首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Line crossfostering techniques were used to study differences among selected and control lines of mice in direct genetic and postnatal maternal genetic influences on preweaning (day 12) body weight and composition. The lines were selected for high (H6) and low (L6) 6-week body weight and the control line (C2) was maintained by random selection. There were positive correlated responses to selection in both direct genetic and postnatal maternal genetic effects on body weight and weights of all body components (P less than 0.01) except for water and ash weight in H6. The correlated responses in postnatal maternal genetic effects were of the same order of magnitude as those in direct genetic effects. Correlated responses were greater in L6 than in H6. Correlated responses in direct genetic effects were positive (P less than 0.01) for water percent in H6 and ether extract percent in L6, and negative (P less than 0.01) for water percent and lean percent in L6. Correlated responses in postnatal maternal genetic effects were positive for ether extract percent and negative for water percent (P less than 0.01). Correlated responses were far greater in L6 than in H6 and were greater for postnatal maternal genetic effects than for direct genetic effects. Analyses of covariance results indicated line differences in the relative growth rates of the body components.  相似文献   

2.
Summary Two populations of randombred of different origin (P and Q) containing eight lines (MP, WP, BP, CP, MQ, WQ, BQ and CQ) were used to evaluate the growth, feed efficiency and lifetime performance of females from eight pure lines and 16 F1 crosses. Line comparisons within populations (P or Q) revealed that the heaviest line at days 21, 42 and 63 was W, followed by lines B, M and C in both populations, while the highest in feed efficiency between days 21 and 63 was line W, followed by lines B, M and C in population P, and was line B followed by lines W, M and C in population Q. Generally, average body weights and feed efficiencies of crosses within and between populations were similar to those of mid-parents. Selection produced line W superior to the line M in additive direct genetic effects on body weight and feed efficiency in each population, and line WP superior to line WQ in additive maternal genetic effects on body weights at days 21, 42 and 63. In lifetime performance tests, total 20-day weight of litters produced by a dam during 200 days averaged from 442.7 g (WP) to 739.1 g (MP) for the eight lines. Lines M and W of populations P and Q generally did not differ in additive direct and maternal genetic effects on lifetime performance. Crosses excelled lines in the number of litters raised to weaning (5.44 vs. 5.25) and total 20-day litter weight per dam during 200 days (648.5 vs. 589.3 g). For lifetime 20-day litter weight per group, crosses from unselected lines (C) exceeded crosses from lines selected for nursing ability (M), adult weight (W) and both traits (B). Crosses of lines from different populations showed a higher heterosis in lifetime performance than crosses of lines within populations. Heterosis in the number of litters raised to weaning, and total 20-day litter weight per dam was significant in crosses between lines CP and CQ, between lines WP and wQ, and between lines WP and mQ. Crosses CPCQ and CQCP had a highly persistent production during lifetime tests.Animal Research Institute Publication 860USDA SEA-AR, Purdue University, West Lafayette, In. 47906 (USA)  相似文献   

3.
1. Newborn rats were reared in litters of either four or sixteen individuals. The animals from the small litters gained body weight more rapidly than those from large litters during the first 29 days of postnatal life studied. 2. The relative weights of the perigenital, perirenal, subcutaneous and intramuscular white-adipose-tissue sites in the animals from small litters indicated their relative obesity compared with controls. 3. The adipose depots from animals reared in small litters had a greater proportion of lipid present, by weight, and had a greater number of larger fat-cells present in them compared with the depots of animals reared in large litters. 4. Compared with both normal-sized litter controls and animals reared in sixteens, during the period of study the animals from small litters were hypertriacylglycerolaemic but normocholesterolaemic. 5. During suckling the blood glucose concentrations of animals reared in fours were increased, as were the concentrations of circulating immunoreactive insulin. 6. During the 29 days of life studied, in general, the lipoprotein lipase activity of adipose depots from animals reared in fours was greater than for animals in large litters when expressed as mumol of nonesterified fatty acid released from the substrate/h per g fresh weight of tissue, per depot, or per million fat-cells, but were similar per cm(2) of fat-cell surface area. 7. The previously noted [Cryer & Jones (1978) Biochem. J.172, 319-325] pattern of mid-suckling elevation, late-suckling decline and post-weaning increase in the lipoprotein lipase activity of the four white-adipose depots studied was not obliterated by the nutritional manipulations employed. 8. The relation of the enzyme-activity changes and their hormonal stimuli to triacylglycerol accumulation in fat-cells of animals from large and small litters is discussed in relation to the possible significance they may have to our understanding of neonatally induced obesity.  相似文献   

4.
Summary Direct and maternal genetic effects were evaluated for maturing patterns of body weight in mice using a crossfostering design. Crossfostering was performed in one group using dams from populations selected for rapid growth rate (M16 and H6) and their reciprocal F1. crosses. A second crossfostering group consisted of dams from the respective control populations (ICR and C2) and their reciprocal F1. 's. Population differences were partitioned into direct and maternal effects due to genetic origin, correlated selection responses, heterosis and cytoplasmic or sex-linked effects. Degree of maturity was calculated at birth, 12, 21, 31 and 42 days of age by dividing body weight at each age by 63-day weight. Absolute and relative maturing rates were calculated in adjacent age intervals between birth and 63 days. Genetic origin effects (ICR vs. C2; M16 vs. H6) were significant for many maturity traits, with average direct being more important than average maternal genetic effects. In general, correlated responses to selection for maturity traits were larger in the M16 population (M16 vs. ICR) than in the H6 population (H6 vs. C2) and correlated responses in average direct effects were larger than average maternal effects. Positive correlated responses in average direct effects were found for relative maturing rates at all ages and for absolute maturing rates from 31 to 63 days. Apparent correlated responses in degree of maturity were negative for M16 and H6. However, further analysis suggested that the correlated response for degree of maturity in H6 may be positive at later ages and negative at earlier ages. Direct and maternal heterosis for degree of maturity was positive in the selected and control crosses. Absolute and relative maturing rates showed positive heterosis initially, followed by negative heterosis. Reciprocal differences due to the cytoplasm or sex-linkage were not important for patterns of maturity.Paper No. 5244 the Journal Series of the North Carolina Agricultural Experiment Station, Ealeigh, Animal Research Institute Contribution No. 683 and Agricultural University at Wageningen Contribution No. 654–490–12On leave from the Animal Research Institute, Agriculture Canada at Ottawa, OntarioOn leave from the Department of Animal Husbandry, Agricultural University at Wagenitgen, the Netherlands  相似文献   

5.
Summary Replicated within full-sib family single-trait selection was conducted for 10 generations in mice for (1) high or low 12-week epididymal fat pad percentage (100 x epididymal fat pad weight/body weight) or (2) high or low 12-week hind carcass percentage (100 x hind carcass weight/body weight). Pooled realized heritabilities based on high, low and divergent selection were 0.66±0.09, 0.65±0.13 and 0.66±0.05 for epididymal fat pad percentage and 0.48±0.08, 0.33±0.08 and 0.40±0.04 for hind carcass percentage. The pooled realized genetic correlation (rG R) between epididymal fat pad percentage and hind carcass percentage based on divergence was –0.67±0.04. Other estimates of (rG R) were: epididymal fat pad percentage with body weight (0.57±0.05); epididymal fat pad percentage with epididymal fat pad weight (1.17±0.05); hind carcass percentage with body weight (–0.61±0.09); hind carcass percentage with hind carcass weight (–0.05±0.11). Indirect measures of fat and lean tissue percentages were highly heritable, and (rG R) between them would be desirable from the standpoint of analogous types of traits in livestock. In the same context, undesirable (rG R)'s were found between epididymal fat pad percentage and body weight and between hind carcass percentage and body weight.Paper No. 10957 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina 27695-7601, USA. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the products named, nor criticism of similar ones not mentioned  相似文献   

6.
Summary Genetic and phenotypic parameters for three-, six- and eight-week body weight and for weight gain between three and six weeks of age were estimated from data collected over 14 generations in a randombred control population. Genetic parameters were also estimated for sexual dimorphism in body weight and gain. Heritability estimates were substantial for body weight at all ages and for body weight gain. Additive maternal variances were also large. Estimates of the covariance between direct and maternal genetic effects were negative and substantial for three- and six-week weights and gain. Also the covariance between maternal effects on weaning weight and direct genetic effects on six- and eight-week weights were negative. These results indicate a consistent antagonism between maternal and direct genetic effects in this population.The analysis of sexual dimorphism yielded estimates of 0.87±.09 and 0.71±.14 for the correlation between additive direct effects on males and females for six-week weight and body weight gain respectively. Corresponding heritability estimates were 0.07±.09 and 0.11±.09. Heritability estimates for sexual dimorphism in three- and eight-week weights were negative.Journal Paper No. 3687 of the North Carolina State University Agricultural Experiment Station. This investigation was supported in part by NIH Grant No. GM11546.  相似文献   

7.
(1.) Male and female rats reared in litters of four gained body weight more rapidly than animals reared in litters of 16. The differences were more marked in males than females and became less marked in both sexes with advancing age. (2.) The relative weights of the perigenital, perirenal, subcutaneous and intramuscular white-adipose-tissue sites in the animals from small litters indicated their relative obesity compared with animals from large litters. A sex-related difference in the distribution of adipose tissue between the four sites was seen in animals reared in litters of both four and 16. (3.) Although at 30 days of age all the animals had more numerous and larger fat-cells in their white-adipose-tissue depots than animals reared in large litters, the pattern of change thereafter was both site- and sex-specific. During the post-weaning period (30-300 days), although detailed differences were apparent between sites, a general pattern of increased cell size in males and increased cell numbers in females emerged as being the important determinants responsible for the differences in depot sizes seen when animals from litters of four and 16 were compared. (4.) Lipoprotein lipase activities, expressed as units/g fresh wt. of tissue, in the depots of animals reared in groups of four were unaltered compared with those reared in groups of sixteen during the post-weaning period (47-300 days of age), and enzyme activities expressed per depot merely reflected differences in tissue weights. (5.) Lipoprotein lipase activities per 10(6) cells were higher in males reared in fours compared with those reared in sixteens of equivalent age, but were unaltered for females. (6.) The persistent hyperinsulinaemia of animals reared in litters of four is discussed in relation to the observed differences in enzyme activity and white-adipose-tissue cellularity.  相似文献   

8.
P W Harvey  P F Chevins 《Teratology》1987,35(2):229-238
The influence of administration of adrenocorticotrophic hormone (ACTH) during days 12-17 of pregnancy upon somatic, neurological, and neuromuscular development of offspring in mice was studied. The effects upon the onset of puberty in female offspring was also examined. Litters from mice given the higher of two doses of ACTH (1 IU/day or 8 IU/day) showed lower body weights at birth and weaning than controls. This treatment also increased pre- and postnatal mortality rates, although not significantly. Litters from mice treated with either dose of ACTH showed retarded development of the forelimb and hindlimb grasp reflexes, the body righting reflex, the auditory startle response, and eye opening. Although ear opening was delayed in litters from ACTH-treated mice, results did not achieve statistical significance. Study of female offspring housed in small groups revealed that one indicator of puberty, vaginal opening, was delayed in female offspring of ACTH-treated mice. Experiments were conducted to identify factors mediating this syndrome: ACTH did not depress maternal food intake or alter the length of pregnancy, therefore fetal undernutrition or premature birth can be excluded as mediating factors. All litters were fostered to untreated mice to control for postnatal factors influencing development. As ACTH cannot cross the placenta, the syndrome is likely to result from in utero exposure to abnormally high concentrations of glucocorticosteroids of maternal origin. It is concluded that such alterations to the fetal environment can exert a deleterious influence upon somatic, neurological, and sexual development, and that hormones of the maternal pituitary-adrenocortical axis may naturally act to regulate general development of the fetus.  相似文献   

9.
Rearing animals in small litters induces a permanent increase in body weight and body fat. To determine whether changes in sympathoadrenal activity contribute to this effect, litter size was adjusted the day after birth and maintained until weaning at 21 days. Sympathetic nervous system (SNS) activity was measured in adult animals using [(3)H]norepinephrine ([(3)H]NE) turnover in peripheral tissues. Although litter size was without effect on [(3)H]NE turnover in chow-fed animals, acceleration of [(3)H]NE turnover by dietary sucrose was completely abolished in heart and attenuated in interscapular brown adipose tissue and kidney of rats reared in small litters. Body and epididymal fat-pad weights were heavier in rats reared in small litters; however, weight gain in response to dietary enrichment with sucrose did not differ as a function of litter size. Thus litter size alters dietary activation of the SNS, and this effect presumably reflects changes in central nervous system regulation.  相似文献   

10.
Summary The cross-nursing technique was used to assess the relative importance of prenatal and postnatal maternal influences on growth in mice from an unselected population originated from a cross of four highly inbred strains. Body weights were studied at birth, 7-, 14-, 21- and 42-days, in addition to the weight gains between these ages and tail length at 21 and 42 days of age. At littering, each dam in each nursing set retained two of her own offspring and two were transfereed to each of the other dams in the set, so that each nursed litter contained six young representing three mothers. Prenatal influences accounted for 37, 15, 10, 11 and 13 % of the total variation in the respective body weights, while postnatal influences accounted for 0, 64, 65, 49 and 14% at the respective ages. In the case of weight gains, prenatal influences were responsible for 16, 4, 6 and 30%, while postnatal influences were responsible for 66, 66, 31 and 7% of the total variation in gain during the respective four periods examined. Apparently the individual weight gain from 7 to 14 days was a better measure of the lactational performance of the dam than individual 14-day weight. For tail length, prenatal influences accounted for 6 % and 4 % of the total variation in tail length at 21 and 42 days, respectively, while postnatal influences accounted for 60 % and 24 % at the respective ages. Generally, there was no indication of an important interaction between the nurse and the nursed young at any stage studied.  相似文献   

11.
Summary Correlated responses to selection for increased 3–6 week postweaning gain in male mice were estimated for seven internal organs (testes, spleen, liver, kidneys, heart, small intestine (S intest) and stomach) weighed at specific degrees of maturity in body weight (37.5, 50.0, 62.5, 75.0, 87.5 and 100%). Correlated responses in organ weights were generally large, but the magnitude and direction of response depended upon whether 1) comparisons were made at the same age, degree of maturity or body weight and 2) absolute or proportional organ weights were used. The selected line (M16) weighed more and had larger organ weights than controls (ICR) when compared at either the same degree of maturity or the same age, indicating positive genetic correlations between body weight and the respective organ weights. Positive correlated responses were found in spleen weight/body weight at all degrees of maturity and in liver and S intest weights as a proportion of body weight at some degrees of maturity. Testes, kidneys, heart and stomach weights as a proportion of body weight had negative correlated responses, though this was consistent only for kidneys across all degrees of maturity. Correlated responses in organ weights adjusted for body weight by covariance analysis were positive for spleen, S intest and stomach and negative for testes and kidneys. Based on the constrained quadratic model, degree of maturity in organ weight relative to degree of maturity in body weight responded positively for testes, kidneys and S intest and negatively for spleen and liver. Selection for increased growth caused negative correlated responses in allometric growth of testes, kidneys, S intest and stomach.Paper No. 10,545 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, 27695-7601. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the products named, nor criticism of similar ones not mentioned  相似文献   

12.
B K Rhees  C A Ernst  C H Miao  W R Atchley 《Genetics》1999,153(2):905-917
A series of mouse lines was produced by long-term restricted index selection for divergent rate of growth during early and late postnatal development. The selection program was based on the following treatments: E(+) and E(-) lines were selected to alter birth to 10-day weight gain while holding late gain for both lines constant and a control line was established via random selection. Using embryo transfer and crossfostering methodology, we partitioned postnatal growth for E(+), E(-), and C lines into progeny genetic, uterine maternal, and nurse maternal components. Selection for differential early growth resulted in correlated response in uterine and nurse maternal effects on body weights, with significant genetic-by-environment interactions. Significant uterine effects were also observed in tail length measurements. Direct uterine effects on body weight were relatively small and resulted in growth rate differences early in development. Nurse effects were large, resulting in modification of progeny growth trajectory especially during early postnatal development. Genetic-by-uterine interactions were large and demonstrate progeny-specific effects of the prenatal uterine environment.  相似文献   

13.
Reciprocal embryo transfer procedures were performed among mouse selection lines to examine prenatal maternal effects on survival and development of transferred embryos. Mice were from generations 28 and 29 of an experiment to select for (i) increased body weight again from 0 to 10 days (E+); (ii) decreased body weight gain from 0 to 10 days (E-); or (iii) a randomly bred control line (C). A total of 118 embryo transfer procedures performed 12 h after conception resulted in 983 progeny born to 89 litters. There was a 39% overall embryo survival rate and 75% overall pregnancy success rate. Response to superovulation and oestrous synchronization was significantly lower (P < 0.01) in the E+ line. E+ individuals that did superovulate produced an average of 37 oocytes per flush, which was significantly higher than in the control line mice (29 oocytes per flush; P < 0.01). The ability to complete pregnancy successfully was not influenced by uterine environment or embryo-uterine interaction. In contrast, embryo survival in successful pregnancies was significantly affected by uterine environment. There were large maternal effects for body weight and tail length at birth; E+ recipients produced pups that were significantly larger than E- recipient pups (P < 0.01), which in turn were significantly larger than pups gestated by control recipients (P < 0.01).  相似文献   

14.
House mice bred for many generations in two environments   总被引:1,自引:0,他引:1  
Wild house mice, Mus musculus L., were trapped, and their descendants reared, in permanently mated pairs, for a number of generations in two laboratory environments, at about 21°C (controls) and -3°C, respectively. All mice had sawdust and cottonwool for bedding; but the nests of those at -3°C were colder than those in the warm, and fluctuated greatly in temperature.
Reproductive performance was inferior in the cold environment: more pairs were barren, and the fecund pairs reared fewer young than the controls. Yet litters at birth were usually larger in the cold, and the young at three weeks were always heavier. Over ten generations nestling mortality declined at -3°C.
From generation 1 on, adult mice at -3°C were heavier than the controls, but there was no corresponding increase in body length. Tails were much shorter relative to body length in the first generations in the cold, but returned to control proportions by generation 10. Most of the structural changes in the cold accord with the "rules" of Bergmann and Allen.
The incidence of abnormal sixth lumbar vertebrae was low in all generations at both temperatures.
After nine generations, some mice were transferred from the cold to the warm environment, and bred for a further three generations. There they outstripped the controls both in reproductive performance and in growth. They also had more fat, and a heavier and longer small intestine; but the heart, stomach and kidneys were lighter than those of the controls. Adrenal weights at 21°C declined over the generations, but those of the mice at -3°C did not.
The secular changes observed, especially those in the cold environment, are attributed principally to differential selection of genotypes, not to inbreeding; but maternal effects may also have been involved.  相似文献   

15.
H T Epstein  K Fenton  S Shimpach 《Life sciences》1991,49(16):1169-1172
Starting at parturition and continuing until weaning, mothers of five mouse litters received tap water while five others had 10 mg PbAc/ml in their drinking water. The offspring receiving lead from the mothers had significantly lower body weights after the first days of receiving lead; their slowed body growth led to a 2-day delay of onset (usually at 16-18 days) of their last rapid body growth stage. They also had significantly smaller brain weights between age 14 days and weaning (23 days). The onset of rapid brain growth was delayed from its usual onset at 16-18 days to about 22-23 days before rising to about the same value as the control mice at 26 days. Thus, the initial effect on brain growth is decidedly greater than on body growth, though brain weight later reaches close to the control value.  相似文献   

16.
Two embryo transfer experiments were carried out in order to estimate the magnitude of prenatal maternal effects, independent of postnatal maternal factors, on the growth of internal organs and fat pads in mice. Reciprocal embryo transfers between the inbred mouse strains C3HeB/FeJ and SWR/J yielded three significant findings. First, all traits were not equally influenced by prenatal maternal factors. Genetic prenatal maternal factors, stemming from the genotype of the uterine mother, had a significant effect on testis weight, subcutaneous fat pad weight and epididymal fat pad weight in 21 day old progeny, but they had no effect on cranial capacity, an index of brain size, kidney weight, or liver weight. Prenatal litter size, defined as the sum of live and dead pups at birth, had a significant negative relationship with 21 day testis weight and kidney weight, and a significant positive association with subcutaneous and epididymal fat pad weights. Cranial capacity and liver weight at 21 days postnatally were not influenced by prenatal litter size. Second, the experiments demonstrated that there was ontogenetic variability in the strength of prenatal maternal effects. At 70 days of age, only subcutaneous fat pad weight was significantly influenced by genetic prenatal effects, and prenatal litter size had a significant negative relationship only with subcutaneous fat pad weight and body weight. Third, genetic prenatal effects had a significant influence on the among-trait covariances at 21 days postnatally, but not at 70 days. Because multivariate evolution involves covariances among characters, the latter results suggest that prenatal effects due to the mother's genotype can affect phenotypic evolution of mammals, especially for selection imposed early in life.  相似文献   

17.
MATERNAL PROCESSES IN THE COLD-ADAPTATION OF MICE   总被引:1,自引:0,他引:1  
  • 1 Both laboratory and wild house mice, Mus musculus, given bedding, can breed in captivity in an environment kept at – 3°C. The nest temperature when a young litter is present then fluctuates widely. In a typical laboratory (at 21°C) the temperature of the nest is both higher and more constant.
  • 2 The ovaries of pregnant mice breeding at – 3°C have more corpora lute a than controls at 21°C. This is not an index of a higher ovulation rate, but is evidently due to the presence of corpora lutea from a pievious ovulation.
  • 3 In the absence of concurrent lactation, weights and numbers of foetuses at the sixteenth day of gestation are little affected by cold; but in both environments foetal weight diminishes with increasing size of litter. This is a systemic effect: foetal weight is hardly if at all influenced by the number of other foetuses in the same uterine horn.
  • 4 Cold delays the onset of breeding and lengthens the interval between litters. Mean litter sizes are usually lower than in the warm environment, mainly through absence of large litters.
  • 5 The body weights of laboratory mice are usually lower at – 3°C than 21°C at all ages from 3 weeks. This does not, however, apply to strain C57BL, which never stores much fat in adipose tissue. Wild mice bred at – 3°C are heavier than controls at 21°C, possibly because only the heavier individuals survive in early life.
  • 6 F 1 hybrids produced by crossing two inbred strains breed better and more consistently than the parent strains at both temperatures; but the effect of heterozygosis is much greater in the cold environment.
  • 7 Food intake changes little during pregnancy, but rises greatly during the first 10 days of lactation at both temperatures.
  • 8 At 21°C, body weight, excluding the weight of the litter, increases only slightly during pregnancy; but the weights of the heart and liver are greatly increased. The weight of the stomach also rises; the small intestine lengthens, but becomes lighter. During lactation the liver becomes still heavier, and the small intestine more than restores its loss of weight. The kidneys also become heavier. At – 3°C similar changes occur, but the heart is heavier at all stages of the reproductive cycle than it is at 21°C. The kidneys, too, are consistently heavier in the cold, and so is the small intestine. By contrast, the liver of pregnant or lactating females at – 3°C is no heavier than in the warm environment.
  • 9 Pregnancy entails an increase in the absolute amount of nitrogen in the body, in both environments; but females at – 3°C have less nitrogen and collagen than controls. Pregnancy does not alter body fat at either temperature, but lactation is accompanied by some loss. At birth, mice born in the cold environment have more than twice as much body fat as controls.
  • 10 When mice are bred for their full reproductive span, the effect of a cold environment depends markedly on genotype. Mice of strain A2G/Tb eventually produce as many young in the cold environment as in the warm, but take longer to do so; C57BL/Tb produce fewer young, Wild mice produce fewer litters at – 3°C, and have a much higher nestling mortality. Most of the mortality is due to loss of whole litters.
  • 11 The preceding statements apply to mice of the first two or three generations in a cold environment, There are further effects of breeding for many generations in the cold. Wild mice bred for ten generations lose fewer litters in later than in earlier generations. After ten generations, some wild mice were moved from –3 to 21°C. Their reproductive performance was then much superior to that of controls which had been kept at 21°C throughout. The transferred mice were also quicker than the controls to make a nest of paper.
  • 12 Genetically heterogeneous laboratory mice, after twelve generations in the cold, were similarly returned to the warm environment. Their offspring were heavier than controls; but there was no superiority in reproductive performance.
  • 13 A2G/Tb mice kept at –3°C, though highly inbred, also improved in reproductive performance over a number of generations: in particular, their infant mortality declined. This was probably not due to a genetical change, but to a cumulative maternal effect.
  • 14 Maternal performance was studied by cross-fostering young at birth between these ‘Eskimo’ mice, ‘immigrant’ mice of the first or second generation reared in the cold, and controls at 21°C. There was some evidence of an effect of true parentage, regardless of foster parentage, on body weight: the young of the Eskimo mice tended to be heavier than the others. There was also evidence that this influence persisted into a second generation. Mortality among the fostered young was influenced only by true parentage, not by foster parentage or environmental temperature. Some of the fostered mice were mated. Again, among their young, mortality in the nest was not affected by environmental temperature; but those whose true ancestry was Eskimo displayed a lower mortality than the others.
  • 15 If a young mammal is given special treatment (such as exposure outside the nest), the treatment may influence, not only the individual treated, but also the behaviour of the parents; and the altered parental behaviour may in turn affect the development of the young. Enhanced parental attention in the nest has been directly observed after young have been exposed to cold or other treatment. It can probably accelerate maturation, and improve reproductive performance by lowering mortality among the young of the treated mice. Hence the direct effects of treatment in infancy can never be distinguished with certainty from indirect effects through changed parental behaviour, unless the experimental animals are reared artificially.
  • 16 A comprehensive theory of ‘stress’, that is, of the response of a species to an environmental change for the worse, requires that attention should be paid to the following: (i) the effects of physiological (ontogenetic) adaptation to one ‘stressor’, such as cold, on response to another, such as infection; (ii) the ways in which conditions of rearing, especially early exposure to mildly adverse conditions such as lower temperature, influence later physiological, reproductive and behaviour al performance; (iii) the relationships of the above with the adaptive changes of pregnancy and lactation.
  相似文献   

18.
Summary Mice selected for high (H6) and low (L6) 6-week body weight and a randombred control population (C1) were characterized for rate, composition and efficiency of growth. Individual body weights were obtained from birth to 8 weeks of age on 682 mice representative of the three lines. Individual whole carcass determinations of water, fat, ash and protein (residual) were obtained for 180 mice sampled weekly from 3–8 weeks of age. Efficiency of feed utilization was estimated from individual body weight and feed consumption data obtained on 189 mice from 3–8 weeks of age. Growth curves for body weight and gain in body weight, constructed by line and sex, showed a temporary retardation of maximum growth rate in the L6 line, which was attributed in part to an extended depression in growth following weaning. The composition of growth yielded no evidence that the more rapid growth rate in the H6 line resulted from an increase in fat deposition relative to the other carcass components. A decrease in fat percent at 7 weeks of age in the H6 and C1 lines was not evident in the L6 line until 8 weeks of age. Females had a higher percentage carcass fat than did males during the 4–7 weeks growth period, but this difference was essentially reduced to zero by 8 weeks of age. Percentage water was highly correlated negatively with percentage fat. Percentages protein and ash were essentially constant across lines and ages. A positive relation between rate and efficiency of growth was observed between lines. Consistent sex differences, males more efficient than females, were observed prior to 6 weeks of age, but were not evident in the later (6–8 week) data.
Zusammenfassung Bei Mäusen, die auf hohes (H6) und geringes (L6) 6 Wochen-Körpergewicht selektiert waren, und einer unselektierten Kontrollpopulation (C1) wurde die Zuwachsrate, die Veränderung des Wasser-, Fett-, Protein- und Aschegehaltes während des Wachstums sowie die Wuchsleistung untersucht. Das Körpergewicht von der Geburt bis zum Alter von 6 Wochen wurde an 682 einzelnen Mäusen, die repräsentativ für die drei Linien sind, festgestellt. Die Ermittlung des Wasser-, Fett-, Asche- und (Rest-)Proteingehaltes der Tiere erfolgte wöchentlich für 180 Mäuse im Alter von 3–8 Wochen. Die Futterverwertung (Wuchsleistung) wurde für 189 drei bis acht Wochen alte Mäuse auf Grund von Einzelgewichten und Futterverbrauch geschätzt.Die Wachstumskurven für Körpergewicht und Gewichtszunahme, nach Linien und Geschlecht zusammengestellt, zeigten bei der L6-Linie eine zeitweilige Verzögerung der maximalen Zuwachsrate, was z. T. einer längeren Wachstumsdepression nach der Entwöhnung zugeschrieben wird. Es ergab sich kein Beweis dafür, daß die schnellere Wachstumsrate bei der H6-Linie auf eine Erhöhung der Fetteinlagerung im Verhältnis zu den anderen Komponenten zurückzuführen ist. Ein Rückgang des Fettgehalts, der bei den H6- und C1-Linien im Alter von 7 Wochen festzustellen war, wurde bei der Linie L6 erst nach 8 Wochen sichtbar. Weibliche Tiere hatten im Alter von 4–7 Wochen einen höheren Körperfettgehalt als männliche, im Alter von 8 Wochen war dieser Unterschied aber nicht mehr vorhanden. Der Wassergehalt war in hohem Maße negativ mit dem Fettgehalt korreliert. Die Protein- und Ascheanteile waren im wesentlichen für die Linien und untersuchten Wuchsperioden konstant. Zwischen den Linien wurde eine positive Relation hinsichtlich Wuchsrate und Wuchsleistung festgestellt. Deutliche Geschlechtsunterschiede wurden bis zum Alter von 6 Wochen beobachtet, und zwar wuchsen die Männchen schneller als die Weibchen, später (6.–8. Woche) waren keine Unterschiede mehr feststellbar.


Paper number 2640 of the Journal Series of the North Carolina State University Agricultural Experiment Station, Raleigh, North Carolina. Supported by Public Health Service Grant GM 11546-05. Computation was supported by NIH Grant No. FR-00011. The senior author was supported by NIH Training Grant No. 2-Tl-GM-296.  相似文献   

19.
Summary Body composition was studied in three lines of mice, one selected for high (H) and one for low (L) 8 week weight, and one maintained as an unselected control (C). After 25 generations 8 week weights were 41.2g, 30.6 g and 20.5g for the H, C and L lines. Mice were sampled from the lines and analysed for fat, protein, ash and water at generations 14 and 25. Apart from fat in the H line, there was little alteration due to selection in the relationships between individual body components and total body weight. In the H line, the contribution of fat to body weight gain was considerably increased. Although leaner than the C and L mice at low body weights, H line mice rapidly became fatter with increasing body weight. Selection appeared to reduce the body weight at which fat was deposited at its maximum rate in the H line. The H and C lines were equally fat at body weights of 29.0 g and 21.6 g at generations 14 and 25 respectively. Body weights at points of inflection of the growth curves of the H, C and L lines at generation 25 were 18.3 g, 14.3 g and 12.8 g. The implications of these findings for meat species slaughtered at set weights are discussed.  相似文献   

20.
J. Nagai  H. Bakker    E. J. Eisen 《Genetics》1976,84(1):113-124
Crossfostering was performed using lines selected for increased 6-week body weight (H6) and increased 3-to 6-week postweaning gain (M16) and their reciprocal F1 crosses as nurse dams in the selected crossfostering group, and base population controls (C2, ICR) and their reciprocal F1 crosses in the control group. The offspring suckled were H6, M16 and F2 crosses in the selected group, and C2, ICR and their F2 crosses in the control group. Measurements taken on the individual offspring were body weights at birth (WB) and at 12, 21, 31, 42, and 63 days (W12, W21, W31, W42 and W63, respectively) and weight gains between adjacent ages (GB-12, G12–21, G21–31, G31–42 and G42–63, respectively). Least squares constants fitted to populations of genetic and nurse dams were used to calculate specific linear contrasts. Correlated responses to selection in average direct genetic effects were significant and positive for all traits examined in both H6 and M16, while the correlated responses in average maternal genetic effects were negative in M16 and negligible in H6. Selection response was primarily due to average direct genetic effects while the contribution of average maternal genetic effects was of secondary importance. The response in average direct genetic effects was smaller in M16 than in H6 through weaning (WB, W12 and W21), but was larger in M16 for postweaning weights (W31, W42 and W63). The correlated responses in average maternal genetic effects were consistently smaller in M16 than in H6. Direct heterosis was significant for all traits except for G12–21 and G42–63 in the control group, whereas maternal heterosis was significant for weight gains at early ages and for body weights. Direct heterosis tended to be larger than maternal heterosis in both selected and control crosses. Percent direct heterosis for body weight was larger in the selected crosses relative to the control crosses through 31 days of age, but the trend was reversed by 63 days. Percent maternal heterosis was consistently larger in the selected crosses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号