首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate is the primary excitatory transmitter of sensory transmission and perception in the central nervous system. Painful or noxious stimuli from the periphery ‘teach’ humans and animals to avoid potentially dangerous objects or environments, whereas tissue injury itself causes unnecessary chronic pain that can even last for long periods of time. Conventional pain medicines often fail to control chronic pain. Recent neurobiological studies suggest that synaptic plasticity taking place in sensory pathways, from spinal dorsal horn to cortical areas, contributes to chronic pain. Injuries trigger long-term potentiation of synaptic transmission in the spinal cord dorsal horn and anterior cingulate cortex, and such persistent potentiation does not require continuous neuronal activity from the periphery. At the synaptic level, potentiation of excitatory transmission caused by injuries may be mediated by the enhancement of glutamate release from presynaptic terminals and potentiated postsynaptic responses of AMPA receptors. Preventing, ‘erasing’ or reducing such potentiation may serve as a new mechanism to inhibit chronic pain in patients in the future.  相似文献   

2.
Changes in brain structure and cortical function are associated with many chronic pain conditions including low back pain and fibromyalgia. The magnitude of these changes correlates with the duration and/or the intensity of chronic pain. Most studies report changes in common areas involved in pain modulation, including the prefrontal cortex (PFC), and pain-related pathological changes in the PFC can be reversed with effective treatment. While the mechanisms underlying these changes are unknown, they must be dynamically regulated. Epigenetic modulation of gene expression in response to experience and environment is reversible and dynamic. Epigenetic modulation by DNA methylation is associated with abnormal behavior and pathological gene expression in the central nervous system. DNA methylation might also be involved in mediating the pathologies associated with chronic pain in the brain. We therefore tested a) whether alterations in DNA methylation are found in the brain long after chronic neuropathic pain is induced in the periphery using the spared nerve injury modal and b) whether these injury-associated changes are reversible by interventions that reverse the pathologies associated with chronic pain. Six months following peripheral nerve injury, abnormal sensory thresholds and increased anxiety were accompanied by decreased global methylation in the PFC and the amygdala but not in the visual cortex or the thalamus. Environmental enrichment attenuated nerve injury-induced hypersensitivity and reversed the changes in global PFC methylation. Furthermore, global PFC methylation correlated with mechanical and thermal sensitivity in neuropathic mice. In summary, induction of chronic pain by peripheral nerve injury is associated with epigenetic changes in the brain. These changes are detected long after the original injury, at a long distance from the site of injury and are reversible with environmental manipulation. Changes in brain structure and cortical function that are associated with chronic pain conditions may therefore be mediated by epigenetic mechanisms.  相似文献   

3.
Increased pain sensitivity (hyperalgesia) and persistent nociception following peripheral tissue injury depends both on an increase in the sensitivity of primary afferent nociceptors at the site of injury (peripheral sensitization), and on an increase in the excitability of neurons in the central nervous system (central sensitization). We will review evidence that central sensitization, and the persistent nociception it leads to, are dependent on an action of glutamate and aspartate at excitatory amino acid (EAA) receptors. Additional evidence will be presented implicating a role of various intracellular second messengers that are coupled to EAA receptors (nitric oxide, arachidonic acid, and protein kinase C) to central sensitization and persistent nociception following tissue injury. Finally, we will examine the evidence for a contribution of molecular events, including noxious stimulus-induced expression of immediate-early genes such as c-fos to persistent nociception.  相似文献   

4.
Fibromyalgia (FM) pain is frequent in the general population but its pathogenesis is only poorly understood. Many recent studies have emphasized the role of central nervous system pain processing abnormalities in FM, including central sensitization and inadequate pain inhibition. However, increasing evidence points towards peripheral tissues as relevant contributors of painful impulse input that might either initiate or maintain central sensitization, or both. It is well known that persistent or intense nociception can lead to neuroplastic changes in the spinal cord and brain, resulting in central sensitization and pain. This mechanism represents a hallmark of FM and many other chronic pain syndromes, including irritable bowel syndrome, temporomandibular disorder, migraine, and low back pain. Importantly, after central sensitization has been established only minimal nociceptive input is required for the maintenance of the chronic pain state. Additional factors, including pain related negative affect and poor sleep have been shown to significantly contribute to clinical FM pain. Better understanding of these mechanisms and their relationship to central sensitization and clinical pain will provide new approaches for the prevention and treatment of FM and other chronic pain syndromes.  相似文献   

5.
Relationships between the brain and the immune system   总被引:1,自引:0,他引:1  
The concept that the brain can modulate activity the immune system stems from the theory of stress. Recent advances in the study of the inter-relationships between the central nervous system and the immune system have demonstrated a vast network of communication pathways between the two systems. Lymphoid organs are innervated by branches of the autonomic nervous system. Accessory immune cells and lymphocytes have membrane receptors for most neurotransmitters and neuropeptides. These receptors are functional, and their activation leads to changes in immune functions, including cell proliferation, chimiotactism and specific immune responses. Brain lesions and stressors can induce a number of changes in the functioning of the immune system. All these changes are not necessarily mediated by the neuroendocrine system. They can also be dependent on autonomic nerve function. The communication pathways that link the brain to the immune system are normally activated by signals from the immune system, and they serve to regulate immune responses. These signals originate from accessory immune cells such as monocytes and macrophages and they are represented mainly by proinflammatory cytokines. Proinflammatory cytokines produced at the periphery act on the brain via two major pathways: (1) a humoral pathway allowing pathogen specific molecular patterns to act on Toll-like receptors in those brain areas that are devoid of a functional blood-brain barrier, the so-called circumventricular areas; (2) a neural pathway, represented by the afferent nerves that innervate the bodily site of infection and injury. In both cases, peripherally produced cytokines induce the expression of brain cytokines that are produced by resident macrophages and microglial cells. These locally produced cytokines diffuse throughout the brain parenchyma to act on target brain areas so as to organise the central components of the host response to infection (fever, neuroendocrine activation, and sickness behavior).  相似文献   

6.
Long-term potentiation (LTP) is a cellular model for learning and memory and believed to be critical for plastic changes in the brain. Depending on the central nervous system region, LTP has been proposed to contribute to many key physiological functions and pathological conditions, such as learning/memory, chronic pain, and drug addiction. While the induction of LTP in general requires activation of postsynaptic glutamate receptors, the expression of LTP can be mediated by postsynaptic mechanisms and/or presynaptic enhancement of glutamate release. In this review, we will evaluate recent progress made in the mechanisms of LTP in the anterior cingulate cortex (ACC) and explore its functional significance in synaptic changes after peripheral injury. Recent findings suggest that while ACC LTP in brain slice preparations is postsynaptically induced and expressed, injury triggered synaptic potentiation in the ACC contains both presynaptic enhancement of glutamate release and postsynaptic potentiation of AMPA receptor-mediated responses. Understanding presynaptic and postsynaptic mechanisms for ACC potentiation may help us to treat chronic pain in near future.  相似文献   

7.
糖皮质激素(glucocorticoid,GC)是下丘脑-垂体-肾上腺(hypothalamic-pituitary-adrenal,HPA)轴分泌的最终效应激素,通过与糖皮质激素受体(glucocorticoid receptors,GR)结合行使功能。研究发现,GC在慢性疼痛中表现双重作用,内源性GC作为抗炎类固醇通过募集免疫细胞、抑制激酶通路、调节神经胶质细胞在部分类型的神经病理性疼痛及炎性痛中发挥抑痛作用,但在应激情况下,GC水平异常升高参与中枢神经系统神经元的凋亡、兴奋、记忆等,通过调控不同的信号反应或微环境促进病理性疼痛。本文综述GC在慢性疼痛中的作用,了解其发挥镇痛或致痛的双重作用机制。  相似文献   

8.
Microglia are a subset of tissue-macrophages that are ubiquitously distributed throughout the entire CNS. In health, they remain largely dormant until activated by a pathological stimulus. The availability of more sensitive detection techniques has allowed the early measurement of the cell responses of microglia in areas with few signs of active pathology. Subtle neuronal injury can induce microglial activation in retrograde and anterograde projection areas remote from the primary lesion focus. There is also evidence that in cases of long-standing abnormal neuronal activity, such as in patients after limb amputation with chronic pain and phantom sensations, glial activation may occur transsynaptically in the thalamus. Such neuronally driven glial responses may be related to the emergence central sensitisation in chronic pain states or plasticity phenomena in the cerebral cortex. It is suggested, that such persistent low-level microglial activation is not adequately described by the traditional concept of phagocyte-mediated tissue damage that largely evolved from studies of acute brain lesion models or acute human brain pathology. Due to the presence of signal molecules that can act on neurons and microglia alike, the communication between neurons and microglia is likely to be bi-directional. Persistent subtle microglial activity may modulate basal synaptic transmission and thus neuronal functioning either directly or through the interaction with astrocytes. The activation of microglia leads to the emergence of microstructural as well as functional compartments in which neurokines, interleukins and other signalling molecules introduce a qualitatively different, more open mode of cell-cell communication that is normally absent from the healthy adult brain. This 'neo-compartmentalisation', however, occurs along predictable neuronal pathways within which these glial changes are themselves under the modulatory influence of neurons or other glial cells and are subject to the evolving state of the pathology. Depending on the disease state, yet relatively independent of the specific disease cause, fluctuations in the modulatory influence by non-neuronal cells may form the cellular basis for the variability of brain plasticity phenomena, i.e. the plasticity of plasticity.  相似文献   

9.
10.
Meyer RA  Ringkamp M 《生理学报》2008,60(5):605-609
Diseases and injuries to the nervous system can lead to a devastating chronic pain condition called neuropathic pain. We review changes that occur in the peripheral nervous system that may play a role in this disease. Common animal models for neuropathic pain involve an injury to one or more peripheral nerves. Following such an injury, the nerve fibers that have been injured exhibit many abnormal properties including the development of spontaneous neural activity as well as a change in the expression of certain genes in their cell body. Recent data indicate that adjacent, uninjured nerve fibers also exhibit significant changes. These changes are thought to be driven by injury-induced alterations in the milieu surrounding the uninjured nerve and nerve terminals. Thus, alteration in neural signaling in both injured and uninjured neurons play a role in the development of neuropathic pain after peripheral nerve injury.  相似文献   

11.
Pain is an important survival and protection mechanism for animals. However, chronic/persistent pain may be differentiated from normal physiological pain in that it confers no obvious advantage. An accumulating body of pharmacological, electrophysiological, and behavioral evidence is emerging in support of the notion that glutamate receptors play a crucial role in pain pathways and that modulation of glutamate receptors may have potential for therapeutic utility in several categories of persistent pain, including neuropathic pain resulting from injury and/or disease of central (e.g., spinal cord injury) or peripheral nerves (e.g., diabetic neuropathy, radiculopathy) and inflammatory or joint-related pain (e.g., rheumatoid arthritis, osteoarthritis). This review focuses on the role of glutamate receptors, including both ionotropic (AMPA, NMDA and kainate) and metabotropic (mGlu1-8) receptors in persistent pain states with particular emphasis on their expression patterns in nociceptive pathways and their potential as targets for pharmacological intervention strategies.  相似文献   

12.
Cheng JK  Ji RR 《Neurochemical research》2008,33(10):1970-1978
During evolution, living organisms develop a specialized apparatus called nociceptors to sense their environment and avoid hazardous situations. Intense stimulation of high threshold C- and Aδ-fibers of nociceptive primary sensory neurons will elicit pain, which is acute and protective under normal conditions. A further evolution of the early pain system results in the development of nociceptor sensitization under injury or disease conditions, leading to enhanced pain states. This sensitization in the peripheral nervous system is also called peripheral sensitization, as compared to its counterpart, central sensitization. Inflammatory mediators such as proinflammatory cytokines (TNF-α, IL-1β), PGE2, bradykinin, and NGF increase the sensitivity and excitability of nociceptors by enhancing the activity of pronociceptive receptors and ion channels (e.g., TRPV1 and Nav1.8). We will review the evidence demonstrating that activation of multiple intracellular signal pathways such as MAPK pathways in primary sensory neurons results in the induction and maintenance of peripheral sensitization and produces persistent pain. Targeting the critical signaling pathways in the periphery will tackle pain at the source. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

13.
In humans, sensory abnormalities, including neuropathic pain, often result from traumatic spinal cord injury (SCI). SCI can induce cellular changes in the CNS, termed central sensitization, that alter excitability of spinal cord neurons, including those in the dorsal horn involved in pain transmission. Persistently elevated levels of neuronal activity, glial activation, and glutamatergic transmission are thought to contribute to the hyperexcitability of these dorsal horn neurons, which can lead to maladaptive circuitry, aberrant pain processing and, ultimately, chronic neuropathic pain. Here we present a mouse model of SCI-induced neuropathic pain that exhibits a persistent pain phenotype accompanied by chronic neuronal hyperexcitability and glial activation in the spinal cord dorsal horn. We generated a unilateral cervical contusion injury at the C5 or C6 level of the adult mouse spinal cord. Following injury, an increase in the number of neurons expressing ΔFosB (a marker of chronic neuronal activation), persistent astrocyte activation and proliferation (as measured by GFAP and Ki67 expression), and a decrease in the expression of the astrocyte glutamate transporter GLT1 are observed in the ipsilateral superficial dorsal horn of cervical spinal cord. These changes have previously been associated with neuronal hyperexcitability and may contribute to altered pain transmission and chronic neuropathic pain. In our model, they are accompanied by robust at-level hyperaglesia in the ipsilateral forepaw and allodynia in both forepaws that are evident within two weeks following injury and persist for at least six weeks. Furthermore, the pain phenotype occurs in the absence of alterations in forelimb grip strength, suggesting that it represents sensory and not motor abnormalities. Given the importance of transgenic mouse technology, this clinically-relevant model provides a resource that can be used to study the molecular mechanisms contributing to neuropathic pain following SCI and to identify potential therapeutic targets for the treatment of chronic pathological pain.  相似文献   

14.
Nociceptive pain alerts the body to potential or actual tissue damage. By contrast, neuropathic or "noninflammatory" pain, which results from injury to the nervous system, serves no useful purpose. It typically continues for years after the original injury has healed. Sciatic nerve lesions can invoke chronic neuropathic pain that is accompanied by persistent, spontaneous activity in primary afferent fibers. This activity, which reflects changes in the properties and functional expression of Na+, K+, and Ca2+ channels, initiates a further increase in the excitability of second-order sensory neurons in the dorsal horn. This change persists for many weeks. The source of origin of the pain thus moves from the peripheral to the central nervous system. We hypothesize that this centralization of pain involves the inappropriate release of peptidergic neuromodulators from primary afferent fibers. Peptides such as substance P, neuropeptide Y (NPY), calcitonin-gene-related peptide (CGRP), and brain-derived neurotrophic factor (BDNF) may promote enduring changes in excitability as a consequence of neurotrophic actions on ion channel expression in the dorsal horn. Findings that form the basis of this hypothesis are reviewed. Study of the neurotrophic control of ion channel expression by spinal peptides may thus provide new insights into the etiology of neuropathic pain.  相似文献   

15.
There are important differences in pain arising from deep tissues in comparison to cutaneous pain. These differences can be partially explained by the unique organization of nociceptive systems activated by stimulation of muscle, joint, or viscera. Recent evidence also indicates that stimulation of deep tissues can produce long-lasting changes in central nervous system excitability and, therefore, may play a prominent role in persistent or chronic pain conditions. These findings have important implications for the treatment of chronic deep tissue pain conditions.  相似文献   

16.
Despite the immediate event, such as cerebral trauma, cardiac arrest, or stroke that may result in neuronal or vascular injury, specific cellular signal transduction pathways in the central nervous system ultimately influence the extent of cellular injury. Yet, it is a cascade of mechanisms, rather than a single cellular pathway, which determine cellular survival during toxic insults. Although neuronal injury associated with several disease entities, such as Alzheimer's disease, Parkinson's disease, and cerebrovascular disease was initially believed to be irreversible, it has become increasingly evident that either acute or chronic modulation of the cellular and molecular environment within the brain can prevent or even reverse cellular injury. In order to develop rational, efficacious, and safe therapy against neurodegenerative disorders, it becomes vital to elucidate the cellular and molecular mechanisms that control neuronal and vascular injury. These include the pathways of free radical injury, the independent mechanisms of programmed cell death, and the downstream signal transduction pathways of endonuclease activation, intracellular pH, cysteine proteases, the cell cycle, and tyrosine phosphatase activity. Employing the knowledge gained from investigations into these pathways will hopefully further efforts to successfully develop effective treatments against central nervous system disorders.  相似文献   

17.
The majority of peripheral and central nervous system disorders are related to hyperactive inflammatory responses, leading to irreversible and persistent cellular defects, functional impairments, and behavioral deficits. Advances in our understanding of these disorders have revealed the disruption of inflammation resolution pathways due to abrogated responses by specialized pro-resolving lipid mediators (SPMs). SPMs comprise a class of bioactive lipids and cell signaling molecules that function to resolve inflammation, pain, and function in host defense and tissue remodeling. Their cellular and systemic levels during physiology and pathology are regulated by sphingosine kinases (especially SphK1) that act by monitoring cyclooxygenase-2 (COX2), a potent inhibitor of SPMs production. This review presents the current understanding of the convergent mechanisms shared by bioactive lipids with SphK1 and COX2 in the etiology of chronic inflammatory disorders, focusing on neuroinflammation, as well as describes the translational directions of this trilogy for the treatment of Alzheimer's disease.  相似文献   

18.
We will focus on spinal cord dorsal horn lamina I projection neurones, their supraspinal targets and involvement in pain processing. These spinal cord neurons respond to tonic peripheral inputs by wind-up and other intrinsic mechanisms that cause central hyper-excitability, which in turn can further enhance afferent inputs. We describe here another hierarchy of excitation - as inputs arrive in lamina I, neurones rapidly inform the parabrachial area (PBA) and periaqueductal grey (PAG), areas associated with the affective and autonomic responses to pain. In addition, PBA can connect to areas of the brainstem that send descending projections down to the spinal cord - establishing a loop. The serotonin receptor, 5HT3, in the spinal cord mediates excitatory descending inputs from the brainstem. These descending excitatory inputs are needed for the full coding of polymodal peripheral inputs from spinal neurons and are enhanced after nerve injury. Furthermore, activity in this serotonergic system can determine the actions of gabapentin (GBP) that is widely used in the treatment of neuropathic pain. Thus, a hierarchy of separate, but interacting excitatory systems exist at peripheral, spinal and supraspinal sites that all converge on spinal neurones. The reciprocal relations between pain, fear, anxiety and autonomic responses are likely to be subserved by these spinal-brainstem-spinal pathways we describe here. Understanding these pain pathways is a first step toward elucidating the complex links between pain and emotions.  相似文献   

19.
1. The responses of periphery (PNS) and central nervous systems (CNS) towards nerve injury are different: while injured mammalian periphery nerons can successfully undergo regeneration, axons in the central nervous system are usually not able to regenerate.2. In the present study, the genes which were differentially expressed in the PNS and CNS following nerve injury were identified and compared by microarray profiling techniques.3. Sciatic nerve crush and hemisection of the spinal cord of adult mice were used as the models for nerve injury in PNS and CNS respectively.4. It was found that of all the genes examined, 14% (80/588) showed changes in expression following either PNS or CNS injury, and only 3% (18/588) showed changes in both types of injuries.5. Among all the differentially expressed genes, only 8% (6/80) exhibited similar changes in gene expression (either up- or down-regulation) following injury in both PNS and CNS nerve injuries.6. Our results indicated that microarray expression profiling is an efficient and useful method to identify genes that are involved in the regeneration process following nerve injuries, and several genes which are differentially expressed in the PNS and/or CNS following nerve injuries were identified in the present study.  相似文献   

20.
Neuropathic pain arises as a consequence of a lesion or a disease affecting the somatosensory system. This syndrome results from maladaptive changes in injured sensory neurons and along the entire nociceptive pathway within the central nervous system. It is usually chronic and challenging to treat. In order to study neuropathic pain and its treatments, different models have been developed in rodents. These models derive from known etiologies, thus reproducing peripheral nerve injuries, central injuries, and metabolic-, infectious- or chemotherapy-related neuropathies. Murine models of peripheral nerve injury often target the sciatic nerve which is easy to access and allows nociceptive tests on the hind paw. These models rely on a compression and/or a section. Here, the detailed surgery procedure for the "cuff model" of neuropathic pain in mice is described. In this model, a cuff of PE-20 polyethylene tubing of standardized length (2 mm) is unilaterally implanted around the main branch of the sciatic nerve. It induces a long-lasting mechanical allodynia, i.e., a nociceptive response to a normally non-nociceptive stimulus that can be evaluated by using von Frey filaments. Besides the detailed surgery and testing procedures, the interest of this model for the study of neuropathic pain mechanism, for the study of neuropathic pain sensory and anxiodepressive aspects, and for the study of neuropathic pain treatments are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号