首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MFP1 (matrix attachment region-binding filament-like protein 1) is a conserved nuclear and chloroplast DNA-binding protein encoded by a nuclear gene, well characterized in dicot species. In monocots, only a 90 kDa MFP1-related protein had been characterized in the nucleus and nuclear matrix of Allium cepa proliferating cells. We report here a novel MFP1-related nuclear protein of 80 kDa in A. cepa roots, with M(r) and pI values similar to those of MFP1 proteins in dicot species, and which also displays a dual location, in the nucleus and chloroplasts of leaf cells. However, this novel protein is not a nuclear matrix component. It shows a spotted intranuclear distribution in small foci differing from the nuclear bodies containing the 90 kDa protein. In electron microscopy analysis, the intranuclear foci containing the 80 kDa MFP1 appeared as small loose structures at the periphery of condensed chromatin patches. This protein was also located in the nucleolus. It was abundant in meristematic cells, but its level fell when proliferation stopped. This different expression and distribution, and its preferential location at the boundaries between heterochromatin and euchromatin, suggest that the novel 80 kDa protein might be associated with decondensed DNA and could play a role in chromatin organization.  相似文献   

2.
3.
4.
The nucleus of interphase eukaryotic cell is a highly compartmentalized structure containing the three-dimensional network of chromatin and numerous proteinaceous subcompartments. DNA viruses induce profound changes in the intranuclear structures of their host cells. We are applying a combination of confocal imaging including photobleaching microscopy and computational methods to analyze the modifications of nuclear architecture and dynamics in parvovirus infected cells. Upon canine parvovirus infection, expansion of the viral replication compartment is accompanied by chromatin marginalization to the vicinity of the nuclear membrane. Dextran microinjection and fluorescence recovery after photobleaching (FRAP) studies revealed the homogeneity of this compartment. Markedly, in spite of increase in viral DNA content of the nucleus, a significant increase in the protein mobility was observed in infected compared to non-infected cells. Moreover, analyzis of the dynamics of photoactivable capsid protein demonstrated rapid intranuclear dynamics of viral capsids. Finally, quantitative FRAP and cellular modelling were used to determine the duration of viral genome replication. Altogether, our findings indicate that parvoviruses modify the nuclear structure and dynamics extensively. Intranuclear crowding of viral components leads to enlargement of the interchromosomal domain and to chromatin marginalization via depletion attraction. In conclusion, parvoviruses provide a useful model system for understanding the mechanisms of virus-induced intranuclear modifications.  相似文献   

5.
Proteins required for translesion DNA synthesis localize in nuclear foci of cells with replication-blocking lesions. The dynamics of this process were examined in human cells with fluorescence-based biophysical techniques. Photobleaching recovery and raster image correlation spectroscopy experiments indicated that involvement in the nuclear foci reduced the movement of RAD18 from diffusion-controlled to virtual immobility. Examination of the mobility of REV1 indicated that it is similarly immobilized when it is observed in nuclear foci. Reducing the level of RAD18 greatly reduced the focal accumulation of REV1 and reduced UV mutagenesis to background frequencies. Fluorescence lifetime measurements indicated that RAD18 and RAD6A or poleta only transferred resonance energy when these proteins colocalized in damage-induced nuclear foci, indicating a close physical association only within such foci. Our data support a model in which RAD18 within damage-induced nuclear foci is immobilized and is required for recruitment of Y-family DNA polymerases and subsequent mutagenesis. In the absence of damage these proteins are not physically associated within the nucleoplasm.  相似文献   

6.
The parvovirus H-1 infection of the normal human diploid fibroblast strain MRC-5 produces a cytopathic effect, but no increase in infectious virus has been observed. Previously, we reported that large amounts of empty capsids are assembled in the nucleus of H-1 infected MRC-5 cells (S. Singer and S. Rhode, in D. Ward and P. Tattersall, ed., Replication of Mammalian Parvoviruses, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1978). The level of viral replicative-form DNA synthesis as shown by metabolic labeling is markedly reduced in these cells. Synthesis of the early protein NS1 is normal or slightly decreased, and the usual amount of the 92,000-molecular-weight (92K) posttranslationally modified NS1 was seen. The second deficient parameter that we have observed in the abortive infection is the nuclear translocation of NS1. In contrast, the simian virus 40-transformed MRC-5 cell line MRC-5 V1 and the simian virus 40-transformed human kidney cell line NB undergo a productive infection by H-1 accompanied by more efficient translocation of NS1 to the nucleus. The results indicate that there is an association between defective translocation of the NS1 rep protein to the nucleus and defective amplification of parvovirus replicative-form DNA. The nuclear translocation of specific proteins seems to be a function that is altered by development or neoplastic transformation.  相似文献   

7.
Confocal microscopy allowed us to localize viral nonstructural (NS) and capsid (VP) proteins and DNA simultaneously in cells permissively infected with Aleutian mink disease parvovirus (ADV). Early after infection, NS proteins colocalized with viral DNA to form intranuclear inclusions, whereas VP proteins formed hollow intranuclear shells around the inclusions. Later, nuclei had irregular outlines and were virtually free of ADV products. In these cells, inclusions of viral DNA with or without associated NS protein were embedded in cytoplasmic VP protein. These findings implied that ADV replication within an infected cell is regulated spatially as well as temporally.  相似文献   

8.
Gpn1 and Gpn3 are GTPases individually required for nuclear targeting of RNA polymerase II. Here we show that whereas Gpn3-EYFP distributed between the cytoplasm and cell nucleus, it was mainly cytoplasmic when coexpressed with Gpn1-Flag. Gpn3-Flag retained Gpn1-EYFP in the cytoplasm. However, Gpn3-EYFP/Gpn1-Flag nucleocytoplasmic shuttling was revealed after inhibiting nuclear export with leptomycin B. All Gpn3-EYFP coimmunoprecipitated with Gpn1-Flag, and all Gpn1-EYFP with Gpn3-Flag. Importantly, most endogenous Gpn1 and Gpn3 also associate. Gpn1–Gpn3 interaction was essential to maintain steady-state protein levels of both GTPases. We propose that most Gpn1 and Gpn3 associate, are mobilized, and function as a protein complex.  相似文献   

9.
In eukaryotic cells, proteasomes play an essential role in intracellular proteolysis and are involved in the control of most biological processes through regulated degradation of key proteins. Analysis of 20S proteasome localization in human cell lines, using ectopic expression of its CFP-tagged α7 subunit, revealed the presence in nuclear foci of a specific and proteolytically active complex made by association of the 20S proteasome with its PA28γ regulator. Identification of these foci as the nuclear speckles (NS), which are dynamic subnuclear structures enriched in splicing factors (including the SR protein family), prompted us to analyze the role(s) of proteasome-PA28γ complexes in the NS. Here, we show that knockdown of these complexes by small interfering RNAs directed against PA28γ strongly impacts the organization of the NS. Further analysis of PA28γ-depleted cells demonstrated an alteration of intranuclear trafficking of SR proteins. Thus, our data identify proteasome-PA28γ complexes as a novel regulator of NS organization and function, acting most likely through selective proteolysis. These results constitute the first demonstration of a role of a specific proteasome complex in a defined subnuclear compartment and suggest that proteolysis plays important functions in the precise control of splicing factors trafficking within the nucleus.  相似文献   

10.
Orchid fleck virus (OFV) has a unique two-segmented negative-sense RNA genome that resembles that of plant nucleorhabdoviruses. In infected plant cells, OFV and nucleorhabdoviruses induce an intranuclear electron-lucent viroplasm that is believed to be the site for virus replication. In this study, we investigated the molecular mechanism by which OFV viroplasms are produced in vivo. Among OFV-encoded proteins, the nucleocapsid protein (N) and the putative phosphoprotein (P) were present in nuclear fractions of OFV-infected Nicotiana benthamiana plants. Transient coexpression of N and P, in the absence of virus infection, was shown to be sufficient for formation of an intranuclear viroplasm-like structure in plant cells. When expressed independently as a fluorescent protein fusion product in uninfected plant cells, N protein accumulated throughout the cell, while P protein accumulated in the nucleus. However, the N protein, when coexpressed with P, was recruited to a subnuclear region to induce a large viroplasm-like focus. Deletion and substitution mutagenesis demonstrated that the P protein contains a nuclear localization signal (NLS). Artificial nuclear targeting of the N-protein mutant was insufficient for formation of viroplasm-like structures in the absence of P. A bimolecular fluorescence complementation assay confirmed interactions between the N and P proteins within subnuclear viroplasm-like foci and interactions of two of the N. benthamiana importin-α homologues with the P protein but not with the N protein. Taken together, our results suggest that viroplasm formation by OFV requires nuclear accumulation of both the N and P proteins, which is mediated by P-NLS, unlike nucleorhabdovirus viroplasm utilizing the NLS on protein N.  相似文献   

11.
The nonstructural protein 2 (NS2) from parvovirus minute virus of mice (MVMp) is a 25-kDa polypeptide which localizes preferentially to the cytoplasm and associates with cellular proteins in cytoplasm. These lines of evidence suggest that NS2 is positively exported from the nucleus to cytoplasm and functions in cytoplasm. We report here that nuclear export of NS2 is inhibited by leptomycin B (LMB), a drug that specifically blocks nuclear export signal (NES)-chromosomal region maintenance 1 (CRM1) interactions. CRM1 binds specifically to the 81- to 106-amino-acid (aa) region of NS2, and the region of NS2 actually functions as a NES. Interestingly, this region appears to be distinct from a typical NES sequence, which consists of leucine-rich sequences. These results indicate that NS2 protein is continuously exported from the nucleus by a CRM1-dependent mechanism and suggest that CRM1 also exports to distinct type of NESs.  相似文献   

12.
The nonstructural NS2 proteins of autonomous parvoviruses are known to act in a host cell-dependent manner and to play a role in viral DNA replication, efficient translation of viral mRNA, and/or encapsidation. Their exact function during the parvovirus life cycle remains, however, still obscure. We report here the characterization of the interaction with the NS2 proteins from the parvovirus minute virus of mice (MVM) and rat as well as mouse homologues of the human CRM1 protein, a member of the importin-beta family recently identified as an essential nuclear export factor. Using the two-hybrid system, we could detect the interaction between the carboxy-terminal region of rat CRM1 and each of the three isoforms of NS2 (P [or major], Y [or minor], and L [or rare]). NS2 proteins were further shown to interact with the full-length CRM1 by coimmunoprecipitation experiments using extracts from both mouse and rat cell lines. Our data show that CRM1 preferentially binds to the nonphosphorylated isoforms of NS2. Moreover, we observed that the treatment of MVM-infected cells with leptomycin B, a drug that specifically inhibits the CRM1-dependent nuclear export pathway, leads to a drastic accumulation of NS2 proteins in the nucleus. Both NS2 interaction with CRM1 and nuclear accumulation upon leptomycin B treatment strongly suggest that these nonstructural viral proteins are actively exported out of the nuclei of infected cells via a CRM1-mediated nuclear export pathway.  相似文献   

13.
We used indirect immunofluorescence to examine the factors determining the intranuclear location of herpes simplex virus (HSV) DNA polymerase (Pol) in infected cells. In the absence of viral DNA replication, HSV Pol colocalized with the HSV DNA-binding protein ICP8 in nuclear framework-associated structures called prereplicative sites. In the presence of viral DNA replication, HSV Pol colocalized with ICP8 in globular intranuclear structures called replication compartments. In cells infected with mutant viruses encoding defective ICP8 molecules, Pol localized within the cell nucleus but showed a general diffuse intranuclear distribution. In uninfected cells transfected with a plasmid expressing Pol, Pol similarly showed a diffuse intranuclear distribution. Therefore, Pol can localize to the cell nucleus without other viral proteins, but functional ICP8 is required for Pol to localize to prereplicative sites. In cells infected with mutant viruses encoding defective Pol molecules, ICP8 localized to prereplicative sites. Thus, Pol or the portions of Pol not expressed by the mutant viruses are not essential for the formation of prereplicative sites or the localization of ICP8 to these structures. These results demonstrate that a specific nuclear protein can influence the intranuclear location of another nuclear protein.  相似文献   

14.
15.
Phosphatidylcholine (PtdCho) is the most abundant phospholipid in eukaryotic membranes and its biosynthetic pathway is generally controlled by CTP:Phosphocholine Cytidylyltransferase (CCT), which is considered the rate-limiting enzyme. CCT is an amphitropic protein, whose enzymatic activity is commonly associated with endoplasmic reticulum (ER) translocation; however, most of the enzyme is intranuclearly located. Here we demonstrate that CCTα is concentrated in the nucleoplasm of MDCK cells. Confocal immunofluorescence revealed that extracellular hypertonicity shifted the diffuse intranuclear distribution of the enzyme to intranuclear domains in a foci pattern. One population of CCTα foci colocalised and interacted with lamin A/C speckles, which also contained the pre-mRNA processing factor SC-35, and was resistant to detergent and salt extraction. The lamin A/C silencing allowed us to visualise a second more labile population of CCTα foci that consisted of lamin A/C-independent foci non-resistant to extraction. We demonstrated that CCTα translocation is not restricted to its redistribution from the nucleus to the ER and that intranuclear redistribution must thus be considered. We suggest that the intranuclear organelle distribution of CCTα is a novel mechanism for the regulation of enzyme activity.  相似文献   

16.
17.
MAP kinase dynamics in yeast.   总被引:2,自引:0,他引:2  
MAP kinase pathways play key roles in cellular responses towards extracellular signals. In several cases, the three core kinases interact with a scaffold molecule, but the function of these scaffolds is poorly understood. They have been proposed to contribute to signal specificity, signal amplification, or subcellular localization of MAP kinases. Several MAP kinases translocate to the nucleus in response to their activation, suggesting that nuclear transport may provide a regulatory mechanism. Here we describe new applications for Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Loss In Photobleaching (FLIP), to study dynamic translocations of MAPKs between different subcellular compartments. We have used these methods to measure the nuclear/cytoplasmic dynamics of several yeast MAP kinases, and in particular to address the role of scaffold proteins for MAP-kinase signaling.  相似文献   

18.
Many viruses target cytoplasmic polyA binding protein (PABPC) to effect widespread inhibition of host gene expression, a process termed viral host-shutoff (vhs). During lytic replication of Epstein Barr Virus (EBV) we observed that PABPC was efficiently translocated from the cytoplasm to the nucleus. Translocated PABPC was diffusely distributed but was excluded from viral replication compartments. Vhs during EBV infection is regulated by the viral alkaline nuclease, BGLF5. Transfection of BGLF5 alone into BGLF5-KO cells or uninfected 293 cells promoted translocation of PAPBC that was distributed in clumps in the nucleus. ZEBRA, a viral bZIP protein, performs essential functions in the lytic program of EBV, including activation or repression of downstream viral genes. ZEBRA is also an essential replication protein that binds to viral oriLyt and interacts with other viral replication proteins. We report that ZEBRA also functions as a regulator of vhs. ZEBRA translocated PABPC to the nucleus, controlled the intranuclear distribution of PABPC, and caused global shutoff of host gene expression. Transfection of ZEBRA alone into 293 cells caused nuclear translocation of PABPC in the majority of cells in which ZEBRA was expressed. Co-transfection of ZEBRA with BGLF5 into BGLF5-KO cells or uninfected 293 cells rescued the diffuse intranuclear pattern of PABPC seen during lytic replication. ZEBRA mutants defective for DNA-binding were capable of regulating the intranuclear distribution of PABPC, and caused PABPC to co-localize with ZEBRA. One ZEBRA mutant, Z(S186E), was deficient in translocation yet was capable of altering the intranuclear distribution of PABPC. Therefore ZEBRA-mediated nuclear translocation of PABPC and regulation of intranuclear PABPC distribution are distinct events. Using a click chemistry-based assay for new protein synthesis, we show that ZEBRA and BGLF5 each function as viral host shutoff factors.  相似文献   

19.
We have identified a nuclear structure that is induced after infection with the autonomous parvovirus H-1. Using fluorescence microscopy, we observed that the major nonstructural protein (NS1) of H-1 virus which is essential for viral DNA amplification colocalized with virus-specific DNA sequences and sites of ongoing viral DNA replication in distinct nuclear bodies which we designated H-1 parvovirus-associated replication bodies (H-1 PAR-bodies). In addition, two cellular proteins were shown to accumulate in H1 PAR-bodies: (i) the proliferating cell nuclear antigen (PCNA) which is essential for chromosomal and parvoviral replication and (ii) the NS1-interacting small glutamine-rich TPR-containing protein (SGT), suggesting a role for the latter in parvoviral replication and/or gene expression. Since many DNA viruses target preexisting nuclear structures, known as PML-bodies, for viral replication and gene expression, we have determined the localization of H-1 PAR- and PML-bodies by double-fluorescence labeling and confocal microscopy and found them to be spatially unrelated. Furthermore, H-1 PAR-bodies did not colocalize with other prominent nuclear structures such as nucleoli, coiled bodies, and speckled domains. Electron microscopy analysis revealed that NS1, as detected by indirect immunogold labeling, was localized in ring-shaped electron-dense nuclear structures corresponding in size and frequency to H-1 PAR-bodies. These structures were also clearly visible without immunogold labeling and could be detected only in infected cells. Our results suggest that H-1 virus does not target known nuclear bodies for DNA replication but rather induces the formation of a novel structure in the nucleus of infected cells.  相似文献   

20.
CRM1 exports proteins that carry a short leucine-rich peptide signal, the nuclear export signal (NES), from the nucleus. Regular NESs must have low affinity for CRM1 to function optimally. We previously generated artificial NESs with higher affinities for CRM1, termed supraphysiological NESs. Here we identify a supraphysiological NES in an endogenous protein, the NS2 protein of parvovirus Minute Virus of Mice (MVM). NS2 interacts with CRM1 without the requirement of RanGTP, whereas addition of RanGTP renders the complex highly stable. Mutation of a single hydrophobic residue that inactivates regular NESs lowers the affinity of the NS2 NES for CRM1 from supraphysiological to regular. Mutant MVM harboring this regular NES is compromised in viral nuclear export and productivity. In virus-infected mouse fibroblasts we observe colocalization of NS2, CRM1 and mature virions, which is dependent on the supraphysiological NS2 NES. We conclude that supraphysiological NESs exist in nature and that the supraphysiological NS2 NES has a critical role in active nuclear export of mature MVM particles before cell lysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号