首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous report, the ob mutation was mapped to a position 5 cM distal to Met on murine Chromosome (Chr) 6 in tight linkage to Cpa. In order to identify additional RFLPs in the region of ob, we have made use of chromosome microdissection of a 6:16 Robertsonian chromosome. In total, 19 RFLPs were used to type 131 progeny of a B6D2 ob/+xB6 spretus ob/+intercross. Fifteen of the RFLPs mapped to Chr 6, one of which, D6Rck13, was tightly linked to ob. For refinement of the genetic map around ob, 350 obese progeny of a B6 Mus castaneus ob/+ intercross were characterized. DNAs from these animals were typed for microsatellite markers from Chr 6 that flank ob. Recombinants were then typed for D6 Rck13. D6Rck13 was nonrecombinant among all the progeny of both crosses corresponding to 831 meioses. This probe will be of use as an entry point for physical mapping of the ob mutation.  相似文献   

2.
A novel spontaneous neurological mutation, scrambler (scm), appeared in the inbred mouse strain DC/Le (dancer) in 1991. Mice homozygous for this recessive mutation are recognized by an unstable gait and whole-body tremor. The cerebella of 30-day-old scrambler homozygotes are hypoplastic and devoid of folia; however, neither seizures nor abnormal brain wave patterns have been observed. Homozygous scrambler mutants have an ataxic gait which in the male may be a contributory factor in the failure to mate. Female homozygotes mate and breed. Life span is not reduced in either sex. Scrambler is similar to the reeler mutation in phenotype and pathology and, like reeler, probably results from defective neuronal migration. We mapped the scrambler mutation to Chromosome (Chr) 4, proving that it is distinct from the recently cloned reeler gene on Chr 5. We also determined the map position of the agrin gene, Agrn, on Chr 4, and on this basis eliminated it as a candidate for scm. Currently there is no known homology of scrambler with human lissencephalies or other human disorders caused by abnormal neuronal migration. Received: 13 May 1996 / Accepted: 10 July 1996  相似文献   

3.
We found a new X-linked dominant mouse mutation. This mouse has the same phenotype as Td, which exhibits hyperkeratotic skin, reduced viability in affected females, a tendency to be smaller, lighter weight than the normal sibs during weaning age, and prenatal lethality in affected males. To map the locus, we tested 267 progeny from an intraspecific backcross between affected females and wild-origin strain males. Polymerase chain reaction (PCR) was performed with microsatellite markers of the proximal region of the mouse X Chromosome (Chr). This mutant showed no recombination with DXMit 123, DXMit 55, or DXMit 26. The gene position and phenotype of this mutant were very similar to those of Td. Therefore, it is speculated that the new mutant gene is a multiple allele of Td, and we designated it Tattered-Hokkaido (Td ho ). Linkage analysis of these animals suggested a possible gene order of cen-(Td ho , DXMit123, DXMit55, DXMit26)–DXMit161–DXMit54–DXMit103–DXMit52–DXMit190–DXMit138) in the X Chr. Prenatal lethality of male mutants was also investigated, with 12.5 to 16.5 embryonic day (E) backcrossed embryos from affected F1 females. It was found that the male mutants died between E12.5 and E14.5. The cause of death of male mutants is discussed in relation with the other proximal genes of the X Chr. Received: 15 December 1997 / Accepted: 1 April 1997  相似文献   

4.
Rbt (Rabo torcido) is a new semidominant mouse mutant with a variety of skeletal abnormalities. Heterozygous Rbt mutants display homeotic anteroposterior patterning problems along the axial skeleton that resemble Polycomb group and trithorax gene mutations. In addition, the Rbt mutant displays strong similarities to the phenotype observed in Ts (Tail-short), indicating also a homeotically transformed phenotype in these mice. We have mapped the Rbt locus to an interval of approximately 6 cM on mouse Chromosome (Chr) 11 between microsatellite markers D11Mit128 and D11Mit103. The Ts locus was mapped within a shorter interval of approximately 3 cM between D11Mit128 and D11Mit203. This indicates that Rbt and Ts may be allelic mutations. Sox9, the human homolog of which is responsible for the skeletal malformation syndrome campomelic dysplasia, was mapped proximal to D11Mit128. It is, therefore, unlikely that Ts and Rbt are mouse models for this human skeletal disorder. Received: 14 April 1996 / Accepted: 22 July 1996  相似文献   

5.
Hugger, hug, is a recessively expressed mutation in mice that features mildly abnormal locomotion, not yet explained, and a unique combination of developmental and degenerative retinal abnormalities. Analysis with the efficient MEV linkage testing stock established that hug is on mouse Chr 19 about 14 cM from th centromere, between the microsatellite markers D19Mit28 and D19Mit14. An abnormal retinal phenotype was recognized on the day of birth, when some retinal ganglion cells already lie in abnormal positions in the inner plexiform layer. By postnatal day 18 the number of neurons is reduced in all three cellular layers of the retina. Rod photoreceptor cells develop only rudimentory outer segments, and by 9 months of age, about 75% of the photoreceptor cells have completely disappeared. Similar photoreceptor cell abnormalities are seen in prph2 (formerly rds) homozygotes, which lack the peripherin/rds protein of the rod outer segments, but a mating of the respective homozygotes yielded normal progeny. Rom1, which codes for an outer segment protein similar to peripherin/rds, maps to a more proximal position on Chr 19. Received: 4 October 1996 / Accepted: 31 January 1997  相似文献   

6.
7.
Cat4 is the second largest allelism group in the collection of mouse dominant eye mutations recovered in Neuherberg and carriers express anterior polar cataract, central corneal opacity, and lens-corneal adhesions. We have mapped the Cat4 locus of the mouse to central Chromosome (Chr) 8 at position cM 31. Histological characterization of Cat4 a heterozygotes and homozygotes indicates failure of separation of the lens vesicle from the surface ectoderm. Human anterior segment ocular dysgenesis (ASOD) is autosomal dominant, carriers express an eye phenotype similar to that of Cat4 a carriers, and it has been mapped to a region of 4q homologous to mouse central Chr 8. Thus, on the basis of phenotype and map position, Cat4 may be a mouse model of human ASOD. The genes Junb, Jund1, Mel, and Zfp42 are discussed as possible candidates for Cat4. Received: 31 October 1996 / Accepted: 20 January 1997  相似文献   

8.
Danforth's short tail (Sd) is a semidominant mutation of the mouse with effects on the skeleton and the urogenital system. In view of its phenotype and its position in the proximal part of Chromosome (Chr) 2, three genes qualified as possible candidates: Pax-8, a paired box-containing gene; Midkine (Mdk), a retinoic acid-responsive gene; and a new locus (Etl-4) identified by enhancer trapping with a lacZ reporter gene which showed expression in the notochord, the mesonephric mesenchyme, and the apical ectodermal ridge. Three different backcrosses involving all three genes in different combinations were set up and analyzed. From our results we conclude that Sd, Etl-4, Pax-8, and Mdk are independent loci, with Etl-4 being the closest genetic marker (1.1±1.4 cM) to the Danforth's short tail (Sd) gene.  相似文献   

9.
A new mouse mutant, punk rocker (allele symbol Kcne1 pkr ), arose spontaneously on a C57BL/10J inbred strain background and is characterized by a distinctive head-tossing, circling, and ataxic phenotype. It is also profoundly and bilaterally deaf. The mutation resides in the Kcne1 gene on Chromosome (Chr) 16 and has been identified as a single base change within the coding region of the third exon. The C to T nucleotide substitution causes an arginine to be altered to a termination codon at amino acid position 67, and predictably this will result in a significantly truncated protein product. The Kcne1 pkr mutant represents the first spontaneous mouse model for the human disorder, Jervell and Lange-Nielsen syndrome, associated with mutations in the homologous KCNE1 gene on human Chr 21. Received: 20 April 2000 / Accepted: 2 June 2000  相似文献   

10.
The Tcm mutation in the mouse is an autosomal dominant ocular malformation manifesting as microphthalmia, iris dysplasia, cataract, and coloboma. As a first step to cloning the Tcm gene, we report the localization of the Tcm mutation with respect to known microsatellite markers. Backcross progeny carrying the Tcm mutation were produced by mating Tcm/+ heterozygous mice to normal C57BL/6 partners. Genomic DNA from each mouse was subjected to PCR analysis to identify simple sequence length polymorphisms. Our results locate Tcm to Chr 4 and suggest candidate genes responsible for the Tcm phenotype. Finally, ocular histopathology was done in 3-week-old animals to define the extent of the malformation. Received: 14 April 1996 / Accepted: 13 October 1996  相似文献   

11.
Nmf11 is an N-ethyl-N-nitrosourea–induced recessive mouse mutation. In this article we show that the mutation is in the gene that encodes the glycine receptor alpha 1 subunit (Glra1). The new Glra1 mutation appears to affect glycine’s inhibitory neurotransmission in the central nervous system (CNS) of the nmf11 homozygotes, which suffer from a severe startle disease–related phenotype and die by postnatal day 21. The nmf11 mutation involves a C-to-A transition of nucleotide 518, which results in the N46K substitution in the long extracellular NH2 terminal or ligand-binding domain of the GLRA1 mature protein. The mutation does not result in reduced expression of GLRA1 at the mRNA or protein levels and the mutant glycine receptor localizes properly in synaptic sites of nmf11 homozygotes.  相似文献   

12.
We have determined the order of a number of SSR and SSC polymorphic markers that map to distal mouse Chromosome (Chr) 4 and have used analysis of these markers in backcrosses designed to test the localization of the curly-tail (ct) mutation. We have confirmed that ct maps to this region, close to the locus D4Mit69. Our results also support the hypothesis that ct is a semidominant, rather than a recessive, mutation, since we have identified abnormal-tailed mice that are likely to be heterozygous at the ct locus. Finally, we examined Pax7 as a candidate gene for the ct mutation and found no evidence of protein sequence differences in ct compared with wild-type mice.  相似文献   

13.
Cerebellar deficient folia, cdf, is a spontaneous autosomal recessive mutation in the mouse with unique pathology; the cerebellar cortex of the cdf/cdf mouse has only 7 folia instead of 10, which is the normal count for the C3H/HeJ strain in which this mutation arose. The cerebellum of the cdf/cdf mouse is hypoplastic and contains mineral deposits in the ventral vermis that are not present in controls. We used an intersubspecific intercross between C3H/HeSnJ-cdf/+ and Mus musculus castaneus (CAST/Ei) to map the cdf mutation to Chromosome (Chr) 6. The most likely gene order is D6Mit16–(cdf, D6Mit3)–D6Mit70–D6Mit29–D6Mit32, which positions cdf distal to lurcher (Lc) and proximal to motor neuron degeneration 2 (mnd2). The definitive visible phenotypes and histopathologies of cdf, Lc, and mnd2 support our mapping evidence that cdf is a distinct gene. The novel pathology of cdf should help elucidate the complicated process of cerebellar folia patterning and development. cdf recombined with mouse atonal homolog 1, Math1, the mouse homolog of the Drosophila atonal gene. Received: 2 August 1996 / Accepted: 2 October 1996  相似文献   

14.
The LEC rat has been reported to exhibit X-ray hypersensitivity and deficiency in DNA double-strand break (DSB) repair. The present study was performed to map the locus responsible for this phenotype, the xhs (X-ray hypersensitivity), as the first step in identifying the responsible gene. Analysis of the progeny of (BN × LEC)F1× LEC backcrosses indicated that the X-ray hypersensitive phenotype was controlled by multiple genetic loci in contrast to the results reported previously. Quantitative trait loci (QTL) linkage analysis revealed two responsible loci located on Chromosomes (Chr) 4 and 1. QTL on Chr 4 exhibited very strong linkage to the X-ray hypersensitive phenotype, while QTL on Chr 1 showed weak linkage. The Rad52 locus, mutation of which results in hypersensitivity to ionizing radiation and impairment of DNA DSB repair in yeast, was reported to be located on the synteneic regions of mouse Chr 6 and human Chr 12. However, mapping of the rat Rad52 locus indicated that it was located 23 cM distal to the QTL on Chr 4. Furthermore, none of the radio-sensitivity-related loci mapped previously in the rat chromosome were identical to the QTL on Chrs 4 and 1 in the LEC rat. Thus, it seems that X-ray hypersensitivity in the LEC rat is caused by mutation(s) in as-yet-undefined genes. Received: 14 February 2000 / Accepted: 17 May 2000  相似文献   

15.
An interspecific backross was used to define a high resolution linkage map of mouse Chromosome (Chr) 1 and to analyze the segregation of the generalized lymphoproliferative disease (gld) mutation. Mice homozygous for gld have multiple features of autoimmune disease. Analysis of up to 428 progeny from the backcross [(C3H/HeJ-gld x Mus spretus)F1 x C3H/HeJ-gld] established a map that spans 77.6 cM and includes 56 markers distributed over 34 ordered genetic loci. The gld mutation was mapped to a less than 1 cM segment on distal mouse Chr 1 using 357 gld phenotype-positive backcross mice. A second backcross, between the laboratory strains C57BL/6J and SWR/J, was examined to compare recombination frequency between selected markers on mouse Chr 1. Significant differences in crossover frequency were demonstrated between the interspecific backcross and the inbred laboratory cross for the entire interval studied. Sex difference in meiotic crossover frequency was also significant in the laboratory mouse cross. Two linkage groups known to be conserved between segments of mouse Chr 1 and the long arm of human Chrs 1 and 2 where further defined and a new conserved linkage group was identified that includes markers of distal mouse Chr 1 and human Chr 1, bands q32 to q42.  相似文献   

16.
A new mouse mutation, recombination-induced mutation 3 (Rim3), arose spontaneously in our mouse facility. This mutation exhibits corneal opacity as well as abnormal skin and hair development resembling rex denuded (Re den ) and bareskin (Bsk). Large-scale linkage analysis with two kinds of intersubspecific backcrosses revealed that Rim3 is mapped to the distal portion of Chromosome (Chr) 11, in which Re den and Bsk have been located, and is very close to the retinoic acid receptor, alpha (Rara). The genes, keratin gene complex-1, acidic, gene 10, 12 (Krt1-10, 12), granulin (Grn), junctional plakoglobin (Jup) and Rara, all of which regulate growth and differentiation of epithelial cells, are genetically excluded as candidate genes for Rim3, but are clustered in the short segment on mouse Chr 11. Received: 3 July 1997 / Accepted: 26 August 1997  相似文献   

17.
The polar, preimplantation-embryo lethal phenotype known as the ``DDK syndrome' in the mouse is the result of the complex interaction of genetic factors and a parental-origin effect. We previously observed a modest degree of transmission-ratio distortion in favor of the inheritance of DDK alleles in the Ovum mutant (Om) region of Chromosome (Chr) 11, among offspring of reciprocal F1-hybrid females and C57BL/6 males. In this study, we confirm that a significant excess of offspring inherit DDK alleles from F1 mothers and demonstrate that the preference for the inheritance of DDK alleles is not a specific bias against the C57BL/6 allele or a simple preference for offspring that are heterozygous at Om. Because none of the previous genetic models for the inheritance of the ``DDK syndrome' predicted transmission-ratio distortion through F1 females, we reconsidered the possibility that the genes encoding the maternal and paternal components of this phenotype were not linked. We have examined the fertility phenotype of N2 females and demonstrate that the inter-strain fertility of these females is correlated with their genotype in the Om region. This result establishes, directly, that the genes encoding the maternal and paternal components of the DDK syndrome are genetically linked. Received: 1 February 1997 / Accepted: 26 April 1997  相似文献   

18.
The human autosomal dominant neuromuscular disorder facioscapulohumeral muscular dystrophy (FSHD) is associated with deletions within a complex tandem DNA repeat (D4Z4) on Chromosome (Chr) 4q35. The molecular mechanism underlying this association of FSHD with DNA rearrangements is unknown, and, thus far, no gene has been identified within the repeat. We isolated a gene mapping 100 kb proximal to D4Z4 (FSHD Region Gene 1:FRG1), but were unable to detect any alterations in total or allele-specific mRNA levels of FRG1 in FSHD patients. Human Chr 4q35 exhibits synteny homology with the region of mouse Chr 8 containing the gene for the myodystrophy mutation (myd), a possible mouse homolog of FSHD. We report the cloning of the mouse gene (Frg1) and show that it maps to mouse Chr 8. Using a cross segregating the myd mutation and the European Collaborative Interspecific Backcross, we showed that Frg1 maps proximal to the myd locus and to the Clc3 and Ant1 genes. Received: 24 September 1996 / Accepted: 7 February 1997  相似文献   

19.
Whiskers amiss (wam) is a new spontaneous recessive mutation in the SELH/Bc strain of mice that causes a phenotype of askew, sometimes kinked or curled, breakable whiskers and disheveled-appearing body hair, apparently owing to disoriented guard hairs. Heterozygotes on three genetic backgrounds are indistinguishable from normal. Using informative SSLPs in the F2 generation after crosses to two normal strains, we have mapped wam to the region of the type I keratin cluster on Chromosome (Chr) 11, within an approximately 6-cM segment according to the current Mouse Genome Database (MGD) map position of flanking SSLPs. Although several other hair mutations also map to the Krt1 region (Re, Rim3, Bda, Bsk), none has a hair and whisker phenotype similar to that of wam, and, because all are transmitted as dominants, interpretable complementation tests could not be done. Scabbing and tissue loss occur on the rims of the pinnae and tail tip in some aging wam homozygotes, suggesting that wam may be an animal model of a genetic ectodermal disorder. The SELH/Bc strain background appears to have an unusually high rate of spontaneous mutation; wam is the sixth mutation to be described. Received: 13 October 1999 / accepted: 7 December 1999  相似文献   

20.
The btm (brachyury-interacting tail length modifier) mutation was discovered in strain MOL-NIS derived from Japanese wild mice (Mus musculus molossinus) as an autosomal recessive mutation. Homozygotes for this mutation show a short tail phenotype and, moreover, this mutation causes the tailless character by interacting with the T (brachyury) gene on Chromosome (Chr) 17. Our linkage tests and RFLP analyses suggest that btm is located within the t complex on Chr 17 and represents a new partial t haplotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号