首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The significance of autonomic nerves reaching the pincal organ was already investigated in connection to the innervation of pinealocytes and mediating light information from the retina for periodic melatonin secretion. In earlier works we found that some autonomic nerve fibers are not secretomotor but terminate on arteriolar smooth muscle cells in the pineal organ of the mink (Mustela vison). Studying in serial sections the pineal organ of the mink and 15 other mammalian species in the present work, we investigated whether similar axons of vasomotor-type are generally present in the wall of pineal vessels, further, whether they reach the organ via the conarian nerves or via periarterial plexuses. In all species investigated, axons of perivasal nerve bundles were found to form terminal enlargements on the smooth muscle layer of pineal arterioles. The neuromuscular endings contain several synaptic and some granular vesicles. Axon terminals are also present around pineal veins. In serial sections, we found that the so-called conarian autonomic nerves reach the pineal organ alongside pineal veins draining into the great internal cerebral vein. Similar nerves present near arteries of the arachnoid enter the pineal meningeal capsule and septa by arterioles, both perivenous and periarterial nerves form terminals of vasomotor-type. The arteriomotor and venomotor regulation of the tone of the vessels of the pineal organ may serve the vascular support for circadian and circannual periodic changes in metabolic activity of the pineal tissue.  相似文献   

2.
Endocrine biorhythms are classified according to the period time, as one of the most characteristic properties of biorhythms. Each endocrine organ has parallel more than one biorhythms with different period time (e. g. circadian and circannual rhythms). The time of acrophase of the biorhythms at the different endocrine organs is fairly variant. This review summarizes the rhythmic function of the THS-thyroid, gonadotrophic-gonadal and ACTH-adrenocortical systems. Pineal gland plays an integrative role in the regulation of rhythmic function of the endocrine system. The melatonin secretion of this gland also reveals conspicuous circadian and circannual rhythms both in mammals and in birds. Mammalian pineal is functional only if its peripheral sympathetic innervation from the superior cervical ganglion is intact. In contrast, melatonin secretion and its circadian rhythm is also maintained in birds under isolated conditions (explanted into an in vitro superfusion system). The 24 hours period time of melatonin circadian rhythm can not be changed by light impulses. The phases of the circadian rhythm, however, can be turned by changing the time of environmental light-dark phases. The wavelength of the artificial light used for reversal of circadian rhythm is an important factor. The development of the entrainment and synchronization of the circadian melatonin rhythm in birds is independent of the rhythmic day-night changes in environmental lighting condition. The differences in the main elements of the biological clock between mammals and birds are discussed.  相似文献   

3.
The pineal gland plays a cental role in the circadian organization of birds, although it is clearly only one component in a system with other components that have not yet been positively identified. The relative importance of the pineal and other components may vary from one group of birds to another. In the most thoroughly studied species, the house sparrow, pineal removal abolishes circadian rhythmicity; rhythmicity is restored by transplantation of a donor bird's pineal and the restored rhythm has the phase of the donor. This, and other evidence, argues convincingly that the pineal is a pacemaker in the sparrow circadian system. The pineal of the chicken has circadian rhythms in several biochemical parameters that result in the rhythmic synthesis of melatonin. The activity of one enzyme in this pathway is rhythmic for at least two cycles in organ culture. In view of this result it is interesting that pineal removal does not abolish circadian rhythmicity in chickens. The fact that lesions of the suprachiasmatic nuclei abolish circadian rhythms in sparrows, several mammalian species, and perhaps Japanese quail and reptiles, suggests that vertebrate circadian organization may be based on differentially weighted interactions between the pineal, the suprachiasmatic nuclei, and perhaps other brain regions.  相似文献   

4.
The role of the nonvisual photoreception is to synchronise periodic functions of living organisms to the environmental light periods in order to help survival of various species in different biotopes. In vertebrates, the so-called deep brain (septal and hypothalamic) photoreceptors, the pineal organs (pineal- and parapineal organs, frontal- and parietal eye) and the retina (of the "lateral" eye) are involved in the light-based entrain of endogenous circadian clocks present in various organs. In humans, photoperiodicity was studied in connection with sleep disturbances in shift work, seasonal depression, and in jet-lag of transmeridional travellers. In the present review, experimental and molecular aspects are discussed, focusing on the histological and histochemical basis of the function of nonvisual photoreceptors. We also offer a view about functional changes of these photoreceptors during pre- and postnatal development as well as about its possible evolution. Our scope in some points is different from the generally accepted views on the nonvisual photoreceptive systems. The deep brain photoreceptors are hypothalamic and septal nuclei of the periventricular cerebrospinal fluid (CSF)-contacting neuronal system. Already present in the lancelet and representing the most ancient type of vertebrate nerve cells ("protoneurons"), CSF-contacting neurons are sensory-type cells sitting in the wall of the brain ventricles that send a ciliated dendritic process into the CSF. Various opsins and other members of the phototransduction cascade have been demonstrated in telencephalic and hypothalamic groups of these neurons. In all species examined so far, deep brain photoreceptors play a role in the circadian and circannual regulation of periodic functions. Mainly called pineal "glands" in the last decades, the pineal organs actually represent a differentiated form of encephalic photoreceptors. Supposed to be intra- and extracranially outgrown groups of deep brain photoreceptors, pineal organs also contain neurons and glial elements. Extracranial pineal organs of submammalians are cone-dominated photoreceptors sensitive to different wavelengths of light, while intracranial pineal organs predominantly contain rod-like photoreceptor cells and thus scotopic light receptors. Vitamin B-based light-sensitive cryptochromes localized immunocytochemically in some pineal cells may take part in both the photoreception and the pacemaker function of the pineal organ. In spite of expressing phototransduction cascade molecules and forming outer segment-like cilia in some species, the mammalian pineal is considered by most of the authors as a light-insensitive organ. Expression of phototransduction cascade molecules, predominantly in young animals, is a photoreceptor-like characteristic of pinealocytes in higher vertebrates that may contribute to a light-percepting task in the perinatal entrainment of rhythmic functions. In adult mammals, adrenergic nerves--mediating daily fluctuation of sympathetic activity rather than retinal light information as generally supposed--may sustain circadian periodicity already entrained by light perinatally. Altogether three phases were supposed to exist in pineal entrainment of internal pacemakers: an embryological synchronization by light and in viviparous vertebrates by maternal effects (1); a light-based, postnatal entrainment (2); and in adults, a maintenance of periodicity by daily sympathetic rhythm of the hypothalamus. In addition to its visual function, the lateral eye retina performs a nonvisual task. Nonvisual retinal light perception primarily entrains genetically-determined periodicity, such as rod-cone dominance, EEG rhythms or retinomotor movements. It also influences the suprachiasmatic nucleus, the primary pacemaker of the brain. As neither rods nor cones seem to represent the nonvisual retinal photoreceptors, the presence of additional photoreceptors has been supposed. Cryptochrome 1, a photosensitive molecule identified in retinal nerve cells and in a subpopulation of retinal photoreceptors, is a good candidate for the nonvisual photoreceptor molecule as well as for a member of pacemaker molecules in the retina. When comparing various visual and nonvisual photoreceptors, transitory, "semi visual" (directional) light-perceptive cells can be detected among them, such as those in the parietal eye of reptiles. Measuring diffuse light intensity of the environment, semivisual photoreceptors also possess some directional light perceptive capacity aided by complementary lens-like structures, and screening pigment cells. Semivisual photoreception in aquatic animals may serve for identifying environmental areas of suitable illumination, or in poikilotermic terrestrial species for measuring direct solar irradiation for thermoregulation. As directional photoreceptors were identified among nonvisual light perceptive cells in the lancelet, but eyes are lacking, an early appearance of semivisual function, prior to a visual one (nonvisual --> semivisual --> visual?) in the vertebrate evolution was supposed.  相似文献   

5.
An immunohistochemical study of the pineal gland of the domestic pig was carried out using the antisera raised against vasopressin (VP). The pineal glands were taken from the newborn, 21-day- and 7-month old female pigs. The pig pineal gland is moderately innervated by VP-immunoreactive nerve fibers. They run from the habenular commissure into the connective tissue septa and further into the pineal parenchyma. In the subependymal tissue as well as in the connective tissue septa, the fibers are smooth or with small varicosities and in the parenchyma with large ones. The obtained results point to extrapineal and extraepithalamic source of the fibers. The density of VP-immunoreactive fibers in the pineal gland of 7-month old pigs is higher than in the younger animals.  相似文献   

6.
The pineal functions are modulated by some neuropeptides including PHI and VIP. The presence of PHI-immunoreactive and VIP-immunoreactive nerve fibers in the pineal gland has been shown in several mammalian species. Both peptides influence the pineal serotonin N-acetyltransferase activity and melatonin synthesis. The aim of the present study was to examine the localization of PHI- and VIP-immunoreactive nerve fibers in the pig pineal gland. Four three-month old female pigs housed in natural light conditions, with free access to food and water, were used in the study. The pineals were fixed by perfusion with 4% paraformaldehyde in 0.1 M phosphate buffer. An immunohistochemical ABC streptavidin-biotin-complex method was used for the demonstration of PHI and VIP. PHI- and VIP-immunopositive nerve fibers were found in the pineal gland as well as in the habenular and posterior commissural areas. In the pineal gland, the density of PHI-immunoreactive nerve fibers was considerably higher than that of the fibers containing VIP. PHI- and VIP-immunopositive nerve fibers were more abundant in the cortical than in the medullary part of the gland. The nerve fibers formed bundles in the pineal capsule, from where they penetrated to the connective tissue septa and formed a dense meshwork surrounding blood vessels. In the parenchyma, PHI- and VIP-immunoreactive nerve terminals created baskets around clusters of pinealocytes. No PHI- or VIP-immunopositive cells were found in the pig pineal gland.  相似文献   

7.
The optic nerve contains the connective tissues, i.e. the lamina cribrosa and pial septa. This report presents a histological comparison of the lamina cribrosa and pial septa in the five classes (mammals, birds, reptiles, amphibians and teleosts) of vertebrates. Furthermore, the distribution of myelinated fibers was observed from the optic nerve through the retina in the same animals. The lamina cribrosa is found in mammals except for mice, and in birds. Structural complexity of the lamina was different in animals but generally dependent of the optic nerve thickness. The pial septa were present in the optic nerve proper of the mammals except for the mice, in birds and in a part of teleosts. Fasciculation of the optic nerve by the pial septa tended to be more prominent as the optic nerve become thicker. The optic nerve consisted of largely myelinated fibers in vertebrates. The retina contained some myelinated fibers in submammals but was thoroughly devoid of myelinated fibers in mammals. The borderline between myelinated and unmyelinated portions in the optic nerve of different species did not related to the lamina cribrosa. Amphibians had exceptionally only a few myelinated fibers in the optic nerve and no myelinated fibers in the retina.  相似文献   

8.
Mammalian circadian organization is believed to derive primarily from circadian oscillators within the hypothalamic suprachiasmatic nuclei (SCN). The SCN drives circadian rhythms of a wide array of functions (e.g., locomotion, body temperature, and several endocrine processes, including the circadian secretion of the pineal hormone melatonin). In contrast to the situation in several species of reptiles and birds, there is an extensive literature reporting little or no effect of pinealectomy on mammalian circadian rhythms. However, recent research has indicated that the SCN and circadian systems of several mammalian species are highly sensitive to exogenous melatonin, raising the possibility that endogenous pineal hormone may provide feedback in the control of overt circadian rhythms. To determine the role of the pineal gland in rat circadian rhythms, the effects of pinealectomy on locomotor rhythms in constant light (LL) and constant darkness (DD) were studied. The results indicated that the circadian rhythms of pinealectomized rats but not sham-operated controls dissociated into multiple ultradian components in LL and recoupled into circadian patterns only after 12-21 days in DD. The data suggest that pineal feedback may modulate sensitivity to light and/or provide coupling among multiple circadian oscillators within the SCN.  相似文献   

9.
Summary The breeding cycle of the tropical spotted munia (Lonchura punctulata) is regulated by the photoperiodic synchronization of an endogenous circannual rhythm. Since the pineal gland has been implicated in circadian periodicity, in an attempt to understand the functioning of the mechanism(s) involved in photoperiodic synchronization of the circannual clock in the spotted munia the effect of pinealectomy on the reproductive cycle was studied in birds maintained in normal entrained (natural day length, NDL) and free-running (constant light, LL) conditions.Results indicate that pinealectomy had no effect in LL but that the reproductive cycle was altered marginally (in the first cycle only), and the body weight cycle drastically, in NDL conditions. It seems that the marginal effects observed on the overt reproductive cycle in the entrained condition may not be through the circannual oscillator itself but may perhaps reflect interference with processes involved in photoperiodic synchronization of the circannual rhythm. Alternatively, these effects could also result from general metabolic disturbances caused in the body by the absence of the pineal gland.Abbreviations LL constant light - NDL natural day length  相似文献   

10.
An immunohistochemical study of the cat pineal gland was performed using a rabbit polyclonal antibody directed against neuropeptide Y (NPY) and an antibody directed against the C-terminal flanking peptide of neuropeptide Y (CPON). Numerous NPY- and CPON-immunoreactive (IR) nerve fibers were demonstrated throughout the gland and in the pineal capsule. The number of IR nerve fibers in the capsule was high and from this location fibers were observed to penetrate into the gland proper via the pineal connective tissue septa, often following the blood vessels. From the connective tissue septa IR fibers intruded into the parenchyma between the pinealocytes. Many IR nerve fibers were observed in the pineal stalk and in the habenular as well as the posterior commissural areas. The number of NPY/CPON-IR nerve fibers in pineal glands from animals bilaterally ganglionectomized two weeks before sacrifice was low. The source of most of the extrasympathetic NPY/CPONergic nerve fibers is probably the brain from where they enter the pineal via the pineal stalk. However, an origin of some of the fibers from parasympathetic ganglia cannot be excluded due to the presence of a few IR fibers in the pineal capsule of ganglionectomized animals. It is concluded that the cat pineal is richly innervated with NPYergic nerve fibers mostly of sympathetic origin. The posttranslational processing of the NPY promolecule results in the presence of both NPY and CPON in intrapineal nerve fibers.  相似文献   

11.
H Schr?der 《Acta anatomica》1987,129(1):22-26
Pineal melatonin synthetic activity shows distinct diurnal characteristics. The circadian regulation of melatonin synthesis is provided by noradrenaline-releasing sympathetic nerves. The pineal noradrenaline content shows a circadian rhythmicity tidally related to the changes in melatonin synthesis rate. To evaluate possible circadian changes of pineal noradrenergic fibre arrangement, the nerve distribution in rat and guinea pig pineal glands was visualized by means of glyoxylic acid-induced histofluorescence. Histochemical findings at 08.00 h and 24.00 h did not exhibit any differences: in both species a dense, mainly perivascularly located network of fluorescent fibres was encountered. As indicated by the simultaneous intraneural presence of green-bluish and yellow fluorophores these fibres most likely contain noradrenaline and serotonin. Obviously circadian melatonin synthesis changes are not paralleled by changes in the distribution pattern of pineal sympathetic nerve fibers. Like other sympathetic innervation-related morphological parameters, histofluorescence does not accurately reflect circadian biochemical changes in the pineal gland.  相似文献   

12.
Abstract

The two dominant environmental oscillations shape biology and survival of species: the day–night cycle and the succession of the seasons in the year. Organisms have adapted to anticipate these variations by evolving internal circadian (ca.- about, diem- day) and circannual clocks. The former enables the organisms to regulate physiological functions on a daily basis, and the latter on the annual basis. In mammals, the suprachiasmatic nuclei (SCN) of the anterior hypothalamus contain master pacemaker and orchestrate peripheral clocks in synchrony with the daily 24 h light-dark cycle, while in birds circadian pacemake is an interacting system principally located in the retina, pineal and the hypothalamus. In this mini review, we discuss the role of circadian clocks in regulation of seasonal timing in higher vertebrates, with reference to birds and mammals.  相似文献   

13.
The present study demonstrates the occurrence of PACAP-immunoreactive (PACAP-IR) nerve fibers in different compartments of the pig pineal gland, including glandular capsule (where they form a very dense network) and subependymal tissue close to the pineal recess (moderate to dense meshwork of varicose fibers). Furthermore, several varicose fibers penetrate from the capsule into the connective tissue septa and then into the parenchyma, where they form unequally distributed, fine network and, in some cases, basket-like structures around pinealocytes. Some of the PACAP-IR nerve fibers, observed both in the habenular and posterior epithalamic areas, extend to the pineal gland. PACAP-IR cells could be demonstrated neither in the pineal gland, nor in epithalamic areas.  相似文献   

14.
Summary Free-running, naked axons (diameter 2000 to 7000 Å) can be found in the lumen of the pineal organ. Their axoplasm contains microtubules, mitochondria as well as synaptic (diameter 350 to 450 Å) and granulated vesicles (diameter 500 to 1500 Å). In Pleurodeles waltlii, the axons in the pineal lumen form synapses on the free, apical surface of the pineal ependyma which is supplied with microvilli. In addition to usual cytoplasmic elements the innervated ependymal cells contain myeloid bodies and accumulations of glycogen granules. Without forming synapses these axons pass by and occasionally contact the inner and/or outer segments of the pinealocytes. The synapses found on the pineal ependymal cells furnish evidence of a neuronal control of these glial elements.The nerve fibers of the pineal lumen are being compared with known CSF contacting axons; they resemble one another in their ultrastructure and synaptic connections. Therefore and since in amphibians the pineal lumen communicates with the 3rd ventricle, the axons of the pineal lumen are considered to represent CSF contacting axons and to belong to the so-called CSF contacting axon system of the brain.In addition, the pineal CSF contacting axons are being compared with the following nerve fibers and terminals found in the pineal tissue: 1) axons containing large, granulated vesicles (diameter 1300 to 1500 Å) and terminating on the dendrites of nerve cells situated among the basal processes of the pinealocytes; 2) the synaptic ribbons-containing pinealocyte processes forming likewise synapses on the nerve cells; 3) the neurohormonal, synaptic semidesmosomes of pinealocytic processes on the lamina basalis separating the connective tissue spaces of the pia mater from the proper nervous tissue of the pineal organ; 4) the perivasal, autonomic nerve fibers of the pial septa. Though granulated vesicles of various diameters are present in all these terminals the greatest morphological similarity is found between the pineal CSF contacting axons and those nerve fibers containing large, granulated vesicles and forming axo-dendritic synapses on the pineal nerve cells. A similar nature and origin of both axons are suggested.
Zusammenfassung Im Lumen des Pinealorgans können frei verlaufende, nackte Axone (Durchmesser 2000–7000 Å) beobachtet werden. Ihr Axoplasma enthält Mikrotubuli, Mitochondrien, synaptische (Durchmesser 350–450 Å) und granulierte Vesikel (Durchmesser 500–1500 Å). Bei Pleurodeles waltlii bilden die im Lumen des Pinealorgans verlaufenden Axone Synapsen auf der freien, apikalen Oberfläche der pinealen Ependymzellen. In den innervierten Ependymzellen kommen neben sonstigen Zytoplasmabestandteilen Myeloidkörper und Anhäufungen von Glykogengranula vor. Die Axone verlaufen am Innen- und Außenglied der Pinealozyten vorbei, können diese berühren, bilden aber dort keine Synapsen. Die auf den pinealen Ependymzellen nachgewiesenen Synapsen beweisen eine neuronale Kontrolle dieser Gliaelemente.Die Nervenfasern des pinealen Lumens wurden mit bekannten Liquorkontaktaxonen verglichen. Sie ähneln einander in ihrer Ultrastruktur und ihren synaptischen Verbindungen. Aus diesem Grunde und da bei den Amphibien das pineale Lumen mit dem 3. Ventrikel kommuniziert, werden die Axone des pinealen Lumens als Liquorkontaktaxone und als Glied des sogenannten Liquorkontakt-Axonsystems des Gehirns angesehen.Ferner wurden die pinealen Liquorkontaktaxone mit folgenden Nervenfasern und Endigungen verglichen, die im pinealen Gewebe vorkommen: 1) Axone, die große, granulierte Vesikel (Durchmesser 1300–1500 Å) enthalten und an den Dendriten von Nervenzellen endigen, welche zwischen den basalen Fortsätzen der Pinealozyten liegen; 2) Pinealozytenfortsätze, die synaptische Bänder enthalten und ebenfalls an diesen Neuronen Synapsen bilden; 3) die neurohormonalen, synaptischen Semidesmosomen von Pinealozytenfortsätzen an der Lamina basalis, die die bindegewebigen Räume der Pia mater vom eigentlichen Nervengewebe des Pinealorgans begrenzt: 4) die perivasalen, autonomen Nervenfasern der pialen Septen. Obwohl granulierte Vesikel verschiedener Durchmesser in allen diesen Terminalen vorhanden sind, stellten wir die größte, morphologische Ähnlichkeit zwischen den pinealen Liquorkontaktaxonen und denjenigen Nervenfasern fest, die große, granulierte Vesikel aufweisen und an den pinealen Neuronen axo-dendritische Synapsen bilden. Eine ähnliche Natur und Herkunft beider Axone werden angenommen.
  相似文献   

15.
In the subtropical finch, spotted munia (Lonchura punctulata) circannual rhythms (of gonads, fattening, feeding) have been demonstrated in an information-free environment of continuous illumination (LL), rendering it an ideal model for research on the physiology of the circannual clock. In an attempt to understand the involvement, if any, of the circadian system in the genesis of circannual rhythms, we studied the effect of pinealectomy (LL 15 lux) and strong continuous illumination (LL 300 lux), both known to abolish circadian rhythms, on the circadian perch-hopping rhythm and on the circannual rhythm of reproduction and fattening in the same birds. While both pinealectomy and LL 300 lux treatments abolished the circadian rhythm of motor activity, they had no effect on the circannual rhythms of gonadal size and fattening. If the endogenous circadian rhythm in perch-hopping can be taken to reflect the circadian clock mechanism associated with gonadal functioning, present results suggest that circannual rhythm of reproduction in spotted munia is independent of circadian events.  相似文献   

16.
In the subtropical finch, spotted munia (Lonchura punctulata) circannual rhythms (of gonads, fattening, feeding) have been demonstrated in an information-free environment of continuous illumination (LL), rendering it an ideal model for research on the physiology of the circannual clock. In an attempt to understand the involvement, if any, of the circadian system in the genesis of circannual rhythms, we studied the effect of pinealectomy (LL 15 lux) and strong continuous illumination (LL 300 lux), both known to abolish circadian rhythms, on the circadian perch-hopping rhythm and on the circannual rhythm of reproduction and fattening in the same birds. While both pinealectomy and LL 300 lux treatments abolished the circadian rhythm of motor activity, they had no effect on the circannual rhythms of gonadal size and fattening. If the endogenous circadian rhythm in perch-hopping can be taken to reflect the circadian clock mechanism associated with gonadal functioning, present results suggest that circannual rhythm of reproduction in spotted munia is independent of circadian events.  相似文献   

17.
An immunohistochemical study of the pig pineal gland was carried out using polyclonal rabbit antiserum raised against substance P (SP). The pineal glands were taken from the newborn, 21-day- and 7-month-old female pigs. Immunoreactive nerve fibers were observed in the pineal gland as well as in the posterior commissure and habenular areas. The bundles of SP-immunoreactive fibers were also seen in the subependymal layer of the pineal tissue. The single SP-immunoreactive nerve fibers and few small bundles of nerve fibers were located with equal density throughout the pineal gland, in the connective tissue septa and in the parenchyma. SP-immunoreactive cell bodies were observed in the medial habenular nucleus. The obtained results point to this nucleus as one of the central sources of SP innervation in the pig pineal gland. The study did not show any differences in the distribution and the density of SP-immunoreactive nerve fibers between newborn, 21-day- and 7 month-old pigs.  相似文献   

18.
The most simple pineal complex (the pineal and parapineal organs of lampreys), consists of saccular evaginations of the diencephalic roof, and has a retina-like structure containing photoreceptor cells and secondary neurons. In more differentiated vertebrates, the successive folding of the pineal wall multiplies the cells and reduces the lumen of the organ, but the pattern of the histological organization remains similar to that of lampreys; therefore, we consider the histological structure of the pineal organ of higher vertebrates as a 'folded retina'. The cell membrane of several pineal photoreceptor outer-segments of vertebrates immunoreact with anti-retinal opsin antibodies supporting the view of retina-like organization of the pineal. Some other pineal outer segments do not react with retinal anti-opsin antibodies, a result suggesting the presence of special pineal photopigments in different types of pinealocytes that obviously developed during evolution. The chicken pinopsin, detected in the last years, may represent one of these unknown photopigments. Using antibodies against chicken pinopsin, we compared the immunoreactivity of different photoreceptors of the pineal organs from cyclostomes to birds at the light and electron microscopic levels. We found pinopsin immunoreaction on all pinealocytes of birds and on the rhodopsin-negative large reptilian pinealocytes. As the pinopsin has an absorption maximum at 470 nm, these avian and reptilian immunoreactive pinealocytes can be regarded as green-blue light-sensitive photoreceptors. Only a weak immunoreaction was observed on the frog and fish pinealocytes and no reaction was seen in cyclostomes and in the frontal organ of reptiles. Some photoreceptors of the retina of various species also reacted the pinopsin antibodies, therefore, pinopsin must have certain sequential similarity to individual retinal opsins of some vertebrates.  相似文献   

19.
Circannual clocks in avian reproduction and migration   总被引:6,自引:0,他引:6  
EBERHARD GWINNER 《Ibis》1996,138(1):47-63
Many behavioural and physiological functions of organisms are adjusted to the periodic changes in their environment, particularly to those related to the natural day and year. This adjustment is often achieved through the action of endogenous daily (circadian) and annual (circannual) clocks. Studies of the control of avian moult, migration and reproduction have played a major role in understanding how biological clocks function and interact with rhythms in the environment. Investigations on tropical birds such as the East African subspecies of the Stonechat ( Saxicola torquata axillaris ) and long-distance migrants like the Garden Warbler ( Sylvia boriri ) have provided the longest records of circannual rhythms, some of them running for more than 12 years, with periods ranging from about 9 to 13 months. Avian circannual rhythms are organized in a characteristic way for a particular species or population, and cross-breeding experiments have shown that some of the differences found among them are genetically determined. In African Stonechats circannual rhythms guarantee that seasonal events occur at the appropriate times of the year and in the characteristic sequence. They also control a "reproductive window" that provides the temporal framework for breeding. The width of this window is rather inflexible but the performance of a bird within this framework (e.g. whether it breeds once or twice per season) is subject to modification by environmental conditions. In migratory birds circannual programs are involved in determining the time course, distance and direction of migration. Circannual rhythms are synchronized with and modified by environmental factors in a complex way, but the endogenous mechanisms usually respond to environmental cues such that an optimal adjustment to season and latitude is guaranteed.  相似文献   

20.
Phylogenetically originated from photoreceptive structures, the pineal organ adapts the organism to circadian and circannual light periodicity of the environment, while the retina develops to a light-based locator. Bats have a nocturnal life and an echolocator orientation presumably modifying the task of photoreception. Looking for morphological basis of the special functions, in the present work we compared the fine structure and immunocytochemistry of the retina and pineal organ in micro- and megacrochiroptean bats. We found that there is a high similarity between the retina and pineal organ in megachiropterans when compared to other species investigated so far. Besides of photoreceptor derived pinealocytes, the pineal organ of both micro- and megachiropterans contain intrapineal neurons and/or ganglionic cells as well as glial cells. Like spherules and pedicles of retinal photoreceptors, axon-type processes of pinealocytes form synaptic ribbon containig terminals. Similar to retinal photoreceptors and neurons, pinealocytes and pineal neurons contain immunoreactive glutamate and aspartate. In addition, excitatory amino acids accumulate in the pineal neurohormonal endings and might have a role in the hormonal (serotonin?) release of the organ. Concerning the structure of the retina the highest similarity to the organization of the pineal organ was found in the megachiroptean fruit eating bats Cynopterus sphinx and Rusettus niloticus. The retina of these species forms folds and crypts in its photoreceptor layer. This organization is similar to the folds of the pineal wall successively developed during evolution. Since a folded photoreceptor layer is not viable for a photolocator screen in decoding two-dimensional images, we suppose that this peculiar organization of the megachiropteran retina is connected to a "pineal-like" photometer task of the eye needed by these species active at night.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号