共查询到10条相似文献,搜索用时 460 毫秒
1.
2.
Ihor R. Lemischka Stephen Farmer Vincent R. Racaniello Phillip A. Sharp 《Journal of molecular biology》1981,151(1):101-120
Bacterial clones containing complementary DNA sequences specific for rat brain α-tubulin messenger RNA were constructed. One plasmid, pILαTl, contains >95% of the sequences found in the mRNA: the entire coding sequence as well as extensive 5′ and 3′ untranslated sequences. Comparison of the rat amino acid sequence with the known chicken α-tubulin sequence (Valenzuela et al., 1981) reveals the extraordinary evolutionary stability of α-tubulin protein. The presence of only two interspecies amino acid differences within analogous 411 amino acid sequences predicts that amino acid substitutions in this protein are fixed with a unit evolutionary period (Wilson et al., 1977) of 550 million years (i.e. the time required for a 1% difference to arise within a specific protein in two diverging evolutionary lineages). An analysis of the silent nucleotide differences, permissible because of the degeneracy of the genetic code, demonstrates that these might not occur in a random fashion. The high guanine-cytosine bias in silent codon positions within the chicken α-tubulin sequence, previously noted by Valenzuela et al. (1981), is not conserved within the rat sequence. This decrease in guanine-cytosine bias is accompanied by a selective loss of CpG dinucleotides in the rat sequence. 相似文献
3.
Karen M. Strahan Feng Gu Andrew F. Preece Ingemar Gustavsson Leif Andersson Kenth Gustafsson 《Immunogenetics》1995,41(2-3):101-105
Human serum contains natural antibodies (NAb), which can bind to endothelial cell surface antigens of other mammals. This is believed to be the major initiating event in the process of hyperacute rejection of pig to primate xenografts. Recent work has implicated galoctosyl 1,3 galactosyl 1,4 N-acetyl-glucosaminyl carbohydrate epitopes, on the surface of pig endothelial cells as a major target of human natural antibodies. This epitope is made by a specific galactosyltransferase (1,3 GT) present in pigs but not in higher primates. We have now cloned and sequenced a full-length pig 1,3 GT cDNA. The predicted 371 amino acid protein sequence shares 85% and 76% identity with previously characterized cattle and mouse 1,3 GT protein sequences, respectively. By using fluorescence and isotopic in situ hybridization, the GGTA1 gene was mapped to the region q2.10–q2.11 of pig chromosome 1, providing further evidence of homology between the subterminal region of pig chromosome 1q and human chromosome 9q, which harbors the locus encoding the AB0 blood group system, as well as a human pseudogene homologous to the pig GGTA1 gene.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number L36152 相似文献
4.
Kankshita Swaminathan Magdy S Alabady Kranthi Varala Emanuele De Paoli Isaac Ho Dan S Rokhsar Aru K Arumuganathan Ray Ming Pamela J Green Blake C Meyers Stephen P Moose Matthew E Hudson 《Genome biology》2010,11(2):1-18
Background
Miscanthus × giganteus (Mxg) is a perennial grass that produces superior biomass yields in temperate environments. The essentially uncharacterized triploid genome (3n = 57, x = 19) of Mxg is likely critical for the rapid growth of this vegetatively propagated interspecific hybrid.Results
A survey of the complex Mxg genome was conducted using 454 pyrosequencing of genomic DNA and Illumina sequencing-by-synthesis of small RNA. We found that the coding fraction of the Mxg genome has a high level of sequence identity to that of other grasses. Highly repetitive sequences representing the great majority of the Mxg genome were predicted using non-cognate assembly for de novo repeat detection. Twelve abundant families of repeat were observed, with those related to either transposons or centromeric repeats likely to comprise over 95% of the genome. Comparisons of abundant repeat sequences to a small RNA survey of three Mxg organs (leaf, rhizome, inflorescence) revealed that the majority of observed 24-nucleotide small RNAs are derived from these repetitive sequences. We show that high-copy-number repeats match more of the small RNA, even when the amount of the repeat sequence in the genome is accounted for.Conclusions
We show that major repeats are present within the triploid Mxg genome and are actively producing small RNAs. We also confirm the hypothesized origins of Mxg, and suggest that while the repeat content of Mxg differs from sorghum, the sorghum genome is likely to be of utility in the assembly of a gene-space sequence of Mxg. 相似文献5.
6.
7.
8.
9.