首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 653 毫秒
1.
Administration of clofibric acid, 2,2'-(decamethylenedithio)diethanol, di(2-ethylhexyl)phthalate or perfluorooctanoic acid to male rates increased markedly microsomal 1-acylglycerophosphocholine (a-acyl-GPC) acyltransferase in a dose-dependent manner in liver. Simultaneous administration of actinomycin D or cycloheximide completely abolished the increase in the enzyme activity. The treatment of rats with clofibric acid did not affect the rate of decay of 1-acyl-GPC acyltransferase. Regardless of a great difference in the chemical structures of the peroxisome proliferators, high correlation was observed between the induced activities of microsomal 1-acyl-GPC acyltransferase and peroxisomal beta-oxidation. Stearoyl-CoA desaturase was induced by peroxisome proliferators in a dose-dependent manner; nevertheless, high correlation was not seen between the induced activities of desaturase and peroxisomal beta-oxidation. Hormonal (adrenalectomy, diabetes, hyperthyroidism and hypothyroidism) and nutritional (starvation, starvation-refeeding, fat-free diet feeding and high-fat diet feeding) alterations hardly affected the activity of 1-acyl-GPC acyltransferase. The present results indicate that microsomal 1-acyl-GPC acyltransferase is a useful parameter responsive to the challenges by peroxisome proliferators and suggest that a similar regulatory mechanism operates for the inductions of microsomal 1-acyl-GPC acyltransferase and peroxisomal beta-oxidation.  相似文献   

2.
Rats, mice and guinea-pigs were administered p-chlorophenoxyisobutyric acid (clofibric acid) or 2,2'-(decamethylenedithio)diethanol (tiadenol). The treatments of rats and mice with either clofibric acid or tiadenol increased markedly the activities of stearoyl-CoA desaturase, palmitoyl-CoA chain elongation, 1-acylglycerophosphate (1-acyl-GP) acyltransferase and 1-acylglycerophosphocholine (1-acyl-GPC) acyltransferase, but not 2-acylglycerophosphocholine (2-acyl-GPC) acyltransferase in liver microsomes. The treatment of guinea-pigs with clofibric acid did not cause any change in the activities of these enzymes. The treatment of guinea-pigs with tiadenol caused a slight, but significant, increase in the activities of 1-acyl-GP acyltransferase and 1-acyl-GPC acyltransferase. The treatment of rats and mice with either clofibric acid or tiadenol increased markedly the proportion of 18:1 and decreased greatly the proportion of 18:0 in liver microsomal phosphatidylcholine. However, there is a considerable difference in the effects of the two peroxisome proliferators on the composition of polyunsaturated fatty acids in phosphatidylcholine between rats and mice. The treatment of guinea-pigs with either of the two peroxisome proliferators caused no change in acyl composition of phosphatidylcholine. The possible role of stearoyl-CoA desaturation in the regulation of acyl composition of phosphatidylcholine was discussed.  相似文献   

3.
Administration of p-chlorophenoxyisobutyric acid (clofibric acid) markedly increased the activity of microsomal 1-acylglycerophosphorylcholine (1-acyl-GPC) acyltransferase in kidney, intestinal mucosa and liver, but not in brain, heart, lung, spleen, testis or skeletal muscle. In both kidney and liver, a marked dose-dependent increase in the activities of both microsomal 1-acyl-GPC acyltransferase and peroxisomal beta-oxidation was observed. In the rats treated with clofibric acid at a relatively low dose, the increase in the activity of 1-acyl-GPC acyltransferase in kidney was more marked than that in liver. The extent of the relative increase in the activity of 1-acyl-GPC acyltransferase to the activity of peroxisomal beta-oxidation in kidney was more marked than that in liver. The increased activity of 1-acyl-GPC acyltransferase in both kidney and liver lasted throughout the 8-week treatment period of rat with clofibric acid.  相似文献   

4.
Rats were fed a diet containing p-chlorophenoxyisobutyric acid (clofibric acid). Activity of microsomal 1-acylglycerophosphorylcholine (1-acyl-GPC) acyltransferase in liver was increased approx. 3-fold by the treatment with clofibric acid. The treatment of rats with clofibric acid did not increase activity of microsomal 2-acyl-GPC acyltransferase. Feeding a diet containing 2,2'-(decamethylenedithio)diethanol (tiadenol), di(2-ethylhexyl)phthalate or acetylsalicylic acid also resulted in a selective increase in the activity of 1-acyl-GPC acyltransferase in rat liver. Treatment with clofibric acid increased the activity of 1-acyl-GPC acyltransferase in liver of mouse as well as rat, but did not change the activity in liver of guinea-pig. The relative rate of acylation of 1-acyl-GPC with various acyl-CoAs by hepatic microsomes was not changed by the treatment of rats with clofibric acid.  相似文献   

5.
Inductions by perfluoro-octanoic acid (PFOA) of hepatomegaly, peroxisomal beta-oxidation, microsomal 1-acylglycerophosphocholine acyltransferase and cytosolic long-chain acyl-CoA hydrolase were compared in liver between male and female rats. Marked inductions of these four parameters were seen concurrently in liver of male rats, whereas the inductions in liver of female rats were far less pronounced. The sex-related difference in the response of rat liver to PFOA was much more marked than that seen with p-chlorophenoxyisobutyric acid (clofibric acid) or 2,2'-(decamethylenedithio)diethanol (tiadenol). Hormonal manipulations revealed that this sex-related difference in the inductions is strongly dependent on sex hormones, namely that testosterone is necessary for the inductions, whereas oestradiol prevented the inductions by PFOA.  相似文献   

6.
The effects of two peroxisome proliferators, p-chlorophenoxyisobutyric acid (clofibric acid) and 2,2'-(decamethylenedithio)diethanol (tiadenol), on cytosolic long-chain acyl-CoA hydrolase and peroxisomal beta-oxidation were studied in several organs of rat. Among organs of control rats, the brain had the highest activity of long-chain acyl-CoA hydrolase, followed by testis, and a low activity was found in other tissues. Administration of the peroxisome proliferators caused a marked increase in activity of long-chain acyl-CoA hydrolase in both liver and intestinal mucosa and a slight increase in the activity in kidney, but little affected acyl-CoA hydrolase activity in either brain, testis, heart, spleen and skeletal muscle. In accordance with the change in the activity of acyl-CoA hydrolase, the activity of peroxisomal beta-oxidation was markedly increased in liver, intestinal mucosa and kidney, and a slight increase was found in brain and testis, whereas peroxisome proliferators little affected the activity in other organs tested. Gel filtration of cytosol from intestinal mucosa showed that clofibric acid caused an appearance of a new peak in intestinal mucosa. Although cytosol of liver, intestinal mucosa, brain and testis contained two 4-nitrophenyl acetate esterases with different molecular weights (about 105,000 and about 55,000), these esterases are different from cytosolic long-chain acyl-CoA hydrolases of these four organs in respect of molecular weight. The administration of clofibric acid little affected cytosolic 4-nitrophenyl acetate esterases. Comparative studies on cytosolic long-chain acyl-CoA hydrolases from these four organs showed that liver hydrolase I (molecular weight of about 80,000) had properties similar to those of brain and testis enzymes. On the other hand, intestinal mucosa enzyme was different from either hepatic hydrolase I or II (molecular weight of about 40,000). The results from the present study suggest that inductions of peroxisomal beta-oxidation and cytosolic long-chain acyl-CoA hydrolases are essential responses of rats to peroxisome proliferators not only in liver but also in intestinal mucosa and that induced hydrolases are not attributable to non-specific esterases.  相似文献   

7.
Treatment of rats with dehydroepiandrosterone (300 mg/kg body weight, per os, 14 days) caused a remarkable increase in the number of peroxisomes and peroxisomal beta-oxidation activity in the liver. The activities of carnitine acetyltransferase, microsomal laurate 12-hydroxylation, cytosolic palmitoyl-CoA hydrolase, malic enzyme and some other enzymes were also increased. The increases in these enzyme activities were all greater in male rats than in female rats. Immunoblot analysis revealed remarkable induction of acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme in the liver and to a smaller extent in the kidney, whereas no significant induction of these enzymes was found in the heart. The increase in the hepatic peroxisomal beta-oxidation activity reached a maximal level at day 5 of the treatment of dehydroepiandrosterone and the increased activity rapidly returned to the normal level on discontinuation of the treatment. The increase in the activity was also dose-dependent, which was saturable at a dose of more than 200 mg/kg body weight. All these features in enzyme induction caused by dehydroepiandrosterone correlate well with those observed in the treatment of clofibric acid, a peroxisome proliferator. Co-treatment of dehydroepiandrosterone and clofibric acid showed no synergism in the enhancement of peroxisomal beta-oxidation activity, suggesting the involvement of a common process in the mechanism by which these compounds induce the enzymes. These results indicate that dehydroepiandrosterone is a typical peroxisome proliferator. Since dehydroepiandrosterone is a naturally occurring C19 steroid in mammals, the structure of which is novel compared with those of peroxisome proliferators known so far, this compound could provide particular information in the understanding of the mechanisms underlying the induction of peroxisome proliferation.  相似文献   

8.
The peroxisome proliferators clofibric acid and di-(2-ethylhexyl)-phthalate (DEHP) preferentially induced the 12-hydroxylation, compared to the 11-hydroxylation, of lauric acid in rat liver microsomes. A marked increase in the affinity of spectral interaction of this substrate with cytochrome P-450 was also observed. In addition, both clofibric acid and DEHP treatment produced a marked effect on the profile of site- and stereo-specific microsomal metabolites of testosterone. These results demonstrate that both peroxisome proliferators induce similar form(s) of cytochrome P-450 which are active in the metabolism of endogenous substrates of cytochrome P-450. The possible relevance of these findings to the hepatotoxicity of peroxisome proliferators is discussed.  相似文献   

9.
Data obtained in earlier studies with rats fed diets containing high doses of peroxisome proliferators (niadenate, tiadenol, clofibrate, or nitotinic acid) are used to look for a quantitative relationship between peroxisomal beta-oxidation, palmitoyl-CoA hydrolase, palmitoyl-CoA synthetase and carnitine palmitoyltransferase activities, and the cellular concentration of their substrate and reaction products. The order of the hyperlipidemic drugs with regard to their effect on CoA derivatives and enzyme activities was niadenate greater than tiadenol greater than clofibrate greater than nicotinic acid. Linear regression analysis of long-chain acyl-CoA content versus palmitoyl-CoA hydrolase and peroxisomal beta-oxidation activity showed highly significant linear correlations both in the total liver homogenate and in the peroxisome-enriched fractions. A dose-response curve of tiadenol showed that carnitine palmitoyltransferase and palmitoyl-CoA synthetase activities and the ratio of long-chain acyl-CoA to free CoASH in total homogenate rose at low doses before detectable changes occurred in the peroxisomal beta-oxidation and palmitoyl-CoA hydrolase activity. A plot of this ratio parallelled the palmitoyl-CoA synthetase activity. The specific activity of microsomally localized carnitine palmitoyl-transferase was low and unchanged up to a dose where no enhanced peroxisomal beta-oxidation was observed, but over this dose the activity increased considerably so that the specific of the enzyme in the mitochondrial and microsomal fractions became comparable. The mitochondrial palmitoyl-CoA synthetase activity decreased gradually. The correlations may be interpreted as reflecting a common regulation mechanism for palmitoyl-CoA hydrolase and peroxisomal beta-oxidation enzymes, i.e., the cellular level of long-chain acyl-CoA acting as the metabolic message for peroxisomal proliferation resulting in induction of peroxisomal beta-oxidation and palmitoyl-CoA hydrolase activity. The findings are discussed with regard to their possible consequences for mitochondrial fatty acid oxidation and the conversion of long-chain acyl-L-carnitine to acyl-CoA derivatives.  相似文献   

10.
Rat hepatocytes were cultured for 72 h with or without the addition of 0.5 mM clofibric acid. The activities of individual enzymes of the peroxisomal beta-oxidation pathway (acyl-CoA oxidase, enoyl-CoA hydratase-3-hydroxyacyl-CoA dehydrogenase bifunctional protein, and 3-ketoacyl-CoA thiolase) decreased in the control culture, but markedly increased synchronously in the clofibric acid-treated culture. The levels of mRNAs coding for these enzymes and the rates of synthesis of the enzymes were also elevated in the clofibric acid-treated culture, although no proportional relationship was observed between the time-dependent changes of these parameters. The increase in mRNAs was much higher than the increase in the rate of synthesis of the enzymes. The activity of catalase, its mRNA level and the rate of its synthesis were slightly affected. The effects of clofibric acid on the peroxisomal beta-oxidation enzymes and catalase in primary cultured hepatocytes were very similar to those observed in vivo. These results, therefore, suggest that primary culture of hepatocytes should provide a useful means for investigating the mechanism of induction of peroxisomal enzymes and the mechanism of action of peroxisome proliferators.  相似文献   

11.
Peroxisome proliferator-activated receptor alpha (PPARalpha), a key regulator of fatty acid oxidation, is essential for adaptation to fasting in rats and mice. However, physiological functions of PPARalpha in other species, including humans, are controversial. A group of PPARalpha ligands called peroxisome proliferators (PPs) causes peroxisome proliferation and hepatocarcinogenesis only in rats and mice. To elucidate the role of PPARalpha in adaptation to fasting in nonproliferating species, we compared gene expressions in pig liver from fasted and clofibric acid (a PP)-fed groups against a control diet-fed group. As in rats and mice, fasting induced genes involved with mitochondrial fatty acid oxidation and ketogenesis in pigs. Those genes were also induced by clofibric acid feeding, indicating that PPARalpha mediates the induction of these genes. In contrast to rats and mice, little or no induction of genes for peroxisomal or microsomal fatty acid oxidation was observed in clofibric acid-fed pigs. Histology showed no significant hyperplasia or hepatomegaly in the clofibric acid-fed pigs, whereas it showed a reduction of glycogen by clofibric acid, an effect of PPs also observed in rats. Copy number of PPARalpha mRNA was higher in pigs than in mice and rats, suggesting that peroxisomal proliferation and hyperresponse of several genes to PPs seen only in rats and mice are unrelated to the abundance of PPARalpha. In conclusion, PPARalpha is likely to play a central role in adaptation to fasting in pig liver as in rats and mice.  相似文献   

12.
13.
The hypolipidaemic agents ciprofibrate and Wy-14,643 ([4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid) and the phthalate-ester plasticizer di-(2-ethylhexyl)-phthalate (DEHP), like other peroxisome proliferators, produce a significant hepatomegaly and induce the peroxisomal fatty acid beta-oxidation enzyme system together with profound proliferation of peroxisomes in hepatic parenchymal cells. Changes in the profile of liver proteins in rats following induction of peroxisome proliferation by ciprofibrate, Wy-14,643 and DEHP have been analysed by high-resolution two-dimensional gel electrophoresis. The proteins of whole liver homogenates from normal and peroxisome-proliferator-treated rats were separated by two-dimensional gel electrophoresis using isoelectric focusing for acidic proteins and nonequilibrium pH gradient electrophoresis for basic proteins. In the whole liver homogenates, the quantities of six proteins in acidic gels and six proteins in the basic gels increased following induction of peroxisome proliferation. Peroxisome proliferator administration caused a repression of three acidic proteins in the liver homogenates. By the immunoblot method using polyspecific antiserum against soluble peroxisomal proteins and monospecific antiserum against peroxisome proliferation associated Mr 80000 polypeptide (polypeptide PPA-80), the majority of basic proteins induced by these peroxisome proliferators appeared to be peroxisomal proteins. Polypeptide PPA-80 becomes the most abundant protein in the total liver homogenates of peroxisome-proliferator-treated rats. These results indicate that ciprofibrate, DEHP and Wy-14,643 induce marked changes in the profile of specific hepatic proteins and that some of these changes should serve as a baseline to identify a set of gene products that may assist in defining the specific 'peroxisome proliferator domain'.  相似文献   

14.
15.
The abilities of the hepatic peroxisome proliferators (HPPs) clofibrate, di(2-ethylhexyl)phthalate (DEHP), mono(2-ethylhexyl)- phthalate (MEHP), 2,4-dichlorophenoxy acetic acid (2,4-D), 2,4,5-trichlorophenoxy acetic acid (2,4,5-T) and tiadenol to induce morphological transformation and to increase the catalase activity of Syrian hamster embryo (SHE) cells were studied. DEHP, MEHP, clofibrate and tiadenol induced morphological transformation of SHE cells and increased the catalase activity. DEHP was more potent than clofibrate and tiadenol in both inducing catalase and morphological transformation, while MEHP seemed more potent than DEHP in inducing catalase, but not morphological transformation, 2,4,5-T and 2,4-D did not induce morphological transformation, but 2,4,5-T was more potent than clofibrate in increasing the catalase activity. These results show that several HPPs induce morphological transformation of SHE cells and an increase in the catalase activity. There is, however, no direct connection between these two parameters, as seen from the results of 2,4,5-T. The tumor promoter TPA, and the metal salt nickel sulphate, induced morphological transformation of SHE cells without any appreciable increase in the catalase activity. These results further corroborate the dissociation between induction of morphological transformation and the increase in catalase activity.Abbreviations Clofibrate ethyl-2-(p-chlorophenox) isobutyrate - 2,4-D 2,4-dichlorophenoxy acetic acid - DEHP di(2-ethylhexyl)phthalate - HPP hepatic peroxisome proliferator - MEHP mono(2-ethylhexyl)phthalate - SHE Syrian hamster embryo - 2,4,5-T 2,4,5-trichlorophenoxy acetic acid - tiadenol di(hydroxyethylthio)-1,10-decane  相似文献   

16.
The induction of liver peroxisomal beta-oxidation activities by bezafibrate or Wy 14,643 was 2-4-fold higher in starved rats than in fed animals. The increased response to peroxisomal proliferators in starved rats was independent of the mode of administration of the proliferator, given either orally or by intraperitoneal injection. Inhibitors of carnitine acyltransferase I could prevent the induction of peroxisomal activities in starved rats but not in fed animals. In contrast to fasted rats, the induction of liver peroxisomal activities in streptozotocin-diabetic rats was not susceptible to bezafibrate. The higher sensitivity to peroxisomal proliferators under conditions of starvation may allow for the detection of xenobiotic peroxisomal proliferators of low proliferative potency.  相似文献   

17.
Peroxisomal beta-oxidation (POX) of fatty acids is important in lipid catabolism and thermogenesis. To investigate the effects of peroxisome proliferators on peroxisomal and mitochondrial beta-oxidation in piglet tissues, newborn pigs (1-2 days old) were allowed ad libitum access to milk replacer supplemented with 0.5% clofibric acid (CA) or 1% aspirin for 14 days. CA increased ratios of liver weight to body weight (P < 0.07), kidney weight to body weight (P < 0.05), and heart weight to body weight (P < 0.001). Aspirin decreased daily food intake and final body weight but increased the ratio of heart weight to body weight (P < 0.01). In liver, activities of POX, fatty acyl-CoA oxidase (FAO), total carnitine palmitoyltransferase (CPT), and catalase were 2.7-, 2.2-, 1.5-fold, and 33% greater, respectively, for pigs given CA than for control pigs. In heart, these variables were 2.2-, 4.1-, 1.9-, and 1.8-fold greater, respectively, for pigs given CA than for control pigs. CA did not change these variables in either kidney or muscle, except that CPT activity was increased approximately 110% (P < 0.01) in kidney. Aspirin increased only hepatic FAO and CPT activities. Northern blot analysis revealed that CA increased the abundance of catalase mRNA in heart by approximately 2.2-fold. We conclude that 1) POX and CPT in newborn pigs can be induced by peroxisomal proliferators with tissue specificity and 2) the relatively smaller induction of POX in piglets (compared with that in young or adult rodents) may be related to either age or species differences.  相似文献   

18.
Summary— Peroxisome proliferators, despite their chemically unrelated structures, share the common property of being able to stimulate the glucuronidation of bilirubin in rodents and, probably, also in man. The aryloxycarboxylic acids (clofibric acid, fenofibrate, bezafibrate, ciprofibrate), tiadenol and probucol, all of which have hypolipidemic properties, as well as the fatty acid-like perfluorodecanoic acid all enhanced the expression of the UDP-glucuronosyltransferase (UGT) form involved in the conjugation of the pigment. This induction is manifested by an increase in the mRNA species encoding the protein with a subsequent increase in the neosynthesis of the corresponding protein in the endoplasmic reticulum. The induction process is concomitant with that of cytochrome P-450-IVA1 and cytosolic epoxide hydrolase, which, like bilirubin UGT, are mainly involved in the metabolism of endogenous substrates. With a series of carboxylic acids related to clofibric acid, it was possible to demonstrate that induction was mediated via specific interactions based on the physicochemical properties of the inducers. Until now, the molecular basis of induction of bilirubin UGT is not known. The peroxisome proliferators that possess a carboxyl group are good substrates of UGT, especially in man. The acylglucuronides formed are known for their instability and reactivity which could contribute to the toxicity encountered in some patients treated with the drugs. There is convincing evidence that UGT bilirubin does not catalyze the glucuronidation of these substances even if the two types of substrate form acylglucuronides.  相似文献   

19.
20.
1. Activities of peroxisomal oxidases and catalase were assayed at neutral and alkaline pH in liver and kidney homogenates from male rats fed a diet with or without 2% di(2-ethylhexyl)phthalate (DEHP) for 12 days. 2. All enzyme activities were higher at alkaline than at neutral pH in both groups. 3. The effect of the DEHP-diet on the peroxisomal enzymes was different in kidney and liver. Acyl-CoA oxidase activity was raised three- and sixfold in kidney and liver homogenates, respectively. The activity of D-amino acid oxidase decrease in liver, but increased in kidney homogenates. In liver homogenates, urate oxidase activity was not affected by the DEHP diet. The catalase activity was twofold induced in liver, but not in kidney. 4. The differences suggest that the changes of peroxisomal enzyme activities by DEHP treatment are not directly related to peroxisome proliferation. 5. DEHP treatment caused a marked increase of total and peroxisomal fatty acid oxidation in rat liver homogenates. 6. In the control group the rate of peroxisomal fatty acid oxidation was higher at alkaline pH than at neutral pH. 7. This rate was equal at both pH values in the DEHP-fed group, in contrast to the acyl-CoA oxidase activity. These results indicate that after DEHP treatment other parameters than acyl-CoA oxidase activity become limiting for peroxisomal beta-oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号