首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 240 毫秒
1.
2.
3.
MHC class I and class II are crucial for the adaptive immune system. Although regulation of MHC class II expression by CIITA has long been recognized, the mechanism of MHC class I transactivation has been largely unknown until the recent discovery of NLRC5/class I transactivator. In this study, we show using Nlrc5-deficient mice that NLRC5 is required for both constitutive and inducible MHC class I expression. Loss of Nlrc5 resulted in severe reduction in the expression of MHC class I and related genes such as β(2)-microglobulin, Tap1, or Lmp2, but did not affect MHC class II levels. IFN-γ stimulation could not overcome the impaired MHC class I expression in Nlrc5-deficient cells. Upon infection with Listeria monocyogenes, Nlrc5-deficient mice displayed impaired CD8(+) T cell activation, accompanied with increased bacterial loads. These findings illustrate critical roles of NLRC5/class I transactivator in MHC class I gene regulation and host defense by CD8(+) T cell responses.  相似文献   

4.
The NOD like receptors (NLRs), a class of intracellular receptors that respond to pathogen attack or cellular stress, have gained increasing attention. NLRC5, the largest member of the NLR protein family, has recently been identified as a critical regulator of immune responses. While NLRC5 is constitutively and widely expressed, it can be dramatically induced by interferons during pathogen infections. Both in vitro and in vivo studies have demonstrated that NLRC5 is a specifi c and master regulator of major mistocompatibility complex (MHC) class I genes as well as related genes involved in MHC class I antigen presentation. The expression of MHC class I genes is regulated by NLRC5 in coordination with the RFX components through an enhanceosome-dependent manner. And the involvement of NLRC5 in MHC class I mediated CD8+ T cell activation, proliferation and cytotoxicity is proved to be critical for host defense against intracellular bacterial infections. Nevertheless, the role of NLRC5 in innate immunity remains to be further explored. Here, we review the research advances on the structure, expression regulation and function of NLRC5.  相似文献   

5.
NOD-like receptors (NLRs) are a family of intracellular proteins that play critical roles in innate immunity against microbial infection. NLRC5, the largest member of the NLR family, has recently attracted much attention. However, in vitro studies have reported inconsistent results about the roles of NLRC5 in host defense and in regulating immune signaling pathways. The in vivo function of NLRC5 remains unknown. Here, we report that NLRC5 is a critical regulator of host defense against intracellular pathogens in vivo. NLRC5 was specifically required for the expression of genes involved in MHC class I antigen presentation. NLRC5-deficient mice showed a profound defect in the expression of MHC class I genes and a concomitant failure to activate L. monocytogenes-specific CD8+ T cell responses, including activation, proliferation and cytotoxicity, and the mutant mice were more susceptible to the pathogen infection. NLRP3-mediated inflammasome activation was also partially impaired in NLRC5-deficient mice. However, NLRC5 was dispensable for pathogen-induced expression of NF-κB-dependent pro-inflammatory genes as well as type I interferon genes. Thus, NLRC5 critically regulates MHC class I antigen presentation to control intracellular pathogen infection.  相似文献   

6.
Ⅱ类反式激活因子(class Ⅱ trans-activator,CIITA)为非DNA结合蛋白,在MHC Ⅱ类基因的转录激活过程中以协同激活分子的形式发挥主导开关的作用。CIITA还可以调节其他与抗原递呈相关的基因,如H-2M基因、Ia相关恒定链(Ii chain)基因等。结构上,CIITA分子又是NOD样受体(NOD-likereceptor,NLR)家族成员之一,其功能与固有免疫密切相关。除此之外,CIITA在T细胞分化、FasL介导的细胞死亡、胶原的合成等方面也发挥着重要的调节作用。  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
The major histocompatibility complex (MHC) class II transactivator (CIITA) regulates the expression of genes involved in the immune response, including MHC class II genes and the interleukin-4 gene. Interactions between CIITA and sequence-specific, DNA-binding proteins are required for CIITA to function as an activator of MHC class II genes. CIITA also interacts with the coactivators CBP (also called p300), and this interaction leads to synergistic activation of MHC class II promoters. Here, we report that CIITA forms complexes with itself and that a central region, including the GTP-binding domain is sufficient for self-association. Additionally, this central region interacts with the C-terminal leucine-rich repeat as well as the N-terminal acidic domain. LXXLL motifs residing in the GTP-binding domain are essential for self-association. Finally, distinct differences exist among various CIITA mutant proteins with regard to activation function, subcellular localization, and association with wild-type protein and dominant-negative potential.  相似文献   

15.
Modulation of gene expression by the MHC class II transactivator   总被引:6,自引:0,他引:6  
The class II transactivator (CIITA) is a master regulator of MHC class II expression. CIITA also modulates the expression of MHC class I genes, suggesting that it may have a more global role in gene expression. To determine whether CIITA regulates genes other than the MHC class II and I family, DNA microarray analysis was used to compare the expression profiles of the CIITA expressing B cell line Raji and its CIITA-negative counterpart RJ2.2.5. The comparison identified a wide variety of genes whose expression was modulated by CIITA. Real time RT-PCR from Raji, RJ2.2.5, an RJ2.2.5 cell line complemented with CIITA, was performed to confirm the results and to further identify CIITA-regulated genes. CIITA-regulated genes were found to have diverse functions, which could impact Ag processing, signaling, and proliferation. Of note was the identification of a set of genes localized to chromosome 1p34-35. The global modulation of genes in a local region suggests that this region may share some regulatory control with the MHC.  相似文献   

16.
17.
MHC II类分子表达调控的研究进展   总被引:1,自引:0,他引:1  
MHCII类分子提呈经过加工的抗原给CD4 T淋巴细胞 ,在诱发免疫反应中起重要作用。MHCII类分子不正常表达会引起严重的免疫缺陷疾病 ,如裸淋巴细胞综合征 (BLS)等。目前已识别出四种不同的MHCII调控基因。这些基因分别编码RFXANK、RFX5、RFXAP和CIITA。其中 ,前三个是RFX复合物的亚基 ,RFX是一种结合于所有MHCII类基因启动子上的泛式表达的因子。CIITA是MHCII类分子表达的主要调控因子 ,其严密调控的表达模式决定了MHCII类分子表达的细胞特异性 ,及能否被诱导且在何种水平上表达。本文着重介绍近年来国内外对MHCII类分子表达及其调控研究的新进展  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号