首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Initial velocity, product inhibition, and substrate inhibition studies suggest that the endogenous lactate dehydrogenase activity of duck epsilon-crystallin follows an order Bi-Bi sequential mechanism. In the forward reaction (pyruvate reduction), substrate inhibition by pyruvate was uncompetitive with inhibition constant of 6.7 +/- 1.7 mM. In the reverse reaction (lactate oxidation), substrate inhibition by L-lactate was uncompetitive with inhibition constant of 158 +/- 25 mM. The cause of these inhibitions may be due to epsilon-crystallin-NAD(+)-pyruvate and epsilon-crystallin-NADH-L-lactate abortive ternary complex formation as suggested by the multiple inhibition studies. Pyruvate binds to free enzyme very poorly, with a very large dissociation constant. Bromopyruvate, fluoropyruvate, pyruvate methyl ester, and pyruvate ethyl ester are alternative substrates for pyruvate. 3-Acetylpyridine adenine dinucleotide, nicotinamide 1,N6-ethenoadenine dinucleotide, and nicotinamide hypoxanthine dinucleotide serve as alternative coenzymes for epsilon-crystallin. All the above alternative substrates or coenzymes showed an intersecting initial-velocity pattern conforming to the order Bi--Bi kinetic mechanism. Nicotinic acid adenine dinucleotide, thionicotinamide adenine dinucleotide, and 3-aminopyridine adenine dinucleotide acted as inhibitors for this enzymatic crystallin. The inhibitors were competitive versus NAD+ and noncompetitive versus L-lactate. alpha-NAD+ was a noncompetitive inhibitor with respect to the usual beta-NAD+. D-Lactate, tartronate, and oxamate were strong dead-end inhibitors for the lactate dehydrogenase activity of epsilon-crystallin. Both D-lactate and tartronate were competitive inhibitors versus L-lactate while oxamate was a competitive inhibitor versus pyruvate. We conclude that the structural requirements for the substrate and coenzyme of epsilon-crystallin are similar to those of other dehydrogenases and that the carboxamide carbonyl group of the nicotinamide moiety is important for the coenzyme activity.  相似文献   

2.
The use of I50 (concentration of inhibitor required for 50% inhibition) for enzyme or drug studies has the disadvantage of not allowing easy comparison among data from different laboratories or under different substrate conditions. Modifications of the Michaelis-Menten equation for treatment of inhibitors can allow both the determination of the type of inhibition (competitive, noncompetitive, and uncompetitive) and the Ki for the inhibitor. For competitive and uncompetitive inhibitors when the assay conditions are [S] = Km, then Ki = I50/2. For different conditions of [S] there is a divergence between competitive and uncompetitive inhibitors that may be used to identify the type of inhibitor. The equation for Ki also differs. For noncompetitive inhibitors the Ki = I50 and this relationship is valid with changing [S]. The equations developed require a single substrate, reversible-type inhibitors, and kinetics of the Michaelis-Menten type. Examples of the use of the equations are illustrated with experimental data from scientific publications.  相似文献   

3.
The activity of every substance I inhibiting an enzymatic reaction can be approximately evaluated by the index PI50. This paper describes a simple and fast method of estimate and/ or determination of this index. The method is based on the linearity of the dependence of the ratio of reaction rates of uninhibited and inhibited reaction vs. concentration of the inhibitor at constant initial substrate and enzyme concentrations for fully competitive, noncompetitive, uncompetitive and mixed type of inhibition by the one inhibitor. The validity of the method is demonstrated by four inhibitors of hydrolysis of acetylthiocholine by butyrylcholine esterase.  相似文献   

4.
Smith IM  Hoshi N 《PloS one》2011,6(10):e26338
We previously reported that some ATP competitive protein kinase C (PKC) inhibitors are either competitive or uncompetitive inhibitors with respect to substrate peptides. In this report, we demonstrate how the interactions between PKC and inhibitors change PKC activation kinetics. A substrate competitive inhibitor, bisindolylmaleimide I, targets activated PKC and stabilizes PKC in the activated conformation. This leads to transient activation and prolonged deactivation of PKC in the presence of bisindolylmaleimide I. In contrast, an uncompetitive substrate inhibitor, bisindolylmaleimide IV, targets quiescent PKC and stabilizes PKC in the quiescent conformation, which generates slower activation and suppressed translocation upon activation of PKC.  相似文献   

5.
A procedure is proposed for determining whether an inhibitor of an enzyme-catalyzed reaction is competitive, noncompetitive, or uncompetitive with respect to the substrate. The method is based on fitting the equation for noncompetitive inhibition to data obtained by measuring the rate of the reaction over a range of substrate and inhibitor concentrations. The results of this fit may suggest that the inhibition may be either competitive or uncompetitive, whereupon the data are reanalyzed using the appropriate equation. Comparison of this second fit with the first using an F test permits a statistical decision to be made on the type of inhibition. The chosen fit yields values and standard errors for the Michaelis-Menten parameters (maximum velocity and Michaelis constant), as well as the inhibition constant(s). From these values it is then possible to predict the I50, and its standard error, at any chosen substrate concentration, thereby facilitating comparison with results obtained with similar inhibitors, for homologous enzymes, or in other laboratories.  相似文献   

6.
The reversible inhibition of horse blood serum butyrylcholinesterase (Ce 3.1.1.8) hydrolysis of ion substrates of acetyl- and butyrylthiocholines and non-ion substrate of indophenylacetate by N-methyl-4-piperidinylbenzylate and tacrine (1,2,3,4,-tetrahydro-9-aminoacridine) and phosphate buffer and ethanol influence on this process are investigated. The values of competitive Ki, uncompetitive K'i and generalized K sigma inhibitory constants are determined. It is shown that the inhibition effect and reversible inhibition type depend not only on the inhibitor and substrate nature but also on the phosphate buffer concentration and ethanol presence in the reaction mixture.  相似文献   

7.
Inosine 5'-diphosphatase (IDPase) activity was demonstrated cytochemically in the endoplasmic reticulum of rat kidney proximal tubule cells in tissue fixed by perfusion with glutaraldehyde--formaldehyde. Incubation for IDPase activity at pH 7.2 was performed with and without 0.5 mM levamisole, a potent inhibitor of alkaline phosphatase (AlkPase) (M Borgers, J Histochem Cytochem 21:812, 1973). Levamisole treatment of sections eliminated all reaction product in the brush border, but did not affect the IDPase activity the endoplasmic reticulum (ER). The ER appears as a basilar-luminal-oriented transcellular structure, suggesting a possible cellular transport route. This study supports and extends earlier observations made by others that suggest a transport role for the ER in these cells. It also emphasizes the value of thick section cytochemistry.  相似文献   

8.
Two inhibitors, acarbose and cyclodextrins (CD), were used to investigate the active site structure and function of barley alpha-amylase isozymes, AMY1 and AMY2. The hydrolysis of DP 4900-amylose, reduced (r) DP18-maltodextrin and maltoheptaose (catalysed by AMY1 and AMY2) was followed in the absence and in the presence of inhibitor. Without inhibitor, the highest activity was obtained with amylose, kcat/Km decreased 103-fold using rDP18-maltodextrin and 10(5) to 10(6)-fold using maltoheptaose as substrate. Acarbose is an uncompetitive inhibitor with inhibition constant (L1i) for amylose and maltodextrin in the micromolar range. Acarbose did not bind to the active site of the enzyme, but to a secondary site to give an abortive ESI complex. Only AMY2 has a second secondary binding site corresponding to an ESI2 complex. In contrast, acarbose is a mixed noncompetitive inhibitor of maltoheptaose hydrolysis. Consequently, in the presence of this oligosaccharide substrate, acarbose bound both to the active site and to a secondary binding site. alpha-CD inhibited the AMY1 and AMY2 catalysed hydrolysis of amylose, but was a very weak inhibitor compared to acarbose.beta- and gamma-CD are not inhibitors. These results are different from those obtained previously with PPA. However in AMY1, as already shown for amylases of animal and bacterial origin, in addition to the active site, one secondary carbohydrate binding site (s1) was necessary for activity whereas two secondary sites (s1 and s2) were required for the AMY2 activity. The first secondary site in both AMY1 and AMY2 was only functional when substrate was bound in the active site. This appears to be a general feature of the alpha-amylase family.  相似文献   

9.
The conversion of a peptide substrate to a potent inhibitor by chemical modification is a promising approach in the development of inhibitors for protein tyrosine kinases. N-acylation of the synthetic peptide substrate NH2-Glu-Phe-Leu-Tyr-Gly-Val-Phe-Asp-CONH2 (EFLYGVFD) resulted in synergistic inhibition of Src protein kinase activity that was greater than the inhibition by either free peptide and/or free acyl group. Synergistic inhibition was dependent upon the peptide sequence and the length of the acyl chain. The minimum length of the fatty acyl chain to synergistically inhibit Src was a lauryl (C11H23CO) group. N-myristoylated EFLYGVFD (myr-EFLYGVFD) inhibited the phosphorylation of poly E4Y by Src with an apparent Ki of 3 microm, whereas EFLYGVFD and myristic acid inhibited with Ki values of 260 and 35 microm, respectively. The nonacylated EFLYGVFD was a substrate for Src with Km and Vmax values of 100 microm and 400 nmol/min/mg protein, respectively. However, upon myristoylation, the peptide was no longer a substrate for Src. Both the acylated and non-acylated peptides were competitive inhibitors against the substrate poly E4Y. The non-acylated free peptide showed mixed inhibition against ATP while the myristoylated peptide was competitive against ATP. Myristic acid was uncompetitive against poly E4Y and competitive against ATP. Further analysis indicated that the myristoylated peptide acted as a reversible slow-binding inhibitor with two binding sites on Src. The myristoylated 8-mer peptide was reduced in size to a myristoylated 3-mer without losing the affinity or characteristics of a bisubstrate-type inhibitor. The conversion of a classical reversible inhibitor to a reversible slow-binding multisubstrate analogue has improved the potency of inhibition by the peptide.  相似文献   

10.
The effects of sulfonates on the carboxypeptidase A catalyzed hydrolysis of the ester substrate benzoylglycyl-L-phenyllactate were determined. The modifiers examined were benzenesulfonate, p-toluenesulfonate, 2-phenylethane-sulfonate, methanesulfonate, ethanesulfonate, propanesulfonate, butanesulfonate, pentanesulfonate, hexanesulfonate, heptanesulfonate, and 2,2-dimethyl-2-silapentane-5-sulfonate. Sulfonate activators of peptide hydrolysis were inhibitors of esterase activity. Of the sulfonates studied, 2,2-dimethyl-2-silapentane-5-sulfonate was the most effective inhibitor. 2-Phenylethanesulfonate, hexanesulfonate, heptanesulfonate, and 2,2-dimethyl-2-silapentane-5-sulfonate exhibited uncompetitive inhibition. The remaining sulfonates either did not inhibit or the inhibition was too weak to properly characterize.  相似文献   

11.
N6022 is a novel, first-in-class drug with potent inhibitory activity against S-nitrosoglutathione reductase (GSNOR), an enzyme important in the metabolism of S-nitrosoglutathione (GSNO) and in the maintenance of nitric oxide (NO) homeostasis. Inhibition of GSNOR by N6022 and related compounds has shown safety and efficacy in animal models of asthma, chronic obstructive pulmonary disease, and inflammatory bowel disease [Sun, X., et al. (2011) ACS Med. Chem. Lett. 2, 402-406]. N6022 is currently in early phase clinical studies in humans. We show here that N6022 is a tight-binding, specific, and fully reversible inhibitor of GSNOR with an IC(50) of 8 nM and a K(i) of 2.5 nM. We accounted for the fact that the NAD(+)- and NADH-dependent oxidation and reduction reactions, catalyzed by GSNOR are bisubstrate in nature in our calculations. N6022 binds in the GSNO substrate binding pocket like a competitive inhibitor, although in kinetic assays it behaves with a mixed uncompetitive mode of inhibition (MOI) toward the GSNO substrate and a mixed competitive MOI toward the formaldehyde adduct, S-hydroxymethylglutathione (HMGSH). N6022 is uncompetitive with cofactors NAD(+) and NADH. The potency, specificity, and MOI of related GSNOR inhibitor compounds are also reported.  相似文献   

12.
Alkaline phosphatase (ALP) activity expressed on the external surface of cultured fetal rat calvaria cells and its relationship with mineral deposition were investigated under pH physiological conditions. After replacement of culture medium by assay buffer and addition of p-nitrophenyl phosphate (pNPP), the rate of substrate hydrolysis catalyzed by whole cells remained constant for up to seven successive incubations of 10 min and was optimal over the pH range 7.6–8.2. It was decreased by levamisole by a 90% inhibition at 1 mM which was reversible within 10 min, dexamisole having no effect. Values of apparent Km for pNPP were close to 0.1 mM, and inhibition of pNPP hydrolysis by levamisole was uncompetitive (Ki = 45 μM). Phosphatidylinositol-specific phospholipase C (PI-PLC) produced the release into the medium of a p-nitrophenyl phosphatase (pNPPase) sensitive to levamisole at pH 7.8. The released activity whose rate was constant up to 75 min represented after 15 min 60% of the value of ecto-pNPPase activity. After 75 min of PI-PLC treatment the ecto-pNPPase activity remained unchanged despite the 30% decrease in Nonidet P-40-extractable ALP activity. High levels of 45Ca incorporation into cell layers used as index of mineral deposition were decreased by levamisole in a stereospecific manner after 4 h, an effect which was reversed within 4 h after inhibitor removal, in accordance with ecto-pNPPase activity variations. These results evidenced the levamisole-sensitive activity of a glycosylphosphatidylinositol-anchored pNPPase consistent with ALP acting as an ecto-enzyme whose functioning under physiological conditions was correlated to 45Ca incorporation and permit the prediction of the physiological importance of the enzyme dynamic equilibrium at the cell surface in cultured fetal calvaria cells. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The platelet and skeletal sarcoplasmic reticulum calcium-dependent adenosinetriphosphatases (Ca2+-ATPases) were functionally compared with respect to substrate activation by steady-state kinetic methods using the inhibitors quercetin and calmidazolium. Quercetin inhibited platelet and sarcoplasmic reticulum Ca2+-ATPase activities in a dose-dependent manner with IC50 values of 25 and 10 microM, respectively. Calmidazolium also inhibited platelet and sarcoplasmic reticulum Ca2+-ATPase activities, with half-maximal inhibition measured at 5 and 4 microM, respectively. Both inhibitors also affected the calcium transport activity of intact platelet microsomes at concentrations similar to those which reduced Ca2+-ATPase activity. These inhibitors were then used to examine substrate ligation by the platelet and sarcoplasmic reticulum calcium pump proteins. For both Ca2+-ATPase proteins, quercetin has an affinity for the E-Ca2 (fully ligated with respect to calcium at the exterior high-affinity calcium binding sites, unligated with respect to ATP) conformational state of the protein that is approximately 10-fold greater than for other conformational states in the hydrolytic cycle. Quercetin can thus be considered a competitive inhibitor of the calcium pump proteins with respect to ATP. In contrast to the effect of quercetin, calmidazolium interacts with the platelet and sarcoplasmic reticulum Ca2+-ATPases in an uncompetitive manner. The dissociation constants for this inhibitor for the different conformational states of the calcium pump proteins were similar, indicating that calmidazolium has equal affinity for all of the reaction intermediates probed. These observations indicate that the substrate ligation processes are similar for the two pump proteins. This supports the concept that the hydrolytic cycles of the two proteins are comparable.  相似文献   

14.
Product and substrate analogs have been employed as inhibitors of the low-molecular-weight phosphatase activity of calcineurin, a calmodulin-activated protein phosphatase. Product inhibition kinetics demonstrate that both products, para-nitrophenol and inorganic phosphate, inhibit para-nitrophenyl phosphate hydrolysis in a competitive manner. Inorganic phosphate is a linear competitive inhibitor, whereas the inhibition by para-nitrophenol is more complex. An analog of para-nitrophenol, pentafluorophenol, was found to be a linear competitive inhibitor. These patterns indicate a rapid equilibrium random kinetic mechanism for calcineurin. This mechanism suggests that calcineurin does not generate a phosphoryl enzyme during its catalytic reaction. Application of sulfate analogs indicates that binding of substrate occurs via the phosphoryl moiety. It is suggested that binding is a function of the affinity of ligand for the metal ion involved in calcineurin action. The dependence of the kinetic parameters of calcineurin upon pH was examined to provide information concerning the role of protonation in the activity and specificity of calcineurin. Log (VM) versus pH data for two low-molecular-weight substrates, para-nitrophenyl phosphate and tyrosine-O-phosphate, reveal a pKa value for the enzyme-substrate complex. Analysis of log (VM/KM) data yields a pKa value for the free enzyme of 8.0. Protonation of the phenolic leaving group during hydrolysis is not the rate-limiting step in calcineurin catalysis.  相似文献   

15.
《Insect Biochemistry》1990,20(3):313-318
The larval midgut of the Colorado beetle, Leptinotarsa decemlineata contains cathepsin B, D and H activity detected by use of haemoglobin, synthetic substrates specific for each enzyme, pH at which the substrate was maximally hydrolysed and effects of potential activators and inhibitors on proteolytic activity. Cysteine proteases cathepsin B, and H were activated by thiol compounds and inhibited by iodoacetamide, TLCK and epoxysuccinyl-leucyl-amido(guanidino)butane (E-64) a cysteine specific proteinase inhibitor. Cathepsin B was distinguished from H by hydrolysis of benzoyloxycarbonyl-Ala-Arg-Arg-methoxynaphthylamide, a cathepsin B specific substrate and inhibition of substrate hydrolysis by leupeptin. Cathepsin H activity, detected using the specific substrate arginine-naphthylamide, was insensitive to leupeptin. Cathepsin D had maximal activity at pH 4.5 and was inhibited by pepstatin, an aspartic proteinase inhibitor.  相似文献   

16.
High concentrations of either Mg-ATP complex, free ATP, or free Mg2+ ions were inhibitors of the mitochondrial F1-ATPase moiety from Phycomyces blakesleeanus. Free Mg2+ acts as a linear competitive inhibitor with regard to Mg-ATP hydrolysis with a Ki value of 2.8 mM. The inhibition by free ATP was markedly biphasic and thus simple competitive inhibition alone is not sufficient to explain the inhibitory effect. From these results conclusions were drawn about the binding of the substrate, Mg-ATP complex, to the enzyme.  相似文献   

17.
myo-Inositol monophosphatase is inhibited by the arginine-specific reagent phenylglyoxal. The rate of inactivation is decreased in the presence of Pi, a competitive inhibitor of the enzyme. The effect of Pi is dependent on the presence of Mg2+, but is unaffected by Li+, an uncompetitive inhibitor. In the absence of Mg2+, the substrate, Ins(1)P, binds to the enzyme but is not converted into products, and affords only a small degree of protection against inactivation by phenylglyoxal. Li+ had no further effect under these conditions, but in the presence of Mg2+ caused a marked potentiation of the protective effect of substrate alone. In the absence of substrate, Li+ had no effect on activation by phenylglyoxal. Incorporation of 14C-labelled phenylglyoxal showed that inactivation was associated with modification of a single arginine residue per monomer in the dimeric enzyme. These findings support a mechanism in which Li+ inhibits monophosphatase by trapping a phosphorylated enzyme intermediate and preventing its hydrolysis.  相似文献   

18.
3-Amino-2-keto-7H-thieno[2,3-b]pyridin-6-one derivatives were discovered as moderately potent inhibitors of ubiquitin C-terminal hydrolase-L1 (UCH-L1) utilizing an assay that measures hydrolysis of the fluorogenic substrate Ub-AMC. SAR studies revealed that both the carboxylate at the 5-position and the 6-pyridone ring were critical for inhibitory activity. Furthermore, activity was dependent on the nature of the ketone substituent at the 2-position, with 4-Me-Ph and 2-naphthyl being best. Kinetic mechanism studies revealed that these compounds were uncompetitive inhibitors of UCH-L1, binding only to the Michaelis-complex and not to free enzyme. The active compounds were selective for UCH-L1, exhibiting neither inhibition of other cysteine hydrolases (e.g., UCH-L3, papain, isopeptidase T, caspase-3, and tissue transglutaminase) nor cytotoxicity in N2A cells.  相似文献   

19.
F1I, the specific ATPase inhibitor protein, and the chromium(III) analogs of ATP and ADP, CrATP and CrADP, were used to study the inhibition of Pi goes to and comes from ATP exchange reaction catalyzed by beef heart submitochondrial particles. F1I was found to be an uncompetitive inhibitor of the exchange reaction. CrATP and CrADP, both competitive inhibitors of ATP hydrolysis in isolated F1 (Schuster, S. M., Ebel, R. E., and Lardy, H. A. (1975) ARch. Biochem. Biophys. 171, 656-661) were shown to be competitive and noncompetitive inhibitors of Pi goes to and comes from ATP exchange, respectively. Dual inhibitor studies were done using combinations of F1I and the chromium nucleotides, or the nucleotide analogs in combination. All cases show sets of intersecting Dixon plots indicative of interacting inhibitors. Upward curvature is also evident on some of the plots. This phenomenon was explained using the concept of multiple synergistic binding of the inhibitors. Binding mechanisms and their relevant kinetic equations were postulated to explain the results of the dual inhibitor studies. They support the notion that in addition to the catalytic site, there are two types of regulatory binding sites on F1, one specific for nucleotides and one specific for F1I. When one of these sites is occupied, other sites are either opened or other inhibitors become more potent.  相似文献   

20.
A kinetic analysis of the interaction of anisomycin, acetoxycycloheximide, cycloheximide, and puromycin with acetylcholinesterase (acetylcholine acetyl-hydrolase, EC 3.1.1.7) in rat brain homogenate shows that all of these protein synthesis inhibitors are also inhibitors or this enzyme. Puromycitl aminonucleoside, a puromycin analog without antibiotic activity, was also found to be an inhibitor of acetylcholinesterase activity much like puromycin. Anisomycin appeared to be a competitive inhibitor whereas all of the other compounds showed mixed inhibition. The apparent 10.5 values for inhibition of rat brain acetylcholinesterase at 50 μM substrate were: anisomycin, 3 mM; acetoxycycloheximide, 1 mM; cycloheximide, 2.2 mM; puromycin, 0.5 mM and puromycin aminonucleoside, 0.6 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号