首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the phenomenon of lung hyperinflation (LHI), i.e., an increase in lung volume without a concomitant rise in airway pressure, we measured lung volume changes in isolated dog lungs during high-frequency oscillation (HFO) with air, He, and SF6 and with mean tracheal pressure controlled at 2.5, 5.0, and 7.5 cmH2O. The tidal volume and frequency used were 1.5 ml/kg body wt and 20 Hz, respectively. LHI was observed during HFO in all cases except for a few trials with He. The degree of LHI was inversely related to mean tracheal pressure and varied directly with gas density. Maximum expiratory flow rate (Vmax) was measured during forced expiration induced by a vacuum source (-150 cmH2O) at the trachea. Vmax was consistently higher than the peak oscillatory flow rate (Vosc) during HFO, demonstrating that overall expiratory flow limitation did not cause LHI in isolated dog lungs. Asymmetry of inspiratory and expiratory impedances seems to be one cause of LHI, although other factors are involved.  相似文献   

2.
《Biorheology》1995,32(4):459-471
In vitro experiments were conducted to measure the oscillatory flow pressure gradient along an elastic tube in order to assess the recent nonlinear theory of Wang and Tarbell. According to this theory, in an elastic tube with oscillatory flow, the mean (time-averaged) pressure gradient cannot be calculated using Poiseuille's law. The effect of wall motion creates a nonlinear convective acceleration, and an induced mean pressure gradient is required to balance the convective acceleration. The induced mean pressure gradient depends on the diameter variation over a cycle, the pulsatility and unsteadiness of the flow, and the phase difference between the pressure wave form and the flow wave form. The amplitude of the pressure gradient also depends on these parameters and may deviate significantly from Womersley's rigid tube theory. A flow loop was constructed to produce oscillatory flow in an elastic tube. Flow wave forms were measured with an ultrasonic flow probe, and ultrasonic diameter crystals were used to measure wall movement. A special device for pressure drop measurement was constructed using Millar catheter tip transducers to obtain both forward and backward pressure drops that were then averaged. This averaging method eliminated the static error of the pressure transducers. The pressure-flow phase angle was varied by clamping a distal elastic section at various locations. Pressure gradients were obtained for a range of phase angles between −55 ° and +49 °. The mean and amplitude of the measured pressure gradient were compared to theoretical values. Both positive and negative induced mean pressure gradients were measured over the range of phase angles. The measured pressure gradient amplitudes were always lower than predicted by Womersley's rigid tube theory. The experimental means and amplitudes are in good agreement with the elastic tube theoretical values. Thus, the experiments verify the theory of Wang and Tarbell.  相似文献   

3.
Mean alveolar pressure may exceed mean airway pressure during high-frequency oscillations (HFO). To assess the magnitude of this effect and its regional heterogeneity, we studied six excised dog lungs during HFO [frequency (f) 2-32 Hz; tidal volume (VT) 5-80 ml] at transpulmonary pressures (PL) of 6, 10, and 25 cmH2O. We measured mean pressure at the airway opening (Pao), trachea (Ptr), and four alveolar locations (PA) using alveolar capsules. Pao was measured at the oscillator pump, wherein the peak dynamic head was less than 0.2 cmH2O. Since the dynamic head was negligible here, and since these were excised lungs, Pao thus represented true applied transpulmonary pressure. Ptr increasingly underestimated Pao as f and VT increased, with Pao - Ptr approaching 8 cmH2O. PA (averaged over all locations) and Pao were nearly equal at all PL's, f's, and VT's, except at PL of 6, f 32 Hz, and VT 80 ml, where (PA - Pao) was 3 cmH2O. Remarkably, mean pressure in the base exceeded that in the apex increasingly as f and VT increased, the difference approaching 3 cmH2O at high f and VT. We conclude that, although global alveolar overdistension assessed by PA - Pao is small during HFO under these conditions, larger regional heterogeneity in PA's exists that may be a consequence of airway branching angle asymmetry and/or regional flow distribution.  相似文献   

4.
To determine the ventilatory effectiveness of high-frequency oscillation (HFO) at different sites on the body surface, we applied HFO separately to the abdomen, the rib cage, or the whole body in eight anesthetized and paralyzed dogs. Test frequencies were 5, 7, 9, and 11 Hz with tidal volume kept constant at 2.5 ml/kg. During HFO application to the abdomen, we observed significantly higher arterial O2 partial pressure (P less than 0.05) at 5, 7, and 9 Hz and lower arterial CO2 partial pressure (P less than 0.05) at 7, 9, and 11 Hz than with rib cage or whole-body HFO. There was no significant difference in blood gases between rib cage and whole-body HFO. Thus, using blood gases as an index of ventilatory effectiveness, the present study showed that HFO applied at the abdomen was the most effective of the three kinds of body surface HFO. In comparison to rib cage or whole-body application, abdominal HFO was accompanied by substantial paradoxical movement of the diaphragm and rib cage. The associated lung distortion may result in pendelluft, which in turn may be the mechanism for increased ventilatory effectiveness with abdominal application of HFO.  相似文献   

5.
The efficiency of axial gas dispersion during ventilation with high-frequency oscillation (HFO) is improved by manipulating the oscillatory flow waveform such that intermittent oscillatory flow occurs. We therefore measured the velocity profiles and effective axial gas diffusivity during intermittent oscillatory flow in a straight tube to verify the intermittency augmentation effect on axial gas transfer. The effective diffusivity was dependent on the flow patterns and significantly increased with an increase in the duration of the stationary phase. It was also found that the ratio of effective diffusivity to molecular diffusivity is two times greater than that in sinusoidal oscillatory flow. Moreover, turbulence during deceleration or at the beginning of the stationary phase further augments axial dispersion, with the effective diffusivity being over three times as large, thereby proving that the use of intermittent oscillatory flow effectively augments axial dispersion for ventilation with HFO.  相似文献   

6.
Hemodynamics at the human carotid bifurcation is important to the understanding of atherosclerotic plaque initiation and progression as well as to the diagnosis of clinically important disease. Laser Doppler anemometry was performed in a large scale model of an average human carotid. Pulsatile waveforms and physiologic flow divisions were incorporated. Disturbance levels and shear stresses were computed from ensemble averages of the velocity waveform measurements. Flow in the common carotid was laminar and symmetric. Flow patterns in the sinus, however, were complex and varied considerably during the cycle. Strong helical patterns and outer wall flow separation waxed and waned during each systole. The changing flow patterns resulted in an oscillatory shear stress at the outer wall ranging from -13 to 9 dyn cm-2 during systole with a time-averaged mean of only -0.5 dyn cm-2. This contrasts markedly with an inner wall shear stress range of 17-50, (mean 26) dyn cm-2. The region of transient separation was confined to the carotid sinus outer wall with no reverse velocities detected in the distal internal carotid. Notable disturbance velocities were also time-dependent, occurring only during the deceleration phase of systole and the beginning of diastole. The present pulsatile flow studies have aided in identifying hemodynamic conditions which correlate with early intimal thickening and predict the physiologic level of flow disturbances in the bulb of undiseased internal carotid arteries.  相似文献   

7.
Data are presented to compare fluid flow parameters for steady flow with those for time-varying flow in a simplified two branch model which simulates the region of the abdominal aorta near the celiac and superior mesenteric branches of the dog. Measurements in the model included laser doppler anemometry velocity profiles during steady flow, sinusoidal flow with a superimposed mean flow (referred to as simple oscillatory flow) and arterial pulsatile flow. Shear rate measurements were made by an electrochemical technique during steady flow. Flow visualization studies were done during steady and pulsatile flow. Fluid flow effects in the simplified model during steady flow showed many similarities to the results from previous steady flow studies in a canine aortic cast. Shear rates in the region of the proximal (first, or celiac) branch were independent of flow rates in the distal (second, or mesenteric) branch, but the shear pattern within the proximal branch changed significantly as flow in the proximal branch increased. Shear rates on the proximal flow divider (leading edge into the distal branch) depended primarily on the flow rate to the proximal branch, but not on flow to the distal branch. At certain daughter branch flow ratios (approximately 2:1, proximal to distal), flow separation was promoted at the outer wall of the second branch, but flow separation did not occur in the first branch. In contrast to the canine aortic case results, flow separation was never detected on the distal (mesenteric) flow divider of the simplified model. This observation reflects the subtle effects of geometry on flow since the mesenteric flow divider in the canine cast protrudes into the main flow whereas the distal flow divider in the simplified model does not. There were distinct differences in the flow phenomena between steady, simple oscillatory and arterial pulsatile flow. Peak shear rates during pulsatile flow were as much as 10--100 times greater than steady flow shear rates at comparable mean flow rates. Particularly noteworthy for the pulsatile flow with a Womersley parameter of sixteen were very blunt velocity profiles throughout systole, and the absence of flow separation or reversal in those regions of the model that exhibited flow separation during steady flow. The shape of the waveform influences the nature of the flow during time-varying flows. Future studies of fluid dynamics in model systems must consider the pulsatile nature of the flow if a true interpretation of arterial flow phenomena is to be made.  相似文献   

8.
Experiments were performed to determine the effects of conventional mechanical ventilation (CMV) and high-frequency oscillation (HFO) on the clearance of technetium-99m-labeled diethylenetriamine pentaacetate (99mTc-DTPA) from lungs with altered surface tension properties. A submicronic aerosol of 99mTc-DTPA was insufflated into the lungs of anesthetized, tracheotomized rabbits before and 1 h after the administration of the aerosolized detergent dioctyl sodium sulfosuccinate (OT). Rabbits were ventilated by one of four methods: 1) spontaneous breathing; 2) CMV at 12 cmH2O mean airway pressure (MAP); 3) HFO at 12 cmH2O MAP; 4) HFO at 16 cmH2O MAP. Administration of OT resulted in decreased arterial PO2 (PaO2), increased lung wet-to-dry weight ratios, and abnormal lung pressure-volume relationships, compatible with increased surface tension. 99mTc-DTPA clearance was accelerated after OT in all groups. The post-OT rate of clearance (k) was significantly faster (P less than 0.05) in the CMV at 12 cmH2O MAP [k = 7.57 +/- 0.71%/min (SE)] and HFO at 16 cmH2O MAP (k = 6.92 +/- 0.61%/min) groups than in the spontaneously breathing (k = 4.32 +/- 0.55%/min) and HFO at 12 cmH2O MAP (4.68 +/- 0.63%/min) groups. The clearance curves were biexponential in the former two groups. We conclude that pulmonary clearance of 99mTc-DTPA is accelerated in high surface tension pulmonary edema, and this effect is enhanced by both conventional ventilation and HFO at high mean airway pressure.  相似文献   

9.
Flow limitation in liquid-filled lungs is examined in intact rabbit experiments and a theoretical model. Flow limitation ("choked" flow) occurs when the expiratory flow reaches a maximum value and further increases in driving pressure do not increase the flow. In total liquid ventilation this is characterized by the sudden development of excessively negative airway pressures and airway collapse at the choke point. The occurrence of flow limitation limits the efficacy of total liquid ventilation by reducing the minute ventilation. In this paper we investigate the effects of liquid properties on flow limitation in liquid-filled lungs. It is found that the behavior of liquids with similar densities and viscosities can be quite different. The results of the theoretical model, which incorporates alveolar compliance and airway resistance, agrees qualitatively well with the experimental results. Lung compliance and airway resistance are shown to vary with the perfluorocarbon liquid used to fill the lungs. Surfactant is found to modify the interfacial tension between saline and perfluorocarbon, and surfactant activity at the interface of perfluorocarbon and the native aqueous lining of the lungs appears to induce hysteresis in pressure-volume curves for liquid-filled lungs. Ventilation with a liquid that results in low viscous resistance and high elastic recoil can reduce the amount of liquid remaining in the lungs when choke occurs, and, therefore, may be desirable for liquid ventilation.  相似文献   

10.
The morphology of branching trees in general, and of the bronchial tree in particular, can be described in terms of three parameters, the diameter, length and branching ratios. These are the factors by which mean diameter and mean length increase in successive orders towards the trachea, and by which the number of branches increases in successive orders away from the trachea. Orders of branching are counted from the periphery towards the trachea, according to the method of Strahler. A model of from two to nine orders, and of constant total length and volume, was used to investigate the effect of varying the above parameters on the calculated pressure difference across the model during flow. In particular, the branching ratio was set at known values for dog and human lungs, and diameter and length ratios were independently varied. Known data from dog and human lungs were found to be close to the points predicted by the model where the lines of minimal resistance and minimal entropy production crossed. Other factors which may affect the values of these parameters are discussed.  相似文献   

11.
To evaluate the local hemodynamic implications of coronary artery balloon angioplasty, computational fluid dynamics (CFD) was applied in a group of patients previously reported by [Wilson et al. (1988), 77, pp. 873-885] with representative stenosis geometry post-angioplasty and with measured values of coronary flow reserve returning to a normal range (3.6 +/- 0.3). During undisturbed flow in the absence of diagnostic catheter sensors within the lesions, the computed mean pressure drop delta p was only about 1 mmHg at basal flow, and increased moderately to about 8 mmHg for hyperemic flow. Corresponding elevated levels of mean wall shear stress in the midthroat region of the residual stenoses, which are common after angioplasty procedures, increased from about 60 to 290 dynes/cm2 during hyperemia. The computations (Ree approximately equal to 100-400; alpha e = 2.25) indicated that the pulsatile flow field was principally quasi-steady during the cardiac cycle, but there was phase lag in the pressure drop-mean velocity (delta p - u) relation. Time-averaged pressure drop values, delta p, were about 20 percent higher than calculated pressure drop values, delta ps, for steady flow, similar to previous in vitro measurements by Cho et al. (1983). In the throat region, viscous effects were confined to the near-wall region, and entrance effects were evident during the cardiac cycle. Proximal to the lesion, velocity profiles deviated from parabolic shape at lower velocities during the cardiac cycle. The flow field was very complex in the oscillatory separated flow reattachment region in the distal vessel where pressure recovery occurred. These results may also serve as a useful reference against catheter-measured pressure drops and velocity ratios (hemodynamic endpoints) and arteriographic (anatomic) endpoints post-angioplasty. Some comparisons to previous studies of flow through stenoses models are also shown for perspective purposes.  相似文献   

12.
This paper examines mainly oscillatory behavior of a fluid-conveying collapsible tube using a two-dimensional flexible channel made of a pair of membranes. The equation of equilibrium of the membrane in a large deflection theory is coupled with the equations of continuity and momentum of an incompressible flow in a one-dimensional flow theory accounting for flow separation. An explicit finite difference method was used to solve the governing equations numerically. According to numerical results, the fluids in the inlet and outlet rigid channels have strong effects on the oscillation of the system. Depending on initial values for the numerical integration, there may exist both a stable static equilibrium and an oscillatory solution for the same parameter values, but only if the external pressure is sufficiently large.  相似文献   

13.
Twelve sets of twin lambs were delivered prematurely by cesarean section at 133-136 days gestational age and ventilated for 3 h with either high-frequency oscillation (HFO) or conventional mechanical ventilation (CMV). Blood gases and pH values were monitored at 30-min intervals, and ventilator settings were adjusted to maintain CO2 partial pressure (PCO2) values within the normal range. There were no differences in the sequential blood gas or pH values between the HFO or CMV lambs. Mean airway pressures (MAP) between 8.0 and 20.4 cmH2O were required, indicating lung disease of variable severity in the lambs. The bidirectional protein leak from the vascular space to the airways and alveoli and vice versa was measured with radiolabeled albumins given by intravascular injection and with fetal lung fluid at birth. The albumin leaks in both directions increased as MAP required to normalize PCO2 increased, but the degree of leak was independent of type of ventilation. Pathological findings of epithelial necrosis and hyaline membranes occurred to a similar extent in lung sections from both groups of lambs. In the HFO animals less phosphatidylcholine in the alveolar wash and more of a tracer dose of radiolabeled natural surfactant that had been given at birth became tissue associated. These results indicate a decrease in the initial secretion of surfactant and/or a stimulation of reuptake in the HFO animals. HFO did not protect the immature lung from the development of large protein leaks or the pathological changes of the respiratory distress syndrome.  相似文献   

14.
High-frequency oscillation (HFO) has been used clinically to ventilate infants with respiratory distress. However, there are problems in monitoring the effects on the respiratory system and in particular in measuring the volumes delivered; this is important information in terms of safety and mechanisms of action of HFO. We have validated two sizes of respiratory jacket for measuring oscillatory volume changes of 0.25–5 ml at frequencies of 2–25 Hz, the volume delivered from a purpose-built oscillator having first been validated. Different combinations of volume and frequencies were then oscillated into each jacket, while it was being worn by a well preterm baby. Studies were performed with each jacket on five babies with weights between 0.82 and 1.86 kg. The results showed that at any given frequency there was a linear relationship between the pressure oscillations measured from a side port of the jacket and the delivered volume. Both jackets showed the same pattern of frequency response, overreading at < 10 Hz and underreading at 10–25 Hz. When appropriately calibrated, the respiratory jacket can be used as a non-invasive method of measuring volumes delivered by HFO.  相似文献   

15.
The mechanism of respiration in the bullfrog has been analyzed by means of pressure recordings from the buccal cavity, the lungs and the abdominal cavity, by cinematography and cinefluorography, and by electromyography of buccal, laryngeal and abdominal muscles. Gas flow was investigated by putting frogs in atmospheres of changing argon and nitrogen content and monitoring the concentration of the nostril efflux. Three kinds of cyclical phenomena were found. (1) Oscillatory cycles consist of rhythmical raising and lowering of the floor of the mouth, with open nares. They have a definite respiratory function in introducing fresh air into the buccal cavity. (2) Ventilatory cycles involve opening and closing of the glottis and nares and renewal of a portion of the pulmonary gas. More muscles are involved and the pattern of muscular activity is more complex than in the oscillatory cycles. (3) Inflation cycles consist of a series of ventilation cycles, interrupted by an apneic pause. The intensity of the ventilatory cycles increases before this pause and decreases immediately thereafter. This results in a stepwise increase in pulmonary pressure, to a plateau (coincident with the pause) followed by a sudden or stepwise decrease. The respiratory mechanism depends on the activity of a buccal force pump, which determines pulmonary pressure whose level is always slightly less than the peak pressure values of the ventilation cycles. The elevated pulmonary pressure is responsible for the expulsion of pulmonary gas during the second phase of the next ventilation cycle. This pressure is maintained by the elastic fibers (and the smooth masculature) of the lungs.  相似文献   

16.
A key parameter in the understanding of renal hemodynamics is the gain of the feedback function in the tubuloglomerular feedback mechanism. A dynamic model of autoregulation of renal blood flow and glomerular filtration rate has been extended to include a stochastic differential equations model of one of the main parameters that determines feedback gain. The model reproduces fluctuations and irregularities in the tubular pressure oscillations that the former deterministic models failed to describe. This approach assumes that the gain exhibits spontaneous erratic variations that can be explained by a variety of influences, which change over time (blood pressure, hormone levels, etc.). To estimate the key parameters of the model we have developed a new estimation method based on the oscillatory behavior of the data. The dynamics is characterized by the spectral density, which has been estimated for the observed time series, and numerically approximated for the model. The parameters have then been estimated by the least squares distance between data and model spectral densities. To evaluate the estimation procedure measurements of the proximal tubular pressure from 35 nephrons in 16 rat kidneys have been analyzed, and the parameters characterizing the gain and the delay have been estimated. There was good agreement between the estimated values, and the values obtained for the same parameters in independent, previously published experiments.  相似文献   

17.
Infants with respiratory failure are frequently mechanically ventilated at rates exceeding 60 breaths/min. We analyzed the effect of ventilatory rates of 30, 60, and 90 breaths/min (inspiratory times of 0.6, 0.3, and 0.2 s, respectively) on the pressure-flow relationships of the lungs of anesthetized paralyzed rabbits after saline lavage. Tidal volume and functional residual capacity were maintained constant. We computed effective inspiratory and expiratory resistance and compliance of the lungs by dividing changes in transpulmonary pressure into resistive and elastic components with a multiple linear regression. We found that mean pulmonary resistance was lower at higher ventilatory rates, while pulmonary compliance was independent of ventilatory rate. The transpulmonary pressure developed by the ventilator during inspiration approximated a linear ramp. Gas flow became constant and the pressure-volume relationship linear during the last portion of inspiration. Even at a ventilatory rate of 90 breaths/min, 28-56% of the tidal volume was delivered with a constant inspiratory flow. Our findings are consistent with the model of Bates et al. (J. Appl. Physiol. 58: 1840-1848, 1985), wherein the distribution of gas flow within the lungs depends predominantly on resistive factors while inspiratory flow is increasing, and on elastic factors while inspiratory flow is constant. This dynamic behavior of the surfactant-depleted lungs suggests that, even with very short inspiratory times, distribution of gas flow within the lungs is in large part determined by elastic factors. Unless the inspiratory time is further shortened, gas flow may be directed to areas of increased resistance, resulting in hyperinflation and barotrauma.  相似文献   

18.
We examined the intra-airway gas transport mediated by high-frequency oscillations (HFO) in 10 nonintubated healthy volunteers using a method based on comparisons of single-breath N2-washout curves obtained after various durations of breath hold or high-frequency oscillations. With a mathematical analysis based on Fick's law of diffusion we computed the local transport parameter, effective diffusivity, during oscillations of frequency 2-24 Hz and tidal volume 10-120 ml and during breath hold alone. Local effective diffusivity increased with both oscillatory frequency and tidal volume at all levels in the tracheobronchial tree; the enhancing effect of tidal volume on local effective diffusivity was more pronounced than that of frequency so that effective diffusivity was greater with larger tidal volume at fixed frequency-tidal volume product (f . VT). The greatest enhancement of gas mixing within the lung during HFO (over breath hold) was seen in the central airways. In previous studies examining CO2 removal rate during HFO (J. Clin. Invest. 68: 1475, 1981), we found that CO2 output was also greater with larger tidal volume at fixed f . VT, and we attributed this to an end constraint imposed by a fresh gas bias flow. Results of the current study, performed without a bias flow, indicate that bias flow end constraint does not solely account for the observed dependence of CO2 output on frequency and tidal volume.  相似文献   

19.
Elastase-induced changes in flow were used to quantify the degradation of lung interstitial elastin. Degassed rabbit lungs were inflated with silicon rubber via airways and vessels. The lungs were cut into 1-cm-thick sections. Two chambers were bonded to each section to enclose the interstitium surrounding an arterial segment. Flow of albumin solution (0-5 g/dl) between the chambers was followed by that of the albumin solution with 0.25 g/dl pancreatic elastase solution. Driving pressure was 5 cmH(2)0, and mean interstitial pressure was either 0 or 10 cmH(2)O. Elastase caused an increase in flow in approximately 70% of the interstitial segments and a reduction in flow in the remaining segments. The elastase-induced response in flow was independent of both albumin concentration and mean interstitial pressure. Leukocyte elastase (5 units/dl) produced flow responses similar to those of 0.25 g/dl pancreatic elastase. The increased flow of leukocyte elastase was reduced by a subsequent flow with 0.25 g/dl pancreatic elastase but enhanced by a subsequent flow with a 10-fold lower concentration. A change in the order of the elastase flows reversed the concentration-dependent responses. This behavior suggests a complex interaction among the interstitial fibers after degradation by pancreatic and leukocyte elastase. Endogenous elastase-induced increases in interstitial permeability might affect blood-lymph barrier permeability, whereas elastase-induced cessation of flow might be related to the alveolar septal wall destruction observed in emphysema.  相似文献   

20.
The efficiency of ventilation by high-frequency oscillation (HFO) applied to the thorax (external HFO) has been compared with that of HFO applied through a tracheal cannula (internal HFO) in a group of normal rats. Anesthetized, paralyzed, tracheotomized rats were placed in a whole-body plethysmograph. External HFO was achieved by varying the pressure surrounding the animal by means of a piston pump connected to the body plethysmograph; internal HFO was obtained in the same animals by connecting the pump to the tracheal cannula. Arterial CO2 and O2 partial pressures were measured in blood sampled from a carotid artery and were compared for external and internal HFO applied at 20 Hz with matched tidal volumes of 0.8, 1.4, 1.9, and 2.4 ml/kg. With increasing tidal volume, the mean arterial CO2 partial pressure decreased progressively from 68 to 30 Torr and was identical in the two modes of HFO; no difference was noted for the CO2 elimination or for the arterial O2 partial pressure. These results indicate that, in terms of gas exchange, external and internal HFO are equally efficient in normal rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号