首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Alginates are polysaccharides that may be used as viscosifiers and gel or film-forming agents with a great diversity of applications. The alginates produced by bacteria such as Azotobacter vinelandii are acetylated. The presence of acetyl groups in this type of alginate increases its solubility, viscosity, and swelling capability. The aim of this study was to evaluate, in glucose-limited chemostat cultivations of A. vinelandii ATCC9046, the influence of dissolved oxygen tension (DO) and specific growth rate (μ) on the degree of acetylation of alginates produced by this bacterium. In glucose-limited chemostat cultivations, the degree of alginate acetylation was evaluated under two conditions of DO (1 and 9 %) and for a range of specific growth rates (0.02–0.15 h?1). In addition, the alginate yields and PHB production were evaluated. High DO in the culture resulted in a high degree of alginate acetylation, reaching a maximum acetylation degree of 6.88 % at 9 % DO. In contrast, the increment of μ had a negative effect on the production and acetylation of the polymer. It was found that at high DO (9 %) and low μ, there was a reduction of the respiration rate, and the PHB accumulation was negligible, suggesting that the flux of acetyl-CoA (the acetyl donor) was diverted to alginate acetylation.  相似文献   

2.
Bacterial alginates: biosynthesis and applications   总被引:3,自引:0,他引:3  
Alginate is a copolymer of β-d-mannuronic acid and α-l-guluronic acid (GulA), linked together by 1–4 linkages. The polymer is a well-established industrial product obtained commercially by harvesting brown seaweeds. Some bacteria, mostly derived from the genus Pseudomonas and belonging to the RNA superfamily I, are also capable of producing copious amounts of this polymer as an exopolysaccharide. The molecular genetics, regulation and biochemistry of alginate biosynthesis have been particularly well characterized in the opportunistic human pathogen Pseudomonas aeruginosa, although the biochemistry of the polymerization process is still poorly understood. In the last 3 years major aspects of the molecular genetics of alginate biosynthesis in Azotobacter vinelandii have also been reported. In both organisms the immediate precursor of polymerization is GDP-mannuronic acid, and the sugar residues in this compound are polymerized into mannuronan. This uniform polymer is then further modified by acetylation at positions O-2 and/or O-3 and by epimerization of some of the residues, leading to a variable content of acetyl groups and GulA residues. In contrast, seaweed alginates are not acetylated. The nature of the epimerization steps are more complex in A. vinelandii than in P. aeruginosa, while other aspects of the biochemistry and genetics of alginate biosynthesis appear to be similar. The GulA residue content and distribution strongly affect the physicochemical properties of alginates, and the epimerization process is therefore of great interest from an applied point of view. This article presents a survey of our current knowledge of the molecular genetics and biochemistry of bacterial alginate biosynthesis, as well as of the biotechnological potential of such polymers. Received: 14 March 1997 / Received revision: 7 May 1997 / Accepted: 11 May 1997  相似文献   

3.
Algal and bacterial alginates have been studied by means of 13C NMR spectroscopy in presence of paramagnetic manganese ions in order to reveal the nature of their interaction with bivalent cations. It is found that the mannuronate blocks bind manganese cations externally near their carboxylate groups, while guluronate blocks show the capability to integrate Mn2+ into pocket-like structures formed by adjacent guluronate residues. In alternating mannuronate-guluronate blocks, manganese ions preferentially locate in a concave structure formed by guluronate-mannuronate pairs. Partial acetylation of the alginate generally reduces its capability to interact with bivalent cations, however, the selectivity of the binding geometry is conserved. The results may serve as a hint for the better understanding of the alginate gelation in presence of calcium ions.  相似文献   

4.
The optimum conditions in shaken flasks for production of bacterial alginate by mutant C-14 of Azotobacter vinelandii NCIB 9068 and a comparison of the properties of bacterial and algal alginates were investigated. The largest amount of bacterial alginate was obtained in about 110 h by a culture grown on optimum medium at 34°C and 170-rpm shaking speed. The viscosity of the culture broth was 18,400 cps and the alginate concentration reached 6.22 g/liter. The viscosity of the purified bacterial alginate was as high as 11,200 cps at a low concentration (0.6%). A greater than fivefold concentration of algal alginate was required to reach the same viscosity at a low shear rate. A solution of bacterial alginate was more pseudoplastic than that of algal alginate was. No significant differences were observed in other properties of bacterial and algal alginates such as gel formation with calcium ion, thermostability, and effect of temperature, pH, and sodium chloride on viscosity.  相似文献   

5.
Mucoid strains of Pseudomonas aeruginosa overproduce alginate, a linear exopolysaccharide Of D-mannuronate and variable amounts of L-guluronate. The mannuronate residues undergo modification by C-5 epimerization to form the L-guluronates and by the addition of acetyl groups at the 0-2 and 0-3 positions. Through genetic analysis, we previously identified algF, located upstream of algA in the 18-kb alginate biosynthetic operon, as a gene required for alginate acetylation. Here, we show the sequence of a 3.7-kb fragment containing the open reading frames termed algI, algJ, and algF. An algI::Tn5O1 mutant, which was defective in algIJFA because of the polar nature of the transposon insertion, produced alginate when algA was provided in trans. This indicated that the algIJF gene products were not required for polymer biosynthesis. To examine the potential role of these genes in alginate modification, mutants were constructed by gene replacement in which each gene (algI, algJ, or algF) was replaced by a polar gentamicin resistance cassette. Proton nuclear magnetic resonance spectroscopy showed that polymers produced by strains deficient in algIJF still contained a mixture of D-mannuronate and L-guluronate, indicating that C-5 epimerization was not affected. Alginate acetylation was evaluated by a colorimetric assay and Fourier transform-infrared spectroscopy, and this analysis showed that strains deficient in algIJF produced nonacetylated alginate. Plasmids that supplied the downstream gene products affected by the polar mutations were introduced into each mutant. The strain defective only in algF expression produced an alginate that was not acetylated, confirming previous results. Strains missing only algJ or algI also produced nonacetylated alginates. Providing the respective missing gene (algI, algJ, or algF) in trans restored alginate acetylation. Mutants defective in algI or algJ, obtained by chemical and transposon mutagenesis, were also defective in their ability to acetylate alginate. Therefore, algI and algJ represent newly identified genes that, in addition to algF, are required for alginate acetylation.  相似文献   

6.
Summary Formulations which are economical and which can deliver a viable organism are critical to developing successful biocontrol products for plant pathogens. In the present study, alginates derived from commercial kelp and produced byAzotobacter vinelandii isolates ATCC 9104 and 12 837 were compared in their ability to form stable, biodegradable granular formulations of the biocontrol fungiTalaromyces flavus andGliocladium virens. Bacteria were grown in shake flask cultures (180 rpm) at 32°C for 104 h. The cultures were monitored for pH, dissolved oxygen, glucose concentration, dry cell weight, and alginate dry weight. Aqueous solutions of the bacterial alginates, as well as the kelp-derived alginate products, gelled readily in 0.25 M calcium chloride. Mannuronate (M) and guluronate (G) compositions of the alginate samples were determined by circular dichroism. M/G ratios for cultures of isolate 12837 averaged 0.98±0.18; for isolate 9104, 1.59±0.12; and for kelp, 1.54±0.39. The viability ofT. flavus in the kelp and bacterial alginate formulations were similar over 84 days. An exploratory experiment indicated good viability ofG. virens using the same bacterial alginates. This study demonstrated a practical use for bacterial alginate as a potentially less costly substitute for kelp alginate in the preparation of biocontrol agent formulations.  相似文献   

7.
High molecular weight alginates having a variety of initial composition and sequential structures were modified with a mannuronan-C-5 epimerase from Azotobacter vinelandii to yield polymers with a high content of guluronic acid and, hence, an enhanced ability to form gels with calcium ions. The monad, diad and triad frequencies in the modified polymers were determined by n.m.r. spectroscopy, and the strength of homogeneous gels prepared from them with calcium ions were measured and compared with those prepared from the starting materials and other naturally occurring alginates. Immobilization of the bacterial enzyme on Eupergite beads greatly increased its stability and favoured high degree of conversion.  相似文献   

8.
Uptake of metals by bacterial polysaccharides   总被引:3,自引:1,他引:2  
J.L. GEDDIE AND I.W. SUTHERLAND. 1993. The binding of cations by a range of bacterial polysaccharides was examined. Comparison of native and deacetylated polymers indicated the influence of polysaccharide acetylation on ion uptake and selectivity. The effects of temperature and pH on ion uptake were also examined. Metal ion uptake was carried out by dialysis and samples were analysed using ion chromatography. The native acetylated polymers showed a selectivity for Ca2+ > Mg2+ > monovalent cations, whereas samples lacking acetyl groups showed a selectivity for monovalent cations > Mg2+ > Ca2+. Increased temperatures reduced the capacity for several of the polymers to bind the cations; The Zoogloea ramigera polymer appeared least affected. The pH value also affected uptake.  相似文献   

9.
Addition of specific types of alginates to drinks can enhance postmeal suppression of hunger, by forming strong gastric gels in the presence of calcium. However, some recent studies have not demonstrated an effect of alginate/calcium on appetite, perhaps because the selected alginates do not produce sufficiently strong gels or because the alginates were not sufficiently hydrated when consumed. Therefore, the objective of the study was to test effects on appetite of a strongly gelling and fully hydrated alginate in an acceptable, low-viscosity drink formulation. In a balanced order crossover design, 23 volunteers consumed a meal replacement drink containing protein and calcium and either 0 (control), 0.6, or 0.8% of a specific high-guluronate alginate. Appetite (six self-report scales) was measured for 5 h postconsumption. Relevant physicochemical properties of the drinks were measured, i.e., product viscosity and strength of gel formed under simulated gastric conditions. Hunger was robustly reduced (20-30% lower area under the curve) with 0.8% alginate (P < 0.001, analysis of covariance), an effect consistent across all appetite scales. Most effects were also significant with 0.6% alginate, and a clear dose-response observed. Gastric gel strength was 1.8 and 3.8 N for the 0.6 and 0.8% alginate drinks, respectively, while product viscosity was acceptable (<0.5 Pa.s at 10 s(-1)). We conclude that strongly gastric-gelling alginates at relatively low concentrations in a low-viscosity drink formulation produced a robust reduction in hunger responses. This and other related studies indicate that the specific alginate source and product matrix critically impacts upon apparent efficacy.  相似文献   

10.
Alginate fractions from Sargassum vulgare brown seaweed were characterized by (1)H NMR and fluorescence spectroscopy and by rheological measurements. The alginate extraction conditions were investigated. In order to carry out the structural and physicochemical characterization, samples extracted for 1 and 5h at 60 degrees C were further purified by re-precipitation with ethanol and denoted as SVLV (S. vulgare low viscosity) and SVHV (S. vulgare high viscosity), respectively. The M/G ratio values for SVLV and SVHV were 1.56 and 1.27, respectively, higher than the ratio for most Sargassum spp. alginates (0.19-0.82). The homopolymeric blocks F(GG) and F(MM) of these fractions characterized by (1)H NMR spectroscopy were 0.43 and 0.55 for SVHV and 0.36 and 0.58 for SVLV samples, respectively, these values typically being within 0.28-0.77 and 0.07-0.41, respectively. Therefore, the alginate samples from S. vulgare are much richer in mannuronic block structures than those from other Sargassum species. Values of M(w) for alginate samples were also calculated using intrinsic viscosity data. The M(w) value for SVLV (1.94 x 10(5)g/mol) was lower than that for SVHV (3.3 x 10(5)g/mol). Newtonian behavior was observed for a solution concentration as high as 0.7% for SVLV, while for SVHV the solutions behaved as a Newtonian fluid up to 0.5%. The optimal conditions for obtaining the alginates from S. vulgare were 60 degrees C and 5h extraction. Under these conditions, a more viscous alginate in higher yield was extracted from the seaweed biomass.  相似文献   

11.
Three steps of the alginate production process were studied at pilot plantlevel. The effect of the amount of calcium chloride used during theprecipitation was measured in terms of filtration time of the precipitatedcalcium alginate. Three different proportions of calcium chloride per gramof alginate were tested. The best proportion used was 2.2 parts ofcalcium chloride per one part of alginate, yielding a filtration rate of 97.9L min-1 on a screen area of 1.32 m2. The method ofadding the solutions and the degree of mixing are discussed as other factorsaffecting the precipitation step. The effect of bleaching the calciumalginate with sodium hypochlorite (5%) was studied. Seven proportions,ranging from 0 to 0.77 mL of sodium hypochlorite per gram of sodiumalginate were tested. The effect of hypochlorite was compared foralginates with three different viscosities. Using alginates with mediumviscosity (300–500 mPa s), the best proportion was 0.4 mL hypochloriteper gram of alginate, yielding an alginate of light cream color with 20%less viscosity than the control. Alginates with lower viscosity showed asmaller loss of viscosity. The effect of pH during conversion of calciumalginate to alginic acid was determined using four combinations of pH,ranging from 2.2 to 1.6, in three acid washings. The extent of conversionwas determined by measuring the percent reduction of the alginate viscosity(RV) in 1% solution before and after adding a sequestrant of calcium. When a pH 1.8 or 1.6 was used for each washing, only two washings werenecessary to produce a RV lower than 40% (maximum recommended). The use of pH 2 required three acid washings to produce the same effect. The pH 2.2 did not remove enough calcium, even with three washings,the RV of the resulting sodium alginate being greater that 40%. Theresults of these experiments provide the information that producers needwhen deciding the best parameters to obtain a product with the desiredcharacteristics.  相似文献   

12.
Confocal laser scanning microscopy (CLSM) was used to study the distribution of polymers and cross-linking ions in alginate-poly-L-lysine (PLL) -alginate microcapsules made by fluorescent-labeled polymers. CLSM studies of Ca-alginate gel beads made in the presence and absence of non-gelling sodium ions revealed a more inhomogeneous distribution of alginate in beads formed in the absence of non-gelling ions. In the formation of alginate-PLL capsules, the polymer gradients in the preformed gel core were destabilized by the presence of non-gelling ions in the washing step and in the PLL solution. Ca-alginate gels preserved the inhomogeneous structure by exposure to ion-free solution in contrast to exposure to non-gelling ions (Na(+)). By exchanging Ca(2+) with Ba(2+) (10 mM), extremely inhomogeneous gel beads were formed that preserved their structure during the washing and exposure to PLL in saline. PLL was shown to bind at the very surface of the alginate core, forming a shell-like membrane. The thickness of the PLL-layer increased about 100% after 2 weeks of storage, but no further increase was seen after 2 years of storage. The coating alginate was shown to overlap the PLL layer. No difference in binding could be observed among coating alginates of different composition. This paper shows an easy and novel method to study the distribution of alginate and PLL in intact microcapsules. As the labeling procedures are easy to perform, the method can also be used for a variety of other polymers in other microencapsulation systems.  相似文献   

13.
A tight association between Chlamydomonas alpha-tubulin acetyltransferase (TAT) and flagellar axonemes, and the cytoplasmic localization of both tubulin deacetylase (TDA) and an inhibitor of tubulin acetylation have been demonstrated by the use of calf brain tubulin as substrate for these enzymes. A major axonemal TAT of 130 kD has been solubilized by high salt treatment, purified, and characterized. Using the Chlamydomonas TAT with brain tubulin as substrate, we have studied the effects of acetylation on the assembly and disassembly of microtubules in vitro. We also determined the relative rates of acetylation of tubulin dimers and polymers. The acetylation does not significantly affect the temperature-dependent polymerization or depolymerization of tubulin in vitro. Furthermore, polymerization of tubulin is not a prerequisite for the acetylation, although the polymer is a better substrate for TAT than the dimer. The acetylation is sensitive to calcium ions which completely inhibit the acetylation of both dimers and polymers of tubulin. Acetylation of the dimer is not inhibited by colchicine; the effect of colchicine on acetylation of the polymer can be explained by its depolymerizing effect on the polymer.  相似文献   

14.
Some properties of alginate gels derived from algal sodium alginate   总被引:1,自引:0,他引:1  
Alginic acid in soluble sodium alginate turns to insoluble gel after contact with divalent metal ions, such as calcium ions. The sodium alginate character has an effect on the alginate gel properties. In order to prepare a suitable calcium alginate gel for use in seawater, the effects of sodium alginate viscosity and M/G ratio (the ratio of D-mannuronate to L-guluronate) on the gel strength were investigated. The wet tensile strengths of gel fibers derived from high viscosity sodium alginate were higher than those from low viscosity sodium alginate. The tensile strength increased with diminishing sodium alginate M/G ratio. Among the gel fibers tested, the gel fiber obtained from a sodium alginate I-5G (1% aqueous solution viscosity = 520 mPa·s, M/G ratio = 0.6) had the highest wet tensile strength. After 13 days treatment in seawater, the wet tensile strength of the gel fiber retained 36% of the original untreated gel strength. For sodium alginates with similar viscosities, the seawater tolerance of low M/G ratio alginate was greater than that of the high M/G ratio one. This study enables us to determine a suitable calcium alginate gel for use in seawater.  相似文献   

15.
The Japanese brown seaweed Sargassum muticum, recently invaded several shorelines worldwide including the Atlantic coast of Morocco with large well‐established populations. Within the framework of a sustainable strategy to control this invasive seaweed, we report on extraction yield, spectroscopic characterization and rheological properties of alginate, a commercially valuable colloid, from harvested biomass of S. muticum. Extraction yield was about 25.6% on dry weight basis. Infrared spectroscopy analysis shows that the obtained Fourier transform infrared spectra of the extracted biopolymer exhibit strong similarities with that of the commercial alginate. Furthermore, Proton nuclear magnetic resonance spectroscopy revealed that S. muticum alginate has almost equal amounts of β‐D‐mannuronic acid (M; 49%) and α‐L‐guluronic acid (G; 51%) with an M/G ratio of 1.04 and a high content of heteropolymeric MG GM diads suggesting a sequence distribution of an alternated polymer type. Rheological measurements were performed at different sodium alginate concentrations, temperatures and shear rates. The hydrocolloid exhibited pseudoplastic behavior and showed shear thinning, particularly at high solution concentration and low temperature which is consistent with the rheological behavior reported for commercial alginates. Considering the abundance of S. muticum in the Northwestern Atlantic coast of Morocco and the quality of the extracted hydrogel, this invasive species could be considered as a potential source of alginates.  相似文献   

16.
Alginate lyases catalyze degradation of alginic acids and their salts, alginates, which are one of the main components of brown algae cell walls and comprise up to 40% algae’s dry weight. Alginates are interesting due to their high biological activity, particularly the ability of charged groups to bind tightly to oppositecharged protein amino acid residues, and chelating and jelling properties in presence of bivalent metal cations. Alginate lyases can digest substrates by β-elimination. They can be classified by the type of cleaved bonds. For today, more than 50000 amino acid sequences are referred to alginate lyases, 47000 of them belonging to bacterial genomes. Alginate lyases are one of the most common tools for degrading biofilms. Alginate digestion products display antitumor, anti-inflammatory, and antioxidant properties.  相似文献   

17.
Alginate is a polysaccharide belonging to the family of linear (unbranched), non-repeating copolymers, consisting of variable amounts of β-d-mannuronic acid and its C5-epimer α- l-guluronic acid linked via β-1,4-glycosidic bonds. Like DNA, alginate is a negatively charged polymer, imparting material properties ranging from viscous solutions to gel-like structures in the presence of divalent cations. Bacterial alginates are synthesized by only two bacterial genera, Pseudomonas and Azotobacter, and have been extensively studied over the last 40 years. While primarily synthesized in form of polymannuronic acid, alginate undergoes chemical modifications comprising acetylation and epimerization, which occurs during periplasmic transfer and before final export through the outer membrane. Alginate with its unique material properties and characteristics has been increasingly considered as biomaterial for medical applications. The genetic modification of alginate producing microorganisms could enable biotechnological production of new alginates with unique, tailor-made properties, suitable for medical and industrial applications.  相似文献   

18.
Alginic acid is localised in the cell walls and intercellular spaces of the brown alga, Laminaria japonica Aresch., and the salts of this compound occur mainly as calcium alginates. However, the alginates in this alga do not have the viscosity and the ability to create and stabilise structural products. Hence, the structure and properties of the alginates in Laminaria were changed by chemical modification to produce new products such as sodium alginates and other substances capable of forming gels. The rheological properties of the algal gel from Laminaria depended on the properties of the sodium alginate. Heating the algal product up to 90°C did not change its physical and chemical properties; the viscosity did not differ from that of the initial product. The viscosity and molecular weight of the sodium alginate isolated from the algal gel were stable from 20°C up to 95°C. However, about 30% of the viscosity was lost at 100°C. Recipes and various methods of preparing the gel products as fish sauces, jelly-like fish products, fruit jellies, drinks, cosmetic and pharmaceutical products are presented. The algal gel and the gel products did not lose their integrity with heat processing. Presented at the 6th Meeting of the Asian Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

19.
In this work, three methods (ethanol, HCl, and CaCl2 routes) of sodium alginate extraction–purification from brown seaweeds (Macrocystis pyrifera) were used in order to study the influence of process conditions on final properties of the polymer. In the CaCl2 route, was found that the precipitation step in presence of calcium ions followed by proton-exchange in acid medium clearly gives alginates with the lowest molecular weight and poor mechanical properties. It is well known that the acid treatment degrade the ether bonds on the polymeric chain. Ethanol route displayed the best performance, where the highest yield and rheological properties were attained with the lowest number of steps. Although the polymer I.1 showed a molar mass and polydispersity index (Mw/Mn) similar to those of commercial sample, its mechanical properties were lower. This performance is related to the higher content of guluronic acid in the commercial alginate, which promotes a more successful calcium chelation. Moreover, the employment of pH 4 in the acid pre-treatment improved the yield of the ethanol route, avoiding the ether linkage hydrolysis. Therefore, samples I.2 and I.3 displayed a higher Mw and a narrower distribution of molecular weights than commercial sample, which gave a higher viscosity and better viscoelastic properties.  相似文献   

20.
AIMS: The aim of this study was to characterize the influence of 3-(N-morpholino)-propane-sulfonic acid (MOPS) on alginate production by Azotobacter vinelandii and its chemical composition (particularly its acetylation degree), as well as on the rheological behaviour of alginate-reconstituted solutions. METHODS AND RESULTS: Cultures were grown in 500-ml flasks containing 90 ml of medium supplemented with MOPS in concentrations ranging from 0 to 13.6 mmol l(-1). The acetylation degree of the alginate was significantly influenced by the MOPS concentration, obtaining an alginate with an acetylation degree of 1.4% when 13.6 mmol l(-1) of MOPS was added to the medium. This value was twice as high as that obtained when no MOPS was used. The higher acetylation of the polymer resulted in higher viscosity of alginate solutions, having a more pronounced pseudoplastic behaviour. CONCLUSIONS: MOPS added to the culture medium determines the acetyl content of the alginate and thus, the physico-chemical properties of the polymer. SIGNIFICANCE AND IMPACT OF THE STUDY: These changes in the functional properties of the polymer can be very valuable in specific applications of alginate in the food and pharmaceutical fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号