum and ventral tegmental area+interpeduncular nucleus, but not in the limbic area or the substantia nigra, whereas choline content was reduced only in both the striatum and ventral tegmental area+interpeduncular nucleus. There was an increase in 3,4-dihydroxyphenylacetic acid content in the striatum after the manipulation. These findings suggest that the dorsal diencephalic conduction system may be involved in the integration of the activity of cholinergic neurons in the forebrain and midbrain regions and striatal dopanine neurons may play a role in the modulation of cholinergic neurons.  相似文献   

19.
阿尔茨海默病主要病理学特征是在脑中形成大量的老年斑和神经元纤维缠结以及出现弥漫性脑萎缩.胆碱能系统的失调与阿尔茨海默病的发生机制关系密切.具体表现为基底前脑的胆碱能系统紊乱,胆碱乙酰化酶、乙酰胆碱含量显著减少,以及大量胆碱能神经元退化.胆碱转运体是胆碱能系统中用于转运胆碱进入细胞的关键蛋白体,有三种类型:高亲和力胆碱转运体、胆碱转运体类蛋白及非特异性有机阳离子转运体.近年,很多研究表明胆碱转运体的异常与一系列神经退行性紊乱有关.本文简要综述胆碱能系统中胆碱转运体的生理作用及其在阿尔茨海默病中异常代谢和可能机制的研究进展,以期为防治阿尔茨海默病提供进一步的理论和实验依据.  相似文献   

20.
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disease characterized by the loss of neuronal function in the motor cortex, brain stem, and spinal cord. Familial ALS cases, accounting for 10-15% of all ALS disease, are caused by a gain-of-function mutation in Cu,Zn-superoxide dismutase (SOD1). Two hypotheses have been proposed to explain the toxic gain of function of mutant SOD (mSOD). One is that mSOD can directly promote reactive oxygen species and reactive nitrogen species generation, whereas the other hypothesis suggests that mSODs are prone to aggregation due to instability or association with other proteins. However, the hypotheses of oxidative stress and protein aggregation are not mutually exclusive. G93A-SOD1 transgenic mice show significantly increased protein carbonyl levels in their spinal cord from 2 to 4 months and eventually develop ALS-like motor neuron disease and die within 5-6 months. Here, we used a parallel proteomics approach to investigate the effect of the G93A-SOD1 mutation on protein oxidation in the spinal cord of G93A-SOD1 transgenic mice. Four proteins in the spinal cord of G93A-SOD1 transgenic mice have higher specific carbonyl levels compared to those of non-transgenic mice. These proteins are SOD1, translationally controlled tumor protein (TCTP), ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1), and, possibly, alphaB-crystallin. Because oxidative modification can lead to structural alteration and activity decline, our current study suggests that oxidative modification of UCH-L1, TCTP, SOD1, and possibly alphaB-crystallin may play an important role in the neurodegeneration of ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号