首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Bio-manufacturing of nano-scale palladium was achieved via enzymatically-mediated deposition of Pd from solution using Desulfovibrio desulfuricans, Escherichia coli and Cupriavidus metallidurans. Dried ‘Bio-Pd’ materials were sintered, applied onto carbon papers and tested as anodes in a proton exchange membrane (PEM) fuel cell for power production. At a Pd(0) loading of 25% by mass the fuel cell power using Bio-Pd D. desulfuricans (positive control) and Bio-Pd E. coli (negative control) was ~140 and ~30 mW respectively. Bio-Pd C. metallidurans was intermediate between these with a power output of ~60 mW. An engineered strain of E. coli (IC007) was previously reported to give a Bio-Pd that was >3-fold more active than Bio-Pd of the parent E. coli MC4100 (i.e. a power output of >110 mW). Using this strain, a mixed metallic catalyst was manufactured from an industrial processing waste. This ‘Bio-precious metal’ (‘Bio-PM’) gave ~68% of the power output as commercial Pd(0) and ~50% of that of Bio-Pd D. desulfuricans when used as fuel cell anodic material. The results are discussed in relation to integrated bioprocessing for clean energy.  相似文献   

2.
We compared plasmid DNA production in 13 strains of Escherichia coli in shake flasks using media containing glucose or glycerol. DNA yield from either carbon source showed small correlation with maximum growth rate. Three strains, SCS1-L, BL21 and MC4100, were selected for a controlled exponential fed-batch process at a growth rate of 0.14 h−1 to an optical density of about 70, followed by a four-hour heat treatment. Prior to heat treatment, SCS1-L generated 15.4 mg DNA/g, BL21 generated 11.0 mg DNA/g and MC4100 generated 7.9 mg DNA/g, while after heat treatment the strains attained DNA yields, respectively, of 18.0, 15.0 and 6.8 mg/g. The strains also varied in their percentage of supercoiled DNA after heat treatment, with SCS1-L averaging 66% supercoiled, BL21 17% and MC4100 40%. We further investigated the two strains that yielded the highest percentage of supercoiled DNA (SCS1-L and MC4100) at a higher growth rate of 0.28 h−1. At this condition, a slightly lower DNA yield was generated faster, and the percentage of supercoiled DNA increased. Heat treatment improved DNA yield, and surprisingly did so to a greater extent at the higher growth rate. As a consequence of these factors, higher growth rates might be advantageous for DNA production.  相似文献   

3.
Although production of organic acids (OAs) is usually mentioned as the main mechanism of phosphate solubilization, the relationship between carbon sources (C-sources) and OAs produced during phosphate-solubilization by microorganisms is still poorly understood. We evaluated the influence of different C-sources on FePO4·2H2O and Ca3(PO4)2 solubilization by bacteria and on the identity/quantity of the OAs produced. Our results showed that the amount of phosphate solubilization depends on the strain, C-source, OAs, and type of phosphate. Among the five strains under study isolated from cowpea nodules (Rhizobium tropici strain UFLA 03-08, Acinetobacter sp. strain UFLA 03-09, Paenibacillus kribbensis strain UFLA 03-10, P. kribbensis strain UFLA 03-106, and Paenibacillus sp. strain UFLA 03-116), three of them solubilized Ca3(PO4)2 in all C-sources. The influence of C-sources on Ca3(PO4)2-solubilization increased in the following order: cellulose?<?lactose?<?mannitol?<?glucose. A significant positive correlation between the amount of phosphorus solubilized from Ca3(PO4)2 and the concentration of total OAs in the presence of glucose and mannitol was observed for these three strains. In the presence of glucose, the highest solubilization rates are associated with high concentrations of tartaric acid, and in the presence of mannitol, are associated with maleic acid. Only one strain produced OAs in the medium with lactose and Ca3(PO4)2, but there was no OAs in the medium containing cellulose. Despite the production of OAs, albeit in small concentrations, in all the C-sources investigated, FePO4·2H2O-solubilization was not observed. Thus, a relationship among C-sources, OAs, and phosphate solubilization was not always verified.  相似文献   

4.
Eight native Iranian almond species from three sections, ‘Euamygdalus’ (Prunus communis; Prunus eleagnifolia and Prunus orientalis); ‘Lycioides’ (Prunus lycioides and Prunus reuteri) and ‘Spartioides’ (Prunus arabica, Prunus glauca and Prunus scoparia) were in vitro screened for drought tolerance using sorbitol and polyethylene glycol (PEG) as an osmoticum. Different levels of water stress were induced using five concentrations of either sorbitol or polyethylene glycol in Woody Plant Medium (WPM). Water potential of various media ranged from −0.80 to −2.05 MPa and water stress in culture medium adversely affected plantlet growth. Wild species from ‘Spartioides’ were less affected than ‘Lycioides’ and ‘Euamygdalus’. At the same level of water potential, sorbitol had lower adverse effects than PEG; the latter being severe. Prunus × sorbitol and Prunus × PEG interactions were significant. At 0.2 M sorbitol and 0.003 M PEG, ‘Spartioides’ produced significantly more roots with higher total root length and root volume, as well as root-dry weight than those of ‘Lycioides’ and ‘Euamygdalus.’ It is concluded that in vitro screening of native Iranian almond species under specific and limited water-stress conditions may provide a system for effectively differentiating the wild species of almond for their expected root mass production under field conditions.  相似文献   

5.
6.
An incompletely dominant gene conferring resistance to Puccinia hordei, Rph14, identified previously in an accession of Hordeum vulgare, confers resistance to all known pathotypes of P. hordei in Australia. Knowledge of the chromosomal location of Rph14 and the identification of DNA markers closely linked to it will facilitate combining it with other important leaf rust resistance genes to achieve long lasting resistance. The inheritance of Rph14 was confirmed using 146 and 106 F3 lines derived from the crosses ‘Baudin’/‘PI 584760’ (Rph14) and ‘Ricardo’/‘PI 584760’ (Rph14), respectively. Bulk segregant analysis on DNA from the parental genotypes and resistant and susceptible DNA bulks using DArT markers located Rph14 to the short arm of chromosome 2H. DArT marker bPb-1664 was identified as having the closest genetic association with Rph14. PCR based marker analysis identified a single SSR marker, Bmag692, linked closely to Rph14 at a map distance of 2.1 and 3.8 cm in the ‘Baudin’/‘PI 584760’and ‘Ricardo’/‘PI 584760’ populations, respectively.  相似文献   

7.
A highly efficient Agrobacterium-mediated transformation system for Lilium × formolongi was established by modifying the medium used for inoculation and co-cultivation. Meristematic nodular calli of Lilium were inoculated with an overnight culture of A. tumefaciens strain EHA101 containing the plasmid pIG121-Hm harboring an intron-containing β-glucuronidase (GUS), hygromycin phosphotransferase, and neomycin phosphotransferase II genes. The effects of ten different types of media and carbohydrates (sucrose, d-glucose, and l-arabinose) in both inoculation and co-cultivation media were evaluated. Interestingly, a dramatic increase in the frequency of transformation (25.4%) was observed when Murashige and Skoog (MS) medium containing sucrose and lacking KH2PO4, NH4NO3, KNO3, and CaCl2 was used. Hygromycin-resistant transgenic calli were obtained only in medium supplemented with sucrose. The effects of this modified medium were also investigated for Lilium cultivars ‘Acapulco’, ‘Casa Blanca’, and ‘Red Ruby’. The highest frequency of transformation (23.3%) was obtained for cv. Acapulco. Hygromycin-resistant calli were successfully regenerated into plantlets on plant growth regulator-free MS medium. Transgenic plants were confirmed by GUS histochemical assay, polymerase chain reaction (PCR), and Southern blot analyses.  相似文献   

8.
In this work, we have identified a chimeric pentatricopeptide repeat (PPR)-encoding gene cosegregating with the fertility restorer phenotype for cytoplasmic male sterility (CMS) in radish. We have constructed a CMS-Rf system consisting of sterile line ‘9802A2’, maintainer line ‘9802B2’ and restorer line ‘2007H’. F2 segregating population analysis indicated that male fertility is restored by a single dominant gene in the CMS-Rf system described above. A PPR gene named Rfoc was found in the restorer line ‘2007H’. It cosegregated with the fertility restorer in the F2 segregating population which is composed of 613 fertile plants and 187 sterile plants. The Rfoc gene encodes a predicted protein 687 amino acids in length, comprising 16 PPR domains and with a putative mitochondrial targeting signal. Sequence alignment showed that recombination between the 5′ region of Rfob (EU163282) and the 3′ region of PPR24 (AY285675) resulted in Rfoc, indicating a recent unequal crossing-over event between Rfo and PPR24 loci at a distance of 5.5 kb. The sterile line ‘9802A2’ contains the rfob gene. In the F2 population, Rfoc and rfob were observed to fit a segregation ratio 1:2:1 showing that Rfoc was allelic to Rfo. Previously we have reported that a fertile line ‘2006H’, which carries the recessive rfob gene, is able to restore the male fertility of CMS line ‘9802A1’ (Wang et al. in Theor Appl Genet 117:313–320, 2008). However, here when conducting a cross between the fertile line ‘2006H’ and CMS line ‘9802A2, the resulting plants were male sterile, which shows that sterile line ‘9802A2’ possesses a different nuclear background compared to ‘9802A1’. Based on these results, the genetic model of fertility restoration for radish CMS is also discussed.  相似文献   

9.
A population derived from a cross between grapevine breeding strain Gf.Ga-52-42 and cultivar ‘Solaris’ consisting of 265 F1-individuals was genetically mapped using SSR markers and screened for downy mildew resistance. Quantitative trait locus (QTL) analysis revealed two strong QTLs on linkage groups (LGs) 18 and 09. The locus on LG 18 was found to be identical with the previously described locus Rpv3 and is transmitted by Gf.Ga-52-42. ‘Solaris’ transmitted the resistance-related locus on LG 09 explaining up to 50% of the phenotypic variation in the population. This downy mildew resistance locus is named Rpv10 for resistance to Plasmopara viticola. Rpv10 was initially introgressed from Vitis amurensis, a wild species of the Asian Vitis gene pool. The one-LOD supported confidence interval of the QTL spans a section of 2.1 centi Morgan (cM) corresponding to 314 kb in the reference genome PN40024 (12x). Eight resistance gene analogues (RGAs) of the NBS–LRR type and additional resistance-linked genes are located in this region of PN40024. The F1 sub-population which contains the Rpv3 as well as the Rpv10 locus showed a significantly higher degree of resistance, indicating additive effects by pyramiding of resistance loci. Possibilities for using the resistance locus Rpv10 in a grapevine breeding programme are discussed. Furthermore, the marker data revealed ‘Severnyi’ × ‘Muscat Ottonel’ as the true parentage for the male parent of ‘Solaris’.  相似文献   

10.
Zhou H  Wang Y  Yu Y  Bai T  Chen L  Liu P  Guo H  Zhu C  Tao M  Deng Z 《Current microbiology》2012,64(2):185-190
Escherichia coli strains are used in secondary metabolism research for DNA cloning and transferring plasmids by intergeneric conjugation. Non-restricting strains are desirable for DNA cloning and non-methylating strains are beneficial for transferring DNA to methyl-restricting hosts, like Streptomyces coelicolor. We have constructed a non-methylating E. coli strain, JTU007, by deleting the DNA methylation genes dcm and dam from the widely used non-restricting cloning host DH10B. JTU007 was tested as donor for the conjugative transfer of a plasmid containing the 39 kb actinorhodin biosynthesis gene cluster to S. lividans and S. coelicolor. The Dcm Dam strain JTU007 transferred DNA into S. coelicolor A(3)2 derivatives at high frequency. To demonstrate the usefulness of E. coli JTU007 for gene cloning, we constructed a comprehensive S. toxytricini genomic cosmid library, and transferred it using high-throughput conjugation to the methyl-restricting S. coelicolor. One of the cosmid clones produced a brown pigment, and the clone was revealed to carry a tyrosinase operon. JTU007 is more useful than ET12567 because it does not restrict methylated DNA in primary cloning, and gives higher transformation and cosmid infection frequencies.  相似文献   

11.
The objective was to determine the possible links between the expression levels of genes involved in alternative glycolytic pathways, phosphorus (P) scavenging and recycling and Citrus tolerance to aluminum (Al) and/or P-deficiency. ‘Xuegan’ (Citrus sinensis) and ‘Sour pummelo’ (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing 0 and 1.2 mM AlCl3·6H2O × 0, 50 and 200 μM KH2PO4. C. sinensis displayed more tolerant to Al and P-deficiency than C. grandis. Under Al stress, C. sinensis accumulated more Al in roots and less Al in shoots than C. grandis. P concentration was higher in C. sinensis shoots and roots than in C. grandis ones. C. sinensis roots secreted more malate and citrate than C. grandis ones when exposed to Al. Al-induced-secretion of malate and citrate by excised roots from Al-treated seedlings decreased with increasing P supply. Al-induced-secretion of malate and citrate from roots and Al precipitation by P in roots might be responsible for Al-tolerance of C. sinensis. qRT-PCR analysis showed that Al-activated malate transporter (ALMT1), ATP-dependent phosphofructokinase (ATP-PFK), pyrophosphate-dependent phosphofructokinase (PPi-PFK), tonoplast adenosine-triphosphatase subunit A (V-ATPase A), tonoplast pyrophosphatase (V-PPiase), pyruvate kinase (PK), acid phosphatase (APase), phosphoenolpyruvate carboxylase (PEPC), malic enzyme (ME) and malate dehydrogenase (MDH) genes might contribute to the tolerance of Citrus to Al and/or P-deficiency, but any single gene could not explain the differences between the two species. Citrus tolerance to Al and/or P-deficiency might be caused by the coordinated regulation of gene expression involved in alternative glycolytic pathways, P scavenging and recycling.  相似文献   

12.
The effects of post harvest application of ethylene, abscisic acid (ABA), indole-3-butyric acid (IBA) treatments or dark storage on root induction and continued growth of regenerated roots in Pelargonium cuttings were investigated using hydroponics in the greenhouse. Ethylene markedly increased rooting percentage in ‘Greco’ and ‘Surfing’, reduced the number of roots per cutting in ‘Surfing’ and had no effect on the total root lengths in the two cultivars. Ethylene treatment reduced fresh root mass in ‘Surfing’, increased dry root mass and reduced root water content in both cultivars. ABA (50 μM) enhanced rooting percentage in ‘Greco’, reduced the number of roots per cutting, reduced total root lengths and fresh root mass in both cultivars. ABA increased dry root mass and reduced root water content in ‘Surfing’ but this effect was not apparent in ‘Greco’. Storing cuttings in the dark for 4 days had no effect on rooting percentage and number of roots per cutting in ‘Greco’ and ‘Surfing’. However, dark storage reduced total root lengths in ‘Surfing’ and reduced fresh root mass in ‘Greco’. Dark storage had no effect on dry root mass and water content in both cultivars. Applying 4 μl l−1 IBA in the rooting solution induced maximum (100%) root induction in ‘Surfing’. However, IBA reduced the number of roots per cutting in ‘Greco’, reduced total root lengths and fresh root mass in the two cultivars. IBA treatment profoundly increased and reduced dry root mass and root water content, respectively, in ‘Greco’ and ‘Surfing’. The enhanced root induction observed after IBA and ABA applications could be ascribed to their influence on ethylene biosynthesis, since ethylene treatment increased rooting percentage in both cultivars. However, high ABA (100 μM) and IBA (12 μl l−1) levels or dark storage reduced the ability of induced roots to continue growth. We attribute our results to plant stress-response mechanism and ethylene appears to play an important role in the process of root initiation and root growth in Pelargonium cuttings.  相似文献   

13.
Differences in abscisic acid (ABA) accumulation between two olive cultivars were studied by enzyme-linked immunosorbent assay in roots and leaves, leaf water potential (Ψl), stomatal conductance (g s) as well as photosynthetic rate (A) were also determined in well-watered (WW) and water-stressed (WS) plants of two olive cultivars ‘Chemlali’ and ‘Chetoui’. ‘Chemlali’ was able to maintain higher leaf CO2 assimilation rate and leaf stomatal conductance throughout the drought cycle when compared with ‘Chetoui’. Furthermore, leaf water potential of ‘Chemlali’ decreased in lower extent than in Chetoui in response to water deficit. Interestingly, significant differences in water-stress-induced ABA accumulation were observed between the two olive cultivars and reflect the degree of stress experienced. Chemlali, a drought tolerant cultivar, accumulated lower levels of ABA in their leaves to regulate stomatal control in response to water stress compared to the drought sensitive olive cultivar ‘Chetoui’ which accumulated ABA in large amount.  相似文献   

14.
Rhizoctonia solani is a necrotrophic fungal pathogen that causes disease on many crop-plant species. Anastomosis group 1-IA is the causal agent of sheath blight of rice (Oryza sativa L.), one of the most important rice diseases worldwide. R. solani AG1-IA produces a necrosis-inducing phytotoxin and rice cultivar’s sensitivity to the toxin correlates with disease susceptibility. Unlike genetic analyses of sheath blight resistance where resistance loci have been reported as quantitative trait loci, phytotoxin sensitivity is inherited as a Mendelian trait that permits high-resolution mapping of the sensitivity genes. An F2 mapping population derived from parent cultivars ‘Cypress’ (toxin sensitive) and ‘Jasmine 85’ (toxin insensitive) was used to map Rsn1, the necrosis-inducing locus. Initial mapping based on 176 F2 progeny and 69 simple sequence repeat (SSR) markers located Rsn1 on the long arm of chromosome 7, with tight linkage to SSR marker RM418. A high-resolution genetic map of the region was subsequently developed using a total of 1,043 F2 progeny, and Rsn1 was mapped to a 0.7 cM interval flanked by markers NM590 and RM418. Analysis of the corresponding 29 Kb genomic sequences from reference cultivars ‘Nipponbare’ and ‘93-11’ revealed the presence of four putative genes within the interval. Two are expressed cytokinin-O-glucosyltransferases, which fit an apoptotic pathway model of toxin activity, and are individually being investigated further as potential candidates for Rsn1.  相似文献   

15.
‘SI1300’ is a self-incompatible Brassica napus line generated by introgressing an S haplotype from B. rapa ‘Xishuibai’ into a rapeseed cultivar ‘Huayou No. 1’. Five S-locus specific primer pairs were employed to develop cleaved amplified polymorphic sequences (CAPS) markers linked the S haplotype of ‘SI1300’. Two segregating populations (F2 and BC1) from the cross between ‘SI1300’ and self-compatible European spring cultivar ‘Defender’, were generated to verify the molecular markers. CAPS analysis revealed no desirable polymorphism between self-incompatible and self-compatible plants. Twenty primer pairs were designed based on the homology-based candidate gene method, and six dominant sequence characterized amplified region (SCAR) markers linked with the S-locus were developed. Of the six markers, three were derived from the SRK and SP11 alleles of class II B. rapa S haplotypes and linked with S haplotype of ‘SI1300’. The other three markers were designed from the SLG-A10 and co-segregated with S haplotype of ‘Defender’. We successfully combined two pairs of them and characterized two multiplex PCR markers which could discriminate the homozygous and heterozygous genotypes. These markers were further validated in 24 F3 and 22 BC1F2 lines of ‘SI1300 × Defender’ and another two segregating populations from the cross ‘SI1300 × Yu No. 9’. Nucleotide sequences of fragments linked with S-locus of ‘SI1300’ showed 99% identity to B. rapa class II S-60 haplotype, and fragments from ‘Defender’ were 97% and 94% identical to SLG and SRK of B. rapa class I S-47 haplotype, respectively. ‘SI1300’ was considered to carry two class II S haplotypes and the S haplotype on the A-genome derived from B. rapa ‘Xishuibai’ determines the SI phenotype, while ‘Defender’ carry a class I S haplotype derived from B. rapa and a class II S haplotype from B. oleracea. SCAR markers developed in this study will be helpful for improving SI lines and accelerating marker-assisted selection process in rapeseed SI hybrid breeding program.  相似文献   

16.
Durum wheat (Triticum turgidum L. var. durum) is traditionally used for the production of numerous types of pasta, and significant amounts are also used for bread-making, particularly in southern Italy. The research reported here centres on the glutenin subunits 1Dx5 and 1Dy10 encoded by chromosome 1D, and whose presence in hexaploid wheats is positively correlated with higher dough strength. In order to study the effects of stable expression of the 1Dx5 and 1Dy10 glutenin subunits in different durum wheat genotypes, four cultivars commonly grown in the Mediterranean area (‘Svevo’, ‘Creso’, ‘Varano’ and ‘Latino’) were co-transformed, via particle bombardment of cultured immature embryos, with the two wheat genes Glu-D1-1d and Glu-D1-2b encoding the glutenin subunits, and a third plasmid containing the bar gene as a selectable marker. Protein gel analyses of T1 generation seed extracts showed expression of one or both glutenin genes in four different transformed durum wheat plants. One of these transgenic lines, DC2-65, showed co-suppression of all HMW-GS, including the endogenous ones. Transgene stability in the transgenic lines has been studied over four generations (T1–T4). Fluorescence in situ hybridization (FISH) analysis of metaphase chromosomes from T4 plants showed that the integration of transgenes occurred in both telomeric and centromeric regions. The three plasmids were found inserted at a single locus in two lines and in two loci on the same chromosome arm in one line. The fourth line had two transgenic loci on different chromosomes: one with both glutenin plasmids and a different one containing only the construct with the gene encoding the 1Dy10 glutenin subunit. Segregation of these two loci in subsequent generations allowed establishment of two sublines, one containing both 1Dx5 and 1Dy10 and the other containing only 1Dy10. Small-scale quality tests showed that accumulation of Dx5, Dy10 or both in transgenic durum wheat seeds resulted in doughs with stronger mixing characteristics. A. Gadaleta and A. E. Blechl have contributed equally to this work.  相似文献   

17.
A Gram-positive, moderately halophilic, facultatively alkaliphilic, catalase- and oxidase-positive, obligately aerobic, filamentous actinomycete strain, designated YIM 90022T, was isolated from saline soil collected from the Qaidam Basin, north-west China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the new isolate was a member of the genus Nocardiopsis and the sequence similarities between the isolate and the type strains of members of the genus Nocardiopsis were in the range of 95.1–98.7%. Phenotypic and chemotaxonomic properties of this organism also indicated that strain YIM 90022T was a member of the genus Nocardiopsis. The strain grew well on most of the media tested, producing yellow-white to deep brown substrate mycelium and white aerial mycelium. Light gray to deep brown diffusible pigments were produced. The substrate mycelium was well developed and fragmented with age; the aerial mycelium produced long, straight to flexuous spore chains with non-motile, smooth-surfaced, rod-shaped spores on them. The strain grew in the presence of 1–15% (w/v) total salts (optimum, 3–5%) and at pH 6.0–10.5 (optimum, pH 8.5) and 10–45°C (optimum, 30°C). Whole-cell hydrolysates of strain YIM 90022T contained meso-diaminopimelic acid and no diagnostic sugars. The predominant menaquinones were MK-10(H4), MK-9(H8), MK-10(H6) and MK-10(H8). Polar lipids comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol and phosphatidylmethylethanolamine. The major cellular fatty acids were iso-C16:0, anteiso-C17:0, 10-methyl-C18:0 and 10-methyl-C17:0. The DNA G + C content of strain YIM 90022T was 71.5 mol%. The combination of phylogenetic analysis, DNA–DNA relatedness data, phenotypic characteristics and chemotaxonomic data supported the suggestion that strain YIM 90022T represents a new species of the genus Nocardiopsis, for which the name Nocardiopsis terrae sp. nov. is proposed. The type strain is YIM 90022T (=CCTCC AA 208011T =KCTC 19431T).  相似文献   

18.
In response to Clostera anachoreta larvae attack, poplar (Populus simonii × P. pyramidalis ‘Opera 8277’) leaves produced a high level of hydrogen peroxide (H2O2). Histochemical localization revealed that H2O2 was mainly localized in herbivore-wounded zones and might spread through the veins. The activities of three H2O2-scavenging enzymes, i.e., peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT), were also enhanced in herbivore-wounded leaves, and exhibited an opposite pattern to the accumulation of H2O2. It was found that diphenylene iodonium chloride (DPI, a special inhibitor of NADPH oxidase) treatment significantly inhibited the accumulation of H2O2 induced by herbivory damage. Moreover, DPI treatment led to an obvious decrease in the activities of POD, APX, and CAT. The results indicated that NADPH oxidase contributed to the accumulation of H2O2 and the increase in activities of H2O2-scavenging enzymes in poplar leaves induced by herbivory damage. The balance between H2O2-production pathway and H2O2-scavenging enzymes led to the tolerable level of H2O2 acting in P. simonii × P. pyramidalis ‘Opera 8277’ cuttings in response to herbivory damage.  相似文献   

19.
 We used graphical genotyping and linkage analyses with molecular markers to determine the chromosomal location of the rice stripe disease resistance gene, Stv-b i . The stripe resistance gene from the indica rice (Oryza sativa) cv ‘Modan’ was introgressed into several Japanese rice varieties. We found 4 RFLP markers in ‘Modan’, five susceptible parental rice varieties (‘Norin No. 8’, ‘Sachihikari’, ‘Kanto No. 98’, ‘Hokuriku No.103’ and ‘Koganebare’) and four resistant progeny varieties (‘St. No. 1’, ‘Aichi No. 6’, ‘Aoisora’ and ‘Asanohikari’). Graphical genotyping of the resistant progeny revealed a chromosomal segment ascribable to ‘Modan’ and associated with stripe resistance. The chromosomal segment from ‘Modan’ was located at 35.85 cM on chromosome 11. Linkage analysis using 120 F2 individuals from a cross between ‘Koshihikari’ (susceptible) and ‘Asanohikari’ (resistant) revealed another 8 RFLP markers in the same chromosome. We performed a bioassay for rice stripe resistance in F3 lines of the F2 individuals using infective small brown planthoppers and identified an 1.8-cM segment harboring the rice stripe disease resistance gene, Stv-b i , between XNpb220 and XNpb257/ XNpb254. Furthermore, Stv-b i was linked by 0.0 cM to a RFLP marker, ST10, which was developed on the basis of the results of RAPD analysis. These DNA markers near the Stv-b i locus may be useful in marker-assisted selection and map-based cloning of the Stv-b i gene. Received: 26 September 1997 / Accepted: 4 November 1997  相似文献   

20.
This study estimated the construction const (CC) and maintenance cost (MC) of leaf tissue on the basis of dry mass (CCMass, MCMass) and leaf area (CCArea, MCArea), as well as the maximum leaf gas exchange capacity, so as to examine leaf cost:benefit relationship in six dominant species of the ‘Bana’ vegetation. Minimum and maximum CCMass averaged 1.71 ± 0.03 and 1.78 ± 0.03 g glucose g−1. The CCMass showed a statistically significant positive correlation with crude fibre, and tended to decline as leaves were larger. Thus, smaller leaves tended to be built out of a more expensive material than that found in species bearing larger leaves. The average CCArea of the ‘Bana’ species was 376 ± 15 g glucose m−2. A robust correlation was found between CCArea with leaf dry mass to leaf area ratio, as well as with leaf thickness, but not with leaf density. MCMass (g glucose g−1 day−1) and MCArea (g glucose m−2 day−1) were positively correlated. Maximum and minimum MCMass increased significantly with protein and lipid content, respectively. Maximum carbon assimilation (A max) was positively correlated with CCArea. All the species operated at high stomatal conductance (g s) and C i/C a which suggested low short-term water use efficiency. Potential nitrogen use efficiency (PNUE = A max/N) averaged 35.4 ± 1.8 mmol CO2 mol−1 N. As the sclerophylly index (g crude fibre g−1 protein) increased, the ratio of CCArea to A max increased significantly. This result suggests a trade-off between investments in an expensive resistant sclerophyllous leaf which should maximize carbon gain in the long term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号