首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 488 毫秒
1.
Alexandrium ostenfeldii (Paulsen) Balech and Tangen and A. peruvianum (Balech and B.R. Mendiola) Balech and Tangen are morphologically closely related dinoflagellates known to produce potent neurotoxins. Together with Gonyaulax dimorpha Biecheler, they constitute the A. ostenfeldii species complex. Due to the subtle differences in the morphological characters used to differentiate these species, unambiguous species identification has proven problematic. To better understand the species boundaries within the A. ostenfeldii complex we compared rDNA data, morphometric characters and toxin profiles of multiple cultured isolates from different geographic regions. Phylogenetic analysis of rDNA sequences from cultures characterized as A. ostenfeldii or A. peruvianum formed a monophyletic clade consisting of six distinct groups. Each group examined contained strains morphologically identified as either A. ostenfeldii or A. peruvianum. Though key morphological characters were generally found to be highly variable and not consistently distributed, selected plate features and toxin profiles differed significantly among phylogenetic clusters. Additional sequence analyses revealed a lack of compensatory base changes in ITS2 rRNA structure, low to intermediate ITS/5.8S uncorrected genetic distances, and evidence of reticulation. Together these data (criteria currently used for species delineation in dinoflagellates) imply that the A. ostenfeldii complex should be regarded a single genetically structured species until more material and alternative criteria for species delimitation are available. Consequently, we propose that A. peruvianum is a heterotypic synonym of A. ostenfeldii and this taxon name should be discontinued.  相似文献   

2.
Alexandrium catenella (Whedon et Kof.) Balech, A. tamarense (M. Lebour) Balech, and A. fundyense Balech comprise the A. tamarense complex, dinoflagellates responsible for paralytic shellfish poisoning worldwide. The relationships among these morphologically defined species are poorly understood, as are the reasons for increases in range and bloom occurrence observed over several decades. This study combines existing data with new ribosomal DNA sequences from strains originating from the six temperate continents to reconstruct the biogeography of the complex and explore the origins of new populations. The morphospecies are examined under the criteria of phylogenetic, biological, and morphological species concepts and do not to satisfy the requirements of any definition. It is recommended that use of the morphospecies appellations within this complex be discontinued as they imply erroneous relationships among morphological variants. Instead, five groups (probably cryptic species) are identified within the complex that are supported on the basis of large genetic distances, 100% bootstrap values, toxicity, and mating compatibility. Every isolate of three of the groups that has been tested is nontoxic, whereas every isolate of the remaining two groups is toxic. These phylogenetic groups were previously identified within the A. tamarense complex and given geographic designations that reflected the origins of known isolates. For at least two groups, the geographically based names are not indicative of the range occupied by members of each group. Therefore, we recommend a simple group‐numbering scheme for use until the taxonomy of this group is reevaluated and new species are proposed.  相似文献   

3.
A new species of the dinoflagellate genus Alexandrium, A. tamutum sp. nov., is described based on the results of morphological and phylogenetic studies carried out on strains isolated from two sites in the Mediterranean Sea: the Gulf of Trieste (northern Adriatic Sea) and the Gulf of Naples (central Tyrrhenian Sea). Vegetative cells were examined in LM and SEM, and resting cysts were obtained by crossing strains of opposite mating type. Alexandrium tamutum is a small‐sized species, resembling A. minutum in its small size, the rounded‐elliptical shape and the morphology of its cyst. The main diagnostic character of the new species is a relatively wide and large sixth precingular plate (6″), whereas that of A. minutum is much narrower and smaller. Contrary to A. minutum, A. tamutum strains did not produce paralytic shellfish poisoning toxins. Phylogenies inferred from the nuclear small subunit rDNA and the D1/D2 domains of the large subunit nuclear rDNA of five strains of A. tamutum and numerous strains of other Alexandrium species showed that A. tamutum strains clustered in a well‐supported clade, distinct from A. minutum.  相似文献   

4.
The genera Protoperidinium Bergh, Diplopsalis Bergh, and Preperidinium Mangin, comprised of species of marine, thecate, heterotrophic dinoflagellates in the family Protoperidinaceae Balech, have had a confused taxonomic history. To elucidate the validity of morphological groupings within the Protoperidinium and diplopsalids, and to determine the evolutionary relationships between these and other dinoflagellates, we undertook a study of molecular phylogeny using the D1–D3 domains of the large subunit (LSU) of the rDNA. Based on morphology, the 10 Protoperidinium species examined belonged to three subgenera and five morphological sections. Two diplopsalid species were also included. Single‐cell PCR, cloning, and sequencing revealed a high degree of intraindividual sequence variability in the LSU rDNA. The genus Protoperidinium appeared to be recently divergent in all phylogenetic analyses. In maximum parsimony and neighbor joining analyses, Protoperidinium formed a monophyletic group, evolving from diplopsalid dinoflagellates. In maximum likelihood and Bayesian analyses, however, Protoperidinium was polyphyletic, as the lenticular, diplopsalid heterotroph, Diplopsalis lenticula Bergh, was inserted within the Protoperidinium clade as basal to Protoperidinium excentricum (Paulsen) Balech, and Preperidinium meunieri (Pavillard) Elbrächter fell within a separate clade as a sister to the Oceanica and Protoperidinium steidingerae Balech. In all analyses, the Protoperidinium were divided into two major clades, with members in the Oceanica group and subgenus Testeria in one clade, and the Excentrica, Conica, Pellucida, Pyriforme and Divergens sections in the other clade. The LSU rDNA molecular phylogeny supported the historical morphologically determined sections, but not a simple morphology based model of evolution based on thecal plate shape.  相似文献   

5.
The thecal surface morphology of Scrippsiella subsalsa (Ostenfeld) Steidinger et Balech was examined using the scanning electron microscope. This species is distinguished by a number of morphological characteristics. Apical plate 1′ is wide, asymmetric, and pentagonal, and it ends at the anterior margin of the cingulum. Intercalary plates 2a and 3a are separated by apical plate 3′. The apical pore complex includes a large Po plate with a raised dome at the center and a deep canal plate with thickened margins at plates 2′, 3′, and 4′. The intercalary bands are wide and deeply striated. The cingulum is deep, formed by six cingular plates; its surface is transversely striated and aligned with a row of minute pores. The cingular list continues around postcingular plate 1′” to form a sulcal list. The sulcal list is a flexible ribbon with a rounded tip that protrudes posteriorly, partially covering the sulcal plates. The hypotheca is lobed, and the antapical plates are irregularly shaped and wide in antapical view. The thecal surface is vermiculate to reticulate. A comparison in morphology and ecology is presented between S. subsalsa and other known Scrippsiella species.  相似文献   

6.
A new species, Alexandrium camurascutulum sp. nov. MacKenzie et Todd, is described from specimens collected from Tasman Bay and the Marlborough Sounds New Zealand. These small (26–28 μm long × 21–24 μm wide) cells can be discriminated from other species in the Alexandrium minutum group by three distinctive morphological features. The sixth pre-cingular plate (6′′) is up to 1.6 times wider than high and the left side of the plate is concave resulting in a markedly ‘hooked’ appearance. In all specimens observed, the first apical plate (1′) does not directly connect with the apical pore plate (Po) and the posterior sulcal plate (S.p.) is markedly different from the usual A. minutum form and may contain a posterior attachment pore (pap) connected to the right side plate margin. The cells may or may not have an anterior attachment pore (aap) in the apical pore plate (Po). The cells display a prominent list along the left sulcal margin and the thecal surface is perforated with numerous areolated pores. A. camurascutulum sp. nov. has been observed occasionally over a number of years in coastal waters of the northern South Island of New Zealand. There is circumstantial evidence that suggests it is not toxic.  相似文献   

7.
In Japan, the bloom seasons of two toxic species, namely, Alexandrium catenella (Whedon et Kof.) Balech and Alexandrium tamiyavanichii Balech, sometimes overlap with those of three nontoxic Alexandrium species, namely, Alexandrium affine (H. Inouye et Fukuyo) Balech, Alexandrium fraterculus (Balech) Balech, and Alexandrium pseudogoniaulax (Biecheler) T. Horig. ex Y. Kita et Fukuyo. In this study, a multiplex PCR assay has been developed that enables simultaneous detection of six Alexandrium species on the basis of differences in the lengths of the PCR products. The accuracy of the multiplex PCR system was assessed using 101 DNA templates of the six target Alexandrium species and 27 DNA templates of 11 nontarget species (128 DNA templates in total). All amplicons obtained from the 101 DNA templates of the target species were appropriately identified, whereas all 27 DNA templates of the nontarget species were not amplified. Species‐specific identification by the multiplex PCR assay was certainly possible from single cells of the target species.  相似文献   

8.
Morphological features are the predominant criteria used to define species of marine dinoflagellates. Taxonomic problems with some toxic groups has led to the implementation of molecular taxonomy techniques and development of a genospecies concept. As a result, the relationships between “morphospecies” and “genospecies” has been questioned. In this study, the genetic differentiation between two sets of closely related morphospecies, Gymnodinium catenatum Graham/Gyrodinium impudicum Fraga and Alexandrium minutum Halim/Alexandrium lusitanicum Balech, were analyzed. The extent of morphological differentiation existing within these two groups is of the same order of magnitude. Analysis of cell surface antigens detected by preadsorbed serum, cell surface glycan moieties detected by lectins and sequencing of the D9 and D10 domains of the Large-subunit ribosomal RNA gene, showed that the extent of genetic differentiation existing between the dinofagellates Gymnodinium catenatum/Gyrodinium impudicum is substantial. Therefore, both morphological and genetic criteria resolve these organisms as two distinct entities. In contrast, Alexandrium minutum/Alexandrium lusitanicum were indistinguishable using the some suite of molecular markers. The findings demonstrated that classifications based on morphological criteria may be incongruous. On a practical level, molecular taxonomy provides useful tools to distinguish between morphologically similar microalgal species and furthermore can prevent misidentification of species such as Gymnodinium catenatum/Gyrodinium impudicum, a frequent occurrence when samples are fixed with Lugol's or formaldehyde solution.  相似文献   

9.
The geographic range and bloom frequency of the toxic dinoflagellate Alexandrium minutum and other members of the A. minutum group have been increasing over the past few decades. Some of these species are responsible for paralytic shellfish poisoning (PSP) outbreaks throughout the world. The origins of new toxic populations found in previously unaffected areas are typically not known due to a lack of reliable plankton records with sound species identifications and to the lack of a global genetic database. This paper provides the first comprehensive study of minutum-group morphology and phylogeny on a global scale, including 45 isolates from northern Europe, the Mediterranean, Asia, Australia and New Zealand.Neither the morphospecies Alexandrium lusitanicum nor A. angustitabulatum was recoverable morphologically, due to large variation within and among all minutum-group clonal strains in characters previously used to distinguish these species: the length:width of the anterior sulcal plate, shape of the 1′ plate, connection between the 1′ plate and the apical pore complex, and the presence of a ventral pore. DNA sequence data from the D1 to D2 region of the LSU rDNA also fail to recognize these species. Therefore, we recommend that all isolates previously designated as A. lusitanicum or A. angustitabulatum be redesignated as A. minutum. A. tamutum, A. insuetum, and A. andersonii are clearly different from A. minutum on the basis of both genetic and morphological data.A. minutum strains from Europe and Australia are closely related to one another, which may indicate an introduction from Europe to Australia given the long history of PSP in Europe and its recent occurrence in Australia. A minutum from New Zealand and Taiwan form a separate phylogenetic group. Most strains of A. minutum fit into one of these two groups, although there are a few outlying strains that merit further study and may represent new species. The results of this paper have greatly improved our ability to track the spread of A. minutum species and to understand the evolutionary relationships within the A. minutum group by correcting inaccurate taxonomy and providing a global genetic database.  相似文献   

10.
Fluorescent DNA probes (cCAT-F1 and cTAM-Fl) complementary to the 3′ end of ribosomal RNA (rRNA) internal transcribed spacer 1 sequences (ITS 1: positions 154–176) of toxic species of Alexandrium catenella (Whedon and Kofoid) Taylor and A. tamarense (Lebour) Taylor were applied to various cultures of the genus Alexandrium and several other phytoplankters using whole-cell fluorescent in situ hybridization. cCAT-F1 and cTAM-F1 reacted with targeted strains of A. catenella (catenella type) and A. tamarense (tamarense type), respectively, and did not react with isolates of A. affine (Inoue et Fukuyo) Balech, A. fraterculus (Balech) Balech, A. insuetum Balech, A. lusitanicum Balech, A. pseudogonyaulux (Biecheler)Horiguchi ex Yuki et Fukuyo comb. nov., nor isolates of Prorocentrum micans Ehrenberg, Amphidinium carterae Hulburt, Heterocapsa triquetra (Ehrenberg) Stein, Gymnodinium mikimotoi Miyake et Kominami ex Oda, Skeletonema costatum (Greville) Cleve, Heterosigma akashiwo (Hada) Hada, and Chattonella antiqua (Hada) Ono. DNase I and RNase A treatment showed that probes hybridized to ribosomal DNA, not rRNA. Probes were localized at the bottom of the U-shaped nucleus, a region that corresponds to the nucleolus. The probes are highly specific for particular strains of A. catenella and A. tamarense and are applicable for identifying these species collected from cultured and possibly natural populations.  相似文献   

11.
12.
Several new genera originally classified as the genus Phormidium, a polyphyletic and taxonomically complex genus within the Oscillatoriales, were recently described. The simple morphology of Phormidium does not reflect its genetic diversity and the delimitation of a natural group is not possible with traditional classification systems based on morphology alone. Therefore, this study used morphological, ecological, and molecular approaches to evaluate four populations morphologically similar to Ammassolinea, Kamptonema, and Ancylothrix (simple, curved, and gradually attenuated at the ends trichome), found in subtropical and tropical Brazilian regions. 16S rRNA gene sequences grouped all the strains in a highly supported clade with other two European strains isolated from thermal springs surrounding areas. The 16S‐23S ITS secondary structure corroborated the phylogenetic analysis with all the strains having similar structures. Consequently, a genetically well‐defined and cryptic new genus, Koinonema gen. nov., is proposed containing the aquatic, mesophilic, and morphologically homogeneous new species, Koinonema pervagatum sp. nov.  相似文献   

13.
The toxic marine dinoflagellates Alexandrium tamarense (Lebor) Balech and A. catenella (Whedon and Kofoid) Taylor have been mainly responsible for paralytic shellfish poisoning in Japan. Rapid and precise identification of these algae has been difficult because this genus contains many morphologically similar toxic and nontoxic species. Here, we report a rapid, precise, and quantitative identification method using three fluorescent, rRNA‐targeted, oligonucleotide probes for A. tamarense (Atm1), A. catenella (Act1), and the nontoxic A. affine (Inoue et Fukuyo; Aaf1). Each probe was species specific when applied using fluorescence in situ hybridization (FISH). None of the probes reacted with three other Alexandrium spp., A. lusitanicum Balech, A. ostenfeldii (Paulsen) Balech & Tangen, and A. insuetum Balech, or with eight other microalgae, including Gymnodinium mikimotoi Miyake et Kominami ex Oda and Heterosigma akashiwo (Hada) Hara et Chihara, suggesting that the species specificity of each probe was very high. Cells labeled with fluorescein 5‐isothiocyanate–conjugated probes showed strong green fluorescence throughout the whole cell except for the nucleus. FISH could be completed within 1 h and largely eliminated the need for identifying species based on key morphological criteria. More than 80% of targeted cells of both species could be identified by microscopy and quantified during growth up to the early stationary phase; more than 70% of cells could be detected in the late stationary phase. The established FISH protocol was found to be a specific, rapid, precise, and quantitative method that might prove to be a useful tool to distinguish and quantify Alexandrium cells collected from Japanese coastal waters.  相似文献   

14.
In a previous study large-subunit ribosomal RNA gene (LSU rDNA) sequences from the marine dinoflagellates Alexandrium tamarense (Lebour) Balech, A. catenella (Whedon et Kofoid) Balech, A. fundyense Balech, A. affine (Fukuyo et Inoue) Balech, A. minutum Halim, A. lusitanicum Balech, and A. andersoni Balech were compared to assess inter- and intraspecific relationships. Many cultures compared in that study contained more than one class of LSU rDNA. Sequencing pooled clones of rDNA from single cultures revealed length heterogeneities and sequence ambiguities. This complicated sequence comparisons because multiple rDNA clones from a single culture had to be sequenced individually to document the different classes of molecules present in that culture. A further complication remained as to whether or not the observed intraculture sequence variations were reliable genetic markers or were instead artifacts of the polymerase chain reaction (PCR) amplification, cloning, and/or sequencing methods employed. The goals of the present study were to test the accuracy of Alexandrium LSU rDNA sequences using restriction fragment-length polymorphism (RFLP) analysis and to devise RFLP-based assays for discriminating among representatives of that group. Computer-assisted examination of the sequences allowed us to identify a set of restriction enzymes that were predicted to reveal species, strain, and intraculture LSU rDNA heterogeneities. All groups identified by sequencing were revealed independently and repeatedly by RFLP analysis of PCR-amplified material. Five ambiguities and one length heterogeneity, each of which ascribes a unique group of Alexandrium species or strains, were confirmed by restriction digests. Observed intraculture LSU rDNA heterogeneities were not artifacts of cloning and sequencing but were instead a good representation of the spectrum of molecules amplified during PCR reactions. Intraculture LSU rDNA heterogeneities thus serve as unique genetic markers for particular strains of Alexandrium, particularly those of A. tamarense, A. catenella, and A. fundyense. However, some of these “signature heterogeneities” represented a smaller portion of PCR product than was expected given acquired sequences. Other deviations from predicted RFLP patterns included incomplete digestions and appearance of spurious products. These observations indicate that the diversity of sequences in PCR product pools were greater than that observed by cloning and sequencing. The RFLP tests described here are useful tools for characterizing Alexandrium LSU rDNA to define the evolutionary lineage of cultures and are applicable at a fraction of the time, cost, and labor required for sequencing.  相似文献   

15.
The cosmopolitan dinoflagellate genus Alexandrium, and especially the A. tamarense species complex, contain both toxic and nontoxic strains. An understanding of their evolution and paleogeography is a necessary precursor to unraveling the development and spread of toxic forms. The inclusion of more strains into the existing phylogenetic trees of the Alexandrium tamarense species complex from large subunit rDNA sequences has confirmed that geographic distribution is consistent with the molecular clades but not with the three morphologically defined species that constitute the complex. In addition, a new clade has been discovered, representing Mediterranean nontoxic strains. The dinoflagellates fossil record was used to calibrate a molecular clock: key dates used in this calibration are the origins of the Peridiniales (estimated at 190 MYA), Gonyaulacaceae (180 MYA), and Ceratiaceae (145 MYA). Based on the data set analyzed, the origin of the genus Alexandrium was estimated to be around late Cretaceous (77 MYA), with its earliest possible origination in the mid Cretaceous (119 MYA). The A. tamarense species complex potentially diverged around the early Neogene (23 MYA), with a possible first appearance in the late Paleogene (45 MYA). A paleobiogeographic scenario for Alexandrium is based on (1) the calculated possible ages of origination for the genus and its constituent groups; (2) paleogeographic events determined by plate movements, changing ocean configurations and currents, as well as climatic fluctuations; and (3) the present geographic distribution of the various clades of the Alexandrium tamarense species complex.  相似文献   

16.
The distribution of the toxic dinoflagellate Alexandrium tamarense Lebour has apparently expanded within the southern hemisphere during the last 2 decades. Toxic blooms of A. tamarense were recorded in Argentinean coastal waters since 1980; however, the first documented bloom in southern Brazil was in 1996. In this study, 13 strains of A. tamarense from southern Brazil were isolated and kept in culture. Phylogenetic analysis using RFLP and DNA sequences of the D1–D2 region of large subunit ribosomal DNA (rDNA) clearly indicates that Brazilian strains are most closely related to other South American strains. The strains from South America are placed firmly within a phylogenetic clade which contains strains from North America, northern Europe and northern Asia, previously called the North American clade. Possible dispersal hypotheses are discussed. The cultures were also analyzed for saxitoxin and its derivatives by high performance liquid chromatography (HPLC). The main saxitoxin groups found were the low toxicity N-sulfocarbamoyl group, C1, 2 (30–84%), followed by the high potency carbamate toxins, gonyautoxins 1, 4 (6.6–55%), gonyautoxins 2, 3 (0.3–29%), neosaxitoxin (1.4–24%) and saxitoxin (0–4.4%). The toxin composition is similar to that of other strains from South America, supporting a close relationship between A. tamarense from southern Brazil and other areas of South America. Toxicity values were variable (7.07–65.92 pg STX cell−1), with the higher range falling among the most toxic values recorded for cultures of A. tamarense, indicating the significant risk for shellfish contamination and human intoxication during blooms of this species along the southern Brazilian coast.  相似文献   

17.
The endoparasitic dinoflagellate Amoebophrya ceratii (Koeppen) Cachon uses a number of its free‐living relatives as hosts and may represent a species complex composed of several host‐specific parasites. Two thecate host–parasite systems [Amoebophrya spp. ex Alexandrium affine (Inoue and Fukuyo) Balech and ex Gonyaulax polygramma Stein], were used to test the hypothesis that two strains of Amoebophrya have a high degree of host specificity. To test this hypothesis, a series of cross‐infection experiments were conducted, with 10 thecate and three athecate dinoflagellate species as potential hosts. Surprisingly, the two strains of Amoebophrya lacked host specificity and had wider host ranges than previously recognized. Among the host species tested, Amoebophrya sp. ex Alexandrium affine was capable of infecting only species of genus Alexandrium (Alexandrium affine, Alexandrium catenella, and Alexandrium tamarense), while the parasite from Gonyaulax polygramma infected species covering five genera (Alexandrium, Gonyaulax, Prorocentrum, Heterocapsa, and Scripsiella). In the context of previous reports, these results suggest that host specificity of Amoebophrya strains varies from extremely species‐specific to rather unspecific, with specificity being stronger for strains isolated from athecate hosts. Information on host specificity of Amoebophrya strains provided here will be helpful in assessing the possibility of using these parasites as biological control agents for harmful algal blooms, as well as in defining species of Amoebophrya in the future.  相似文献   

18.
Since 2008 there have been many records in Europe (British Isles, Spain, France, Italy) of a large terrestrial planarian morphologically very similar to the Brazilian species Obama marmorata. Sequences of mitochondrial (Cox1) and nuclear (18S, 28S, ITS‐1 and EF) genes from European specimens and some from Brazil indicate that they belong to a species different from that of other specimens also collected in Brazil. Moreover, the phylogenetic results show that they are not sister‐species. Histological sections of both Brazilian and European specimens reveal subtle morphological differences between the two species. Obama marmorata is confined to Brazil, and the second, herein described new species, O bama nungara sp. nov. , is found in Brazil and Europe. These cryptic species may be syntopic in areas in Brazil. The new species occurs in human‐modified environments both in Brazil and in Europe. We also conclude that the specimens from Spain and Argentina identified previously as Obama marmorata belong to the new species.  相似文献   

19.
The heterotrophic marine dinoflagellate genus Protoperidinium is the largest genus in the Dinophyceae. Previously, we reported on the intrageneric and intergeneric phylogenetic relationships of 10 species of Protoperidinium, from four sections, based on small subunit (SSU) rDNA sequences. The present paper reports on the impact of data from an additional 5 species and, therefore, an additional two sections, using the SSU rDNA data, but now also incorporating sequence data from the large subunit (LSU) rDNA. These sequences, in isolation and in combination, were used to reconstruct the evolutionary history of the genus. The LSU rDNA trees support a monophyletic genus, but the phylogenetic position within the Dinophyceae remains ambiguous. The SSU, LSU and SSU + LSU rDNA phylogenies support monophyly in the sections Avellana, Divergentia, Oceanica and Protoperidinium, but the section Conica is paraphyletic. Therefore, the concept of discrete taxonomic sections based on the shape of 1′ plate and 2a plate is upheld by molecular phylogeny. Furthermore, the section Oceanica is indicated as having an early divergence from other groups within the genus. The sections Avellana and Excentrica and a clade combining the sections Divergentia/Protoperidinium derived from Conica‐type dinoflagellates independently. Analysis of the LSU rDNA data resulted in the same phylogeny as that obtained using SSU rDNA data and, with increased taxon sampling, including members of new sections, a clearer idea of the evolution of morphological features within the genus Protoperidinium was obtained. Intraspecific variation was found in Protoperidinium conicum (Gran) Balech, Protoperidinium excentricum (Paulsen) Balech and Protoperidinium pellucidum Bergh based on SSU rDNA data and also in Protoperidinium claudicans (Paulsen) Balech, P. conicum and Protoperidinium denticulatum (Gran et Braarud) Balech based on LSU rDNA sequences. The common occurrence of base pair substitutions in P. conicum is indicative of the presence of cryptic species.  相似文献   

20.
The 5.8S ribosomal RNA (rDNA) gene and flanking internal transcribed spacers (ITS1 and ITS2)from 9 isolates of Alexandrium catenella (Whedon and Kofoid) Taylor, 11 isolates of A. tamarense (Lebour) Taylor, and single isolates of A. affine (Inoue et Fukuyo) Balech, A. insuetum Balech, and A. pseudogonyaulax (Biecheler) Horiguchi ex Yuki et Fukuyo comb. nov. from various locations in Japan were amplified using the polymerase chain reaction (PCR) and subjected to restriction fragment-length polymorphism (RFLP) analysis. PCR products from all strains were approximately 610 bp, inclusive of a limited region of the 18S and 28S rRNA coding regions. RFLP analysis using four restriction enzymes revealed six distinct classes of rDNA (“ITS types”). Restriction patterns of A. catenella were uniform at the intra-specific level and clearly distinguishable from those of A. tamarense. The patterns associated with A. tamarense (“tamarense group”) were also uniform except for one strain, WKS-1. Some restriction fragments from WKS-1 were in common with those of A. catenella or A. tamarense, whereas some were distinct from all Alexandrium species tested. Alexandrium affine, A. insuetum, and A. pseudogonyaulax carry unique ITS types. The ITSs of the “tamarense group” exhibit sequence heterogeneity. In contrast, the ITSs of all other isolates (including WKS-1) appear homogeneous. RFLP analysis of the 5.8S rDNA and flanking ITSs regions from Alexandrium species reveals useful taxonomic and genetic markers at the species and/or population levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号