首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the effect of high temperature on infectivity of Toxoplasma gondii tissue cysts, pork from infected pigs was mixed with infected mouse brains and homogenized thoroughly. Twenty-gram samples of infected homogenized meat were sealed in plastic pouches, pressed to a uniform thickness of 2 mm, and subjected to water-bath temperatures of 49, 52, 55, 58, 61, 64, and 67 C for 0.01, 3, 6, 9, 12, 24, 48, and 96 min. Treated samples were digested in HCl-pepsin solution and bioassayed in mice. Toxoplasma gondii tissue cysts remained viable at 52 C for 9.5 min but not for 9.5 min at 58 C; tissue cysts were generally rendered nonviable by heating to 61 C or higher temperature for 3.6 min. Tissue cysts survived once at 64 C for 3 min. These data demonstrate that T. gondii tissue cysts are less heat resistant than encysted Trichinella spiralis larvae.  相似文献   

2.
Methods for the cryopreservation of different stages of Trichinella parasites have been studied. For the cryopreservation of muscle stage larvae (MSL) of T. spiralis s.str. and T. nativa, four cryoprotectants were tested: dimethylsulfoxide, ethanediol, hydroxyethyl starch, and polyvinylpyrrolidone at different concentrations, times, and temperatures of incubation. The cooling rate was approximately 0.6 C min-1. After thawing and an incubation period of 3 hr, a high percentage (80%) of cryopreserved MSL were motile but were not infective for mice. For the cryopreservation of newborn larvae (NBL) of T. spiralis s.str., T. nativa, T. nelsoni, and T. pseudospiralis, 10% dimethylsulfoxide was used as cryoprotectant incubated at 37 C for 15 min. The cooling rate was also 0.6 C min-1. After storage in liquid nitrogen, thawing, and incubation of NBL in culture medium for 3 hr, 80% of NBL were motile. An average of 8% of T. spiralis, 6% T. nativa, and 0.5% T. pseudospiralis developed into MSL in mice. No cryopreserved NBL of T. nelsoni developed into MSL. Compared to unfrozen control groups NBL infectivity was 33% for T. spiralis, 21% for T. nativa, and 2% for T. pseudospiralis.  相似文献   

3.
The effect of moist heat and several disinfectants on Sarcocystis neurona sporocysts was investigated. Sporocysts (4 million) were suspended in water and heated to 50, 55, 60, 65, and 70 C for various times and were then bioassayed in interferon gamma gene knockout (KO) mice. Sporocysts heated to 50 C for 60 min and 55 C for 5 min were infective to KO mice, whereas sporocysts heated to 55 C for 15 min and 60 C or more for 1 min were rendered noninfective to mice. Treatment with bleach (10, 20, and 100%), 2% chlorhexidine, 1% betadine, 5% o-benzyl-p-chlorophenol, 12.56% phenol, 6% benzyl ammonium chloride, and 10% formalin was not effective in killing sporocysts. Treatment with undiluted ammonium hydroxide (29.5% ammonia) for 1 hr killed sporocysts, but treatment with a 10-fold dilution (2.95% ammonia) for 6 hr did not kill sporocysts. These data indicate that heat treatment is the most effective means of killing S. neurona sporocysts in the horse feed or in the environment.  相似文献   

4.
The infectivity of Trichinella spiralis L1 larvae was examined in Swiss CD-1 mice after their maintenance in conventional cell culture media under different atmospheric conditions. Larvae isolated from the infected mouse carcasses were cultured for 24 hr in Roswell Park Memorial Institute (RPMI) medium, minimum essential medium (MEM), 199 medium, and Hank's balanced salt solution (HBSS) medium under anaerobic, microaerobic, and 5% CO2 conditions. Only those larvae maintained under anaerobiosis in all media retained their infectivity in mice. The larvae maintained microaerobically and under 5% CO2 lost more of their infectivity when cultured in RPMI medium and MEM (> 96%) than in 199 and HBSS (> 78%).  相似文献   

5.
In Papua New Guinea, Trichinella papuae, a non-encapsulated species, is circulating among wild and domestic pigs and saltwater crocodiles. Since an important phase of the life cycle of nematodes of the genus Trichinella is the time of survival of infective larvae in decaying muscle tissues of the hosts, the carcass of a pig, experimentally infected with larvae of T. papuae, was exposed to the environmental conditions of Papua New Guinea to establish how long these larvae would survive and remain infective to a new host. Larvae retained their infectivity in the pig carcass up to 9 days after slaughtering, during which time the temperature within the carcass reached 35.0 degrees C on 2 days; the average relative humidity was 79.0%. A low number of larvae survived up to day 14 after the pig was killed, when the carcass temperature reached 38.0 degrees C, but they lost their infectivity to laboratory mice. This result suggests that the larvae of T. papuae can survive in a tropical environment for a time, favouring their transmission to a new host in spite of the lack of a collagen capsule.  相似文献   

6.
The present study was designed to investigate the tolerance to low temperatures of 9 Trichinella isolates in rat muscle tissue. Nine groups of 24 rats were infected with encapsulated Trichinella spiralis, Trichinella nativa, Trichinella britovi, Trichinella murrelli, Trichinella T6, Trichinella nelsoni, and 3 nonencapsulated Trichinella pseudospiralis strains. Six rats from each of the groups were necropsied at 5, 10, 20, and 40 wk postinfection (wpi). Muscle tissues containing Trichinella larvae were exposed to temperatures of -18, -5, and 5 C for 1 or 4 wk, and afterward the reproductive capacity index (RCI) in mice was determined for the 9 individual Trichinella isolates. Only T. nativa muscle larvae were infective after freezing at a temperature of -18 C. At 5 wpi all encapsulated isolates, except for the tropical species T. nelsoni, remained infective after exposure to a temperature of -5 C for both 1 and 4 wk, whereas nonencapsulated T. pseudospiralis survived only 1 wk of exposure. All Trichinella spp. remained infective after exposure to a temperature of 5 C. Muscle larvae for all investigated species remained infective as long as they persisted in live rats during the experiment. Analysis of variance showed a significant effect of age on the temperature tolerance of encapsulated T. spiralis and nonencapsulated T. pseudospiralis. In addition, significant interaction between age of muscle larvae and length of exposure was found. In general Trichinella muscle larvae of medium age (10 and 20 wpi) tolerated freezing better than early and late stages of infection (5 and 40 wpi). This is the first study to demonstrate such a relationship between age of infection and temperature tolerance of Trichinella spp. muscle larvae.  相似文献   

7.
Dalgliesh R. J. and Stewart N. P. 1979. Observations on the morphology and infectivity for cattle of Babesia bovis parasites in unfed Boophilus microplus larvae after incubation at various temperatures. International Journal for Parasitology9: 115–120. The temperature of incubation of unfed Boophilus microplus larvae infected with Babesia bovis influenced the morphology and infectivity of the Babesia within the tick. Incubation at 37°C for 1–3 days stimulated the development of parasites morphologically similar to those usually observed in fed larvae harvested from cattle; similar forms appeared more slowly in larvae incubated at 31°C or 25°C. Extracts prepared from larvae after incubation at 37°C for 3–5 days or 30°C for 8 days were consistently infective for cattle. Prior storage of larvae at 14°C for up to 28 days enhanced the development of infectivity at 37°C; infectivity could still be produced after 65 days storage at 14°C but not after 76 days. Larvae released on a host transmitted B. bovis sooner if they had been incubated at 37°C for 4 days. It was concluded that the development of B. bovis to an infective stage in B. microplus is temperature dependent and does not require the stimulus of feeding by the host.  相似文献   

8.
The infectivity of Trichinella pseudospiralis infective larvae was reduced significantly following exposure to low pH or a combination of 1% pepsin at low pH compared to that for larvae isolated in phosphate-buffered saline (PBS) at pH 7.0. Reduction of host gastric pH by administration to mice of sodium bicarbonate solution in PBS was accompanied by an increase in the infectivity of larvae isolated in 1% pepsin/HCl (P/HCl) compared to that for worms inoculated into hosts given PBS alone. Fewer adult worms developing from larvae isolated in P/HCl became established in the host small bowel than was seen with larvae isolated in PBS; moreover, the fecundity in vitro of adult worms developing from P/HCl-isolated larvae was reduced below that for adults developing from larvae isolated from host muscle in PBS. More adult worms were recovered following infection of immune hosts with PBS-isolated larvae than were recovered from immune mice challenged with larvae isolated in P/HCl. Similar findings were observed in mice immunized by infection with Trichinella spiralis and challenged with T. pseudospiralis larvae isolated in either P/HCl or PBS. Immunization of mice with T. pseudospiralis larvae isolated by either method and challenged with larvae of T. spiralis resulted in recovery of similar percentages of the challenge inoculum.  相似文献   

9.
Over half of the number of Trichinella pseudospiralis infective L1 larvae recovered from host carcasses by pepsin-HCl digestion were isolated from homogenized carcasses incubated in HBSS. More worms isolated by the latter method were viable compared to those isolated by pepsin-HCl digestion. When host carcasses infected with T. pseudospiralis were diced into pieces and incubated in HBSS, 30% more worms were recovered than from homogenized carcasses incubated in HBSS as above, and the majority of worms acquired by the former method were viable. The infectivity of T. pseudospiralis infective L1 larvae isolated from homogenized muscle in HBSS was 3.9 times greater than that for larvae recovered from homogenized carcasses by pepsin-HCl digestion. Only 4% and 0.8% of the number of T. spiralis recovered from homogenized muscle by pepsin-HCl digestion were isolated from homogenized or diced muscle incubated in HBSS, respectively. Fewer T. spiralis isolated from homogenized tissue in HBSS were viable compared to those recovered from homogenized carcasses digested in pepsin-HCl or diced carcasses incubated in HBSS.  相似文献   

10.
The recirculation of Trichinella spiralis newborn larvae was studied in inbred AO rats. Newborn larvae collected after in vitro incubation of adult T. spiralis worms for 2 or 24 hr were injected into rats through the tail vein or hepatic portal vein. Blood samples from the femoral vein, hepatic portal vein, and abdominal aorta were collected at intervals from 1 min to 24 hr after larval injection. Newborn larvae of both ages (24 hr or 2 hr old) persisted in femoral vein blood for less than or equal to 5 hr after injection, but they could be detected in portal vein blood by 24 hr after injection. The injection of larvae into a tail vein or the portal vein did not influence the pattern of larval circulation, although there was a 1-5 min delay in newborn larval appearance time after injection into the portal vein. Transcapillary migration through tissue and back to the circulation was evident in the appearance of newborn larvae in the thoracic duct lymph up to 24 (occasionally 48) hr after tail vein injection of newborn larvae. During the course of a natural primary infection, no evidence for trapping of larvae in the mesenteric lymph node could be found despite direct larval migration through this organ. Injected newborn larvae were retained in the lungs, and small numbers could be recovered 24 hr after intravenous injection. We conclude that a proportion of newborn larvae recirculates within the vasculature for several hours; a smaller population extravasates but can reenter the circulatory system via the lymphatics. Furthermore, some newborn larvae are found in organs rich in capillaries up to 24 hr after their entry into the blood.  相似文献   

11.
This study was carried out to investigate the nature of the immunological responses which took place in a child who had recently recovered from toxocariasis. She had developed a marked eosinophilia and had high titers of toxocara antibodies. Experiments were performed to examine whether Toxocara canis infective larvae could be killed in the presence of her serum and human eosinophils. Eosinophils with human complement, or this patient's serum, adhered to the surface of the larvae within 10 min. By 40 min, using both light and electron microscopy, it was shown that the cells had flattened against the cuticle and degranulated. However, by 3 hr, eosinophils had begun to detach, and the larvae remained alive for at least 1 week afterward. Further addition of serum or of eosinophils, which were shown to be able to immobilize T. spiralis infective larvae, failed to kill the T. canis larvae. It was concluded that, in this patient, the development of an inflammatory response to a T. canis infection was not associated with the appearance of antibodies capable of inducing eosinophil dependent toxicity to the larvae in vitro. Eosinophil dependent killing mechanisms may be less important than other components of the immune response, in immunity to this parasite in humans.  相似文献   

12.
The ability of Trichinella spiralis to activate complement (C) has been addressed by several investigators. However, these investigators employed methods in which either detection of C fragments on the parasite surface or the adherence of leukocytes to the parasite was considered an indication of C activation. The present studies were undertaken to examine: (a) whether activation of C occurs via the classical and/or alternative pathway, (b) at which stage(s) of the parasite C activating capacity is acquired, and (c) what molecular entities of the epicuticle and/or cuticle are responsible for initiating C activation. Our studies indicate that T. spiralis activates C primarily via the alternative pathway (and weakly via the classical pathway) since incubation of parasites obtained from infected mice with either normal human serum (NHS) or Mg.EGTA-NHS, followed by incubation (1 hr, 37 degrees C) with antibody-sensitized sheep erythrocytes or rabbit erythrocytes, respectively, showed a time-and parasite number-dependent depletion of C. Although the three stages of T. spiralis, i.e., infective larvae, adults and newborn larvae, are capable of activating C, the newborn appears to be the most potent activator, especially when parasite number and size are taken into consideration. Further evidence of C activation is obtained from SDS-PAGE and Western blot analysis in which homogenates of parasites preincubated with NHS showed the presence of C3, C9, and C1q, whereas controls without serum were negative. Since isolated C1q was also capable of directly binding to the surface of adults and infective larvae, it is postulated that their cuticle and/or epicuticle may possess surface structures which serve as binding sites for C1q.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effect of incubation temperature and pH on the hatch rate of eggs of Necator americanus, and the desiccation tolerance of the resulting infective stage-3 larvae were investigated in the laboratory under controlled conditions. Hatching did not occur below 15 C and above 35 C. A 21% hatch rate was obtained at 15 C while a 10.6% hatch rate was obtained at 35 C. The highest hatch rate (93.7%) was obtained at 30 C. The optimum pH for hatching was 6.0, but the larvae did not reach the infective stage. Incubation temperature of the eggs affected the longevity and desiccation tolerance of resultant infective larvae. Larvae hatched at 30 C and maintained at 26 C under bright fluorescent light had a 50% survival time (S50) of 4 days. In the dark or shade, the S50 for larvae raised at 30 C was 5 weeks, while that of larvae hatched at 20 C was 7 weeks. Incubation temperature also affected the desiccation tolerance of larvae. Larvae developed at 20 C were more resistant to desiccation at various relative humidity values than larvae hatched at 30 C.  相似文献   

14.
Four layers are present on the surface of infective larvae of Trichinella spiralis isolated from host muscle in pepsin-HCl. Trypsin treatment of pepsin-HCl isolated worms caused partial degradation and removal of large patches of the two outer surface layers. Following exposure to bile, only traces of the outer layers remained on the worms surface. These changes in the worm surface were accompanied by a shift from Type I behavior, typical of pepsin-HCl isolated larvae, to Type II behavior, (snakelike) following exposure to either trypsin or bile. Worm behavior was also temperature dependent. Type I behavior was typical of worms maintained at room temperature regardless of treatment, while Type II behavior displayed by worms held at 37 C was treatment dependent. The absorption of in vitro glucose or beta-methyl-D-glucoside was lowest in pepsin-HCl isolated first stage infective larvae, significantly higher in trypsin treated worms and greatest in worms following exposure to bile. Sugar uptake by worms isolated from the host small intestine after 1 hr of enteral infection was similar to that seen in worms isolated from host muscle in pepsin-HCl. Sugar uptake in vitro in worms 2 hr following enteral infection was similar to worms following exposure to bile. The highest levels of sugar absorption in vitro occurred in worms which had resided in the small intestine for 3 hr. The lowest rates of incorporation of label into worm tissues was seen in 1 hr enteral and pepsin-HCl isolated worms. Infective larvae treated with trypsin or bile incorporated significantly greater amounts of label than the two former groups. The highest levels of incorporation of label into worm tissues was seen in 3 hr enteral worms. These findings support the view that trypsin, bile, and temperature serve as environmental cues which lead to alteration of the parasite's behavioral and nutritional status.  相似文献   

15.
We examined the thermokinetic behaviors of infective third-stage larvae (L3) of the rodent parasitic nematode Strongyloides ratti on temperature gradients using an in vitro agarose tracking assay method. Observed behaviors included both negative and positive thermokineses, the direction of movement depending both on the gradient temperature at which larvae were initially placed and on prior experience of culture temperature. Larvae isolated from rat feces cultured at 25 degrees C and placed on a gradient at temperatures between 22 degrees and 29 degrees C tended to move toward higher temperatures. At higher placement temperatures, most larvae moved little and showed no directional response, whereas at lower placement temperatures, many migrated toward cooler temperatures. At placement temperatures of 20 degrees C or below, few or no larvae moved toward the zone of higher temperature. Larvae isolated from rat feces cultured at 20 degrees C tended to migrate to a high temperature area regardless of placed temperature. Those cultured at 30 degrees C did not respond to the temperature gradient. L3 cultured at 30 degrees C were significantly less infective to rats than those cultured at 25 degrees or 20 degrees C. Additional experiments were designed to demonstrate thermokinetic behaviors during the period after reaching the L3 stage. Larvae incubated in double distilled water (DDW) for 24 h at 37 degrees C lost their ability to respond to lower temperatures, while in those incubated in DDW at 15 degrees and 25 degrees C, responses were still apparent. The thermokinetic behavior of S. ratti L3 is affected by surrounding environmental temperatures and this may have an important role in host finding.  相似文献   

16.
The infectivity of newborn Trichinella spiralis larvae of different ages was studied in normal rats. Newborn larvae collected after incubation of adult worms in vitro for 2, 12, or 24 hr were injected intravenously (i.v.) into normal AO rats in 3 separate recipient groups. All recipient rats developed strikingly similar numbers of muscle larvae 20 days later. The susceptibility to immunity by newborn larvae of different ages was also studied. No difference was found when degree of protection was compared by assessing muscle larvae burden or peritoneal anti-newborn larvae effects after injection of newborn larvae of different ages either i.v. or intraperitoneally into immunized recipient rats. We conclude that newborn larvae of any age up to 24 hr have similar infectivity in normal rats and are equally susceptible to anti-newborn larvae immunity in vivo.  相似文献   

17.
The survival of some bacteria, viruses, protozoans, and helminths through the sewage digestion process has been a question of considerable concern among researchers throughout the world. Among the most resistant organisms are some of the pathogenic roundworms and tapeworms. Encysted larvae of Trichinella spiralis are sometimes present in animal tissues discarded as waste from slaughterhouses, restaurants or other sources. In experimental anaerobic sewage digesters, encysted larvae of T. spiralis, in rat muscle, were able to survive a maximum of 96 hr in a "batch" digester. In a digester "fed" daily with small numbers of encysted larvae, "draw-off" remained infective for white rats throughout a 16-day experimental period. Potentially infective material could be present when there is continuous "draw-off" from the anaerobic digesters.  相似文献   

18.
The present research investigated the influence of temperature and time of larvae culture on the infectivity of Strongyloides venezuelensis. Mice were infected s.c. with 1500 larvae of S. venezuelensis maintained at 28 °C for three days of culture (dc), 28 °C for seven dc or 18 °C for seven dc. On days 1, 3, 5, 7, 14 and 21 post-infection the animals were sacrificed and cell numbers in the blood, peritoneal cavity fluid (PCF), broncoalveolar fluid (BALF), cytokines, immunoglobulins, number of parasites and eggs/g of feces were quantified. Results demonstrated an increase in eosinophils and mononuclear cells in the blood, PCF and BALF of infected mice. Larvae at 28 °C/3dc induced earlier eosinophils in the PCF and BALF as opposed to larvae at 28 °C/7dc and 18 °C/7dc. Larvae at 28 °C/7dc induced higher synthesis of IL-4, IL-5 and IL-10 on days 5 and 7 post-infection. Larvae at 28 °C/3dc in culture induced higher synthesis of IL-12 than larvae of seven dc, but time in culture induced better synthesis of IFN-γ after larval migration had ceased and only adult worms were present. Larvae at 28 °C/3dc in culture induced higher synthesis of IgG and IgG1 and expelled less female parasites than larvae cultivated for seven days. In conclusion, it was observed that the infectivity of S. venezuelensis is influenced by variations in temperature and time of culture.  相似文献   

19.
E. R. James  J. Farrant   《Cryobiology》1976,13(6):625-630
Schistosomula were not damaged by exposure for 1 hr at room temperature to the cryoprotectant dimethylsulphoxide (DMSO) providing that concentrations greater than 10% were not used. Rapid dilution to remove the DMSO was less harmful to the organisms than was slow dilution. Schistosomula were not damaged by thermal shock (cooling in the absence of freezing) but were damaged by conditions produced by freezing. Although the freezing damage rendered schistosomula noninfective they retained flame cell activity and certain contractile properties in the oral sucker, gut, and musculature. The least damage was produced by slow cooling (at approximately 0.3 °C/min) and fast warming (approximately 300 °C/min). Schistosomula remained infective following freezing and slow cooling to −20 °C in DMSO (10%) and storage for 2 hr at this temperature but were damaged at temperatures below −26 °C and at −20 °C for longer time periods.  相似文献   

20.
Wang ZQ  Wang L  Cui J 《Journal of Proteomics》2012,75(8):2375-2383
Although it has been known for many years that Trichinella spiralis initiates infection by invading intestinal epithelium, the mechanisms by which the parasite invades the intestinal epithelium are unknown. The purpose of this study was to screen the invasion-related proteins among the increased proteins of intestinal epithelial cells after culture with T. spiralis and to study their molecular functions. The proteins of HCT-8 cells which cultured with T. spiralis infective larvae were analyzed by SDS-PAGE and Western blot. Results showed that compared with proteins of normal HCT-8 cells, four additional protein bands (115, 61, 35 and 24 kDa) of HCT-8 cells cultured with the infective larvae were recognized by sera of the mice infected with T. spiralis, which may be the invasion-related proteins released by the infective larvae. Three bands (61, 35 and 24 kDa) were studied employing shotgun LC-MS/MS. Total 64 proteins of T. spiralis were identified from T. spiralis protein database by using SEQUEST searches, of which 43 (67.2%) proteins were distributed in a range of 10-70 kDa, and 26 proteins (40.6%) were in the range of pI 5-6. Fifty-four proteins were annotated according to Gene Ontology Annotation in terms of molecular function, biological process, and cellular localization. Out of 54 annotated proteins, 43 proteins (79.6%) had binding activity and 23 proteins (42.6%) had catalytic activity (e.g. hydrolase, transferase, etc.), which might be related to the invasion of intestinal epithelial cells by T. spiralis. The protein profile provides a valuable basis for further studies of the invasion-related proteins of T. spiralis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号