首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 497 毫秒
1.
The taxonomy and biogeography of a genus with species that occur in geographically isolated regions is interesting. The brown algal genus Ishige Yendo is a good example, with species that apparently inhabit warm regions of both the northwestern and northeastern Pacific Ocean. We determined the sequences of mitochondrial cox3 and plastid rbcL genes from specimens of the genus collected over its distributional range. Analyses of the 86 cox3 and 97 rbcL sequences resulted in congruent trees in which Ishige sinicola (Setch. et N. L. Gardner) Chihara consisted of two distinct clades: one comprising samples from Korea and Japan, and the other comprising samples from the Gulf of California. Additional observations of the morphology and anatomy of the specimens agree with the molecular data. On the basis of results, we reinstated Ishige foliacea S. Okamura (considered a synonym of I. sinicola from the Gulf of California) for plants from the northwest Pacific region and designated a specimen in the Yendo Herbarium (SAP) as the lectotype. I. foliacea is distinguished by large (up to 20 cm) and wide (up to 20 mm) thalli, with a cortex of 4–7 cells, and a medulla composed of long, tangled hyphal cells. Both cox3 and rbcL sequence data strongly support the sister‐area relationship between the northwest Pacific region and the Gulf of California. A likely explanation for this pattern would be the presence of a species ancestral to contemporary species of Ishige in both regions during the paleogeological period, with descendants later isolated by distance.  相似文献   

2.
The new brown algal species Cladosiphon takenoensis H. Kawai (Chordariaceae, Ectocarpales s.l.) is described from Takeno, Hyogo, Japan based on morphology and DNA sequences. The species is a spring annual, growing on subtidal rocks at more or less exposed sites. It resembles C. umezakii in its gross morphology, and the two often grow together, but is distinguishable from C. umezakii in having a more hairy appearance. Cladosiphon takenoensis has a slimy, cylindrical, multiaxial and sympodial erect thallus, branching once to twice, and is provided with long assimilatory filaments (up to 1.8 mm long, composed of up to 100 cells). Unilocular zoidangia are formed on the basal part of assimilatory filaments. The species is genetically most related to C. umezakii and has the same basic thallus structures, but differs from C. umezakii and other Cladosiphon species in lacking phaeophycean hairs and plurilocular zoidangia of the assimilatory filaments. DNA sequences of the mitochondrial cox1 and cox3, chloroplast atpB, psaA, psbA and rbcL genes and the nuclear rDNA ITS2 region support the distinctness of the species. The genus Cladosiphon was paraphyletic in our analyses because the clades of C. okamuranus/C. zosterae and C. takenoensis/C. umezakii were split by Mesogloia vermiculata. However, since the genus‐level taxonomy of Chordariaceae needs considerable revision, we suspend the genus‐level taxonomy of the new species, and tentatively describe it as C. takenoensis.  相似文献   

3.
Morphological and molecular studies have been undertaken on two species of the red algal genus Laurencia J.V.Lamouroux: Laurencia majuscula (Harvey) A.H.S. Lucas and Laurencia dendroidea J.Agardh, both from their type localities. The phylogenetic position of these species was inferred by analysis of the chloroplast‐encoded rbcL gene sequences from 24 taxa. In all phylogenetic analyses, the Australian Laurencia majuscula and the Brazilian L. dendroidea formed a well‐supported monophyletic clade within the Laurencia sensu stricto. This clade was divided into two subclades corresponding to each geographical region; however, the genetic divergence between Australian L. majuscula and Brazilian L. dendroidea was only 0–1.35%. Examination of the type specimens and sequences of freshly collected samples of both Laurencia majuscula and L. dendroidea show the two to be conspecific despite their disjunct type localities.  相似文献   

4.
The new species Tinocladia sanrikuensis sp. nov. H.Kawai, K.Takeuchi & T.Hanyuda (Ectocarpales s.l., Phaeophyceae) is described from the Pacific coast of the Tohoku region, northern Japan based on morphology and DNA sequences. The species is a spring–summer annual growing on lower intertidal to upper subtidal rocks and cobbles on relatively protected sites. T. sanrikuensis has a slimy, cylindrical, multiaxial erect thallus, slightly hollow when fully developed, branching once to twice, and resembles T. crassa in gross morphology. The erect thalli are composed of a dense medullary layer, long subcortical filaments, and assimilatory filaments of 11–35 cells, up to 425 μm long and curved in the upper portion. Unilocular zoidangia are formed on the basal part of assimilatory filaments. The species is genetically most closely related to T. crassa and has the same basic thallus structures but differs in having thinner and longer assimilatory filaments. DNA sequences of the mitochondrial cox1 and cox3, chloroplast atpB, psaA, psbA and rbcL genes support the distinctness of this species.  相似文献   

5.
The brown algal genus Padina (Dictyotales, Phaeophyceae) is distributed worldwide in tropical and temperate seas. Global species diversity and distribution ranges, however, remain largely unknown. Species‐level diversity was reassessed using DNA‐based, algorithmic species delineation techniques based on cox3 and rbcL sequence data from 221 specimens collected worldwide. This resulted in estimates ranging from 39 to 61 putative species (ESUs), depending on the technique as well as the locus. We discuss the merits, potential pitfalls, and evolutionary and biogeographic significance of algorithmic species delineation. We unveil patterns whereby ESUs are in all but one case restricted to either the Atlantic or Indo‐Pacific Ocean. Within ocean basins we find evidence for the vast majority of ESUs to be confined to a single marine realm. Exceptions, whereby ESUs span up to three realms, are located in the Indo‐Pacific Ocean. Patterns of range‐restricted species likely arise by repeated founder events and subsequent peripatric speciation, hypothesized to dominate speciation mechanisms for coastal marine organisms in the Indo‐Pacific. Using a three‐gene (cox3, psaA and rbcL), relaxed molecular clock phylogenetic analysis we estimated divergence times, providing a historical framework to interpret biogeographic patterns.  相似文献   

6.
Gelidium is an economically and ecologically important agar‐producing genus. Although the taxonomy of Gelidium has been the focus of many published studies, there is still a need to reevaluate species‐level diversity. Herein, we describe Gelidium eucorneum sp. nov. based on specimens collected off Geojedo on the southern coast of Korea. G. eucorneum is distinguished by cartilaginous thalli with brush‐like haptera, rhizoidal filaments concentrated in the medulla, and globose cytocarps that are horned with multiple determinate branchlets. The species occurs in wave‐exposed intertidal sites, sometimes in association with other mat‐forming algae. Phylogenetic analyses (rbcL, psaA, and cox1) reveal that G. eucorneum is unique and clearly distinct from other species of the genus. The clade containing Gelidium vagum and Acanthopeltis longiramulosa was resolved as a sister group to G. eucorneum. We suggest that the diverse morphologies of G. eucorneum, G. vagum, and Acanthopeltis developed from a common ancestor in East Asian waters. This study shows that even in well‐studied areas, more agarophyte species are to be added to the world inventory of red algae.  相似文献   

7.
Generic concepts in the economically important agarophyte red algal family Gracilariaceae were evaluated based on maximum parsimony, Bayesian likelihood, and minimum evolution analyses of the chloroplast‐encoded rbc L gene from 67 specimens worldwide. The results confirm the monophyly of the family and identify three large clades, one of which corresponds to the ancestral antiboreal genera Curdiea and Melanthalia, one to Gracilariopsis, and one to Gracilaria sensu lato, which contains nine distinct independent evolutionary lineages, including Hydropuntia. The species currently attributed to Hydropuntia comprise a single well‐supported clade composed of two distinct lineages. The two most basal clades within Gracilaria sensu lato deserve generic rank: a new genus centered around G. chilensis Bird, McLachlan et Oliveira and G. aff. tenuistipitata Chang et Xia and a resurrected Hydropuntia encompassing primarily Indo‐Pacific (G. urvillei [Montagne] Abbott, G. edulis [S. Gmelin] P. Silva, G. eucheumatoides Harvey, G. preissiana [Sonder] Womersley, and G. rangiferina [Kützing] Piccone) and western Atlantic species (G. cornea J. Agardh, G. crassissima P. et H. Crouan in Mazé et Schramm, G. usneoides [C. Agardh] J. Agardh, G. caudata J. Agardh, and G. secunda P. et H. Crouan in Mazé et Schramm). Cystocarpic features within the Gracilaria sensu lato clades appear to be more phylogenetically informative than male characters. The textorii‐type spermatangial configuration is represented in two distinct clusters of Gracilaria. The rbc L genetic divergence among the Gracilariaceae genera ranged between 8.46% and 16.41%, providing at least 2.5 times more genetic variation than does the 18S nuclear rDNA. rbc L also resolves intrageneric relationships, especially within Gracilaria sensu lato. The current number of gracilariacean species is underestimated in the western Atlantic because of convergence in habit and apparent homoplasy in vegetative and reproductive anatomy.  相似文献   

8.
A phylogenetic study was conducted of species of Halymeniaceae from New Zealand presently placed in Aeodes or Pachymenia, based on maximum‐likelihood (ML), maximum‐parsimony (MP), and Bayesian analyses of rbcL and nuclear internal transcribed spacer (ITS) rDNA sequences. We used molecular and morphological data in combination with exhaustive sampling of herbarium collections to clarify the taxonomy and distributions of New Zealand members of Pachymenia and Aeodes. Our study confirms the presence of three erect species of Pachymenia on the New Zealand mainland, and we resurrect the name Pachymenia dichotoma J. Agardh for the widely distributed, southernmost species. Species of Aeodes from South Africa are shown to be closely related to Pachymenia carnosa (J. Agardh) J. Agardh, the type species of Pachymenia, and are accordingly transferred to Pachymenia.  相似文献   

9.
Coralline red algae from the New Zealand region were investigated in a study focused on documenting regional diversity. We present a multi‐gene analysis using sequence data obtained for four genes (nSSU, psaA, psbA, rbcL) from 68 samples. The study revealed cryptic diversity at both genus and species levels, confirming and providing further evidence of problems with current taxonomic concepts in the Corallinophycidae. In addition, a new genus Corallinapetra novaezelandiae gen. et sp. nov. is erected for material from northern New Zealand. Corallinapetra is excluded from all currently recognized families and orders within the Corallinophycidae and thus represents a previously unrecognized lineage within this subclass. We discuss rank in the Corallinophycidae and propose the order Hapalidiales.  相似文献   

10.
Zeacarpa leiomorpha is a crustose brown alga endemic to South Africa. The species has been tentatively placed in Ralfsiaceae, but its ordinal assignment has been uncertain. The molecular phylogeny of brown algae based on concatenated DNA sequences of seven chloroplast and mitochondrial gene sequences (atpB, psaA, psaB, psbA, psbC, rbcL, and cox1) of taxa covering most of the orders revealed the most related phylogenetic relationship of Z. leiomorpha to Nemoderma tingitanum (Nemodermatales) rather than Ralfsiaceae (Ralfsiales). Morphologically, Zeacarpa and Nemoderma share crustose thallus structure and multiple discoidal chloroplasts without pyrenoids in each cell, however, the formation of lateral unilocular zoidangia in tufts in loose upright filaments in Zeacarpa is distinctive in brown algae. Considering the relatively distant genetic divergence between the two taxa, comparable to that among families or orders in representative brown algae, in addition to the above‐mentioned unique morphological features, we propose the classification of Zeacarpa in a new family Zeacarpaceae in the order Nemodermatales.  相似文献   

11.
Species belonging to the newly established genus Kumanoa were sampled from locations worldwide. DNA sequence data from the rbcL gene, cox1 barcode region, and universal plastid amplicon (UPA) were collected. The new sequence data for the rbcL were combined with the extensive batrachospermalean rbcL data available in GenBank. Single gene rbcL results showed the genus Kumanoa to be a well‐supported clade, and there was high statistical support for many of the terminal nodes. However, with this gene alone, there was very little support for any of the internal nodes. Analysis of the concatenated data set (rbcL, cox1, and UPA) provided higher statistical support across the tree. The taxa K. vittata and K. amazonensis formed a basal grade, and both were on relatively long branches. Three new species are proposed, K. holtonii, K. gudjewga, and K. novaecaledonensis; K. procarpa var. americana is raised to species level. In addition, the synonymy of K. capensis and K. breviarticulata is proposed, with K. capensis having precedence. Five new combinations are made, bringing the total number of accepted species in Kumanoa to 31. The phylogenetic analyses did not reveal any interpretable biogeographic patterns within the genus (e.g., K. spermatiophora from the tropical oceanic island Maui, Hawaii, was sister to K. faroensis from temperate midcontinental Ohio in North America). Previously hypothesized relationships among groups of species were not substantiated in the phylogenetic analyses, and no intrageneric classification is recommended based on current knowledge.  相似文献   

12.
Molecular markers belonging to the three different genomes, mitochondrial (cox2‐cox3 spacer), plastid (rbcL), and nuclear (internal transcribed spacer [ITS] 2 region), were used to compare samples of the two morphologically related species Gracilaria gracilis (Stackh.) Steentoft, L. M. Irvine et Farnham and G. dura (C. Agardh) J. Agardh collected along Atlantic coasts. In northern Europe, the distinction between these two species is ambiguous, and they are currently recognized under the single name of G. gracilis. The low but congruent patterns of genetic divergence observed for markers of the three genomic compartments highly suggest that these two taxa correspond effectively to two different genetic entities as previously described 200 years ago, based on morphological traits. However, thanks to the combination of different DNA markers, occurrence of “incongruent” cytotypes (i.e., mitotypes of G. dura associated with chlorotypes of G. gracilis) in individuals collected from Brittany, suggests interspecific hybridization between the two sibling species studied.  相似文献   

13.
14.
A new genus, Pseudolessonia, is proposed for the kelp Lessonia laminarioides Postels et Ruprecht (Laminariales, Phaeophyceae), which occurs on the northwest side of the Sea of Okhotsk, in the northwest Pacific Ocean. Pseudolessonia is monotypic and differs from Lessonia in its short primary stipes and its corrugated, unilaterally arranged blades with entire margins. This species is transferred on the basis of morphology and plastid gene sequence comparisons. We determined psaA and rbcL gene sequences from 17 taxa of Pseudolessonia, Lessonia, and putative relatives. Analyses of individual and combined data sets resulted in congruent trees showing a clear separation of Pseudolessonia laminarioides from Lessonia, but suggesting its sister relationships with the clade of Nereocystis, Macrocystis, Pelagophycus, and Postelsia in the North Pacific Ocean. On the other hand, Lessonia species from the South Pacific Ocean formed a strongly supported clade. The results indicate that the basal splitting of the blade, which has been considered a diagnostic character for the family Lessoniaceae, is a result of convergent evolution.  相似文献   

15.
The nucleotide sequence data of molecular markers 18S rRNA, RUBISCO spacer, and cox2‐3 intergenic spacer were integrated to infer the phylogeny of Gracilaria species, collected from the western coast of India, reducing the possibility of misidentification and providing greater phylogenetic resolution. A phylogenetic tree was constructed using cox2‐3 and RUBISCO spacer sequences, exhibiting the same clustering but differing slightly from that of the rRNA‐based phylogenetic tree. The phylogeny inferred from the combined data set confers an analogous pattern of clustering, compared with those of trees constructed from individual data sets. The combined data set resulted in a phylogeny with better resolution, which supported the clade with higher consistency index, retention index, and bootstrap values. It was observed that Gracilaria foliifera (Forssk.) Børgesen is closer to G. corticata (J. Agardh) J. Agardh varieties, while G. salicornia (C. Agardh) E. Y. Dawson and G. fergusonii J. Agardh both originated from the same clade. The position of G. textorii (Suringar) De Toni faltered and toppled between G. salicornia and G. dura (C. Agardh) J. Agardh; however, G. gracilis (Stackh.) M. Steentoft, L. M. Irvine et W. F. Farnham was evidently distant from the rest of the species.  相似文献   

16.
The freshwater red alga Nemalionopsis shawii Skuja is first reported for mainland China from specimens collected in Guangdong and Yunnan Province. Morphological observations and molecular sequences of rbcL and cox1 genes were used to identify and analyze the phylogenetic position of the samples. Samples from China formed a monophyletic clade with other N. shawii samples from Japan, Indonesia, and Nepal with robust support values. The pairwise genetic distances for N. shawii between the samples from China and other samples were 0.2–1.5% and 1.0–2.4% for rbcL and cox1, respectively. Both male and female reproductive structures were observed in the specimens from Guangdong, but only monosporangia in the specimen from Yunnan. The samples from China increase the diversity of morphological measurements for N. shawii. The discovery of this genus in mainland China results in a new record of a freshwater red alga for this country.  相似文献   

17.
ABSTRACT

An edible green algal species Caulerpa lentillifera J. Agardh is reported from China for the first time. The species was collected from the southwest of Hainan Island and morphologically identified to be C. lentillifera based on the grape-like branches arising from cylindrical stolons. Phylogenetic analysis using tufA and rbcL DNA sequences also confirmed the monophyly of C. lentillifera-microphysa clade.  相似文献   

18.
Twenty-five specimens of the freshwater red alga Compsopogon were collected from locations in North America, South America, Europe, Asia, Australasia and Oceania, and from an aquarium, with the goal of determining genetic diversity among specimens and ascertaining the number of phylogenetic species. Specimens were morphologically identified as having either the ‘caeruleus’ morphology, with regular polyhedral cortical cells, or the ‘leptoclados’ morphology, with irregular cortical cells with rhizoidal outgrowths. The ‘leptoclados’ morphology has been used by some researchers to distinguish the genus Compsopogonopsis from Compsopogon, or at least to distinguish C. leptoclados from other Compsopogon species. Sequence data for the rbcL gene and cox1 barcoding region were obtained for most specimens. In addition, SSU and partial LSU (barcode) rDNA were explored for a few specimens, but all sequences were identical. For the 25 newly generated and eight previously published rbcL gene data, there were seven unique haplotypes, but the sequence divergence was very low (≤7 bp, ≤ 0.7%). One haplotype was widespread, represented by 21 specimens from diverse locations in all regions sampled. Likewise, the 22 new and one previously published cox1 barcode region sequences yielded seven unique haplotypes with little sequence divergence (≤13 bp, ≤ 2.0%). One haplotype was widespread, being shared among 16 specimens from all regions. The combined molecular and morphological data showed no genetic differentiation between the ‘caeruleus’ and ‘leptoclados’ morphologies. The ubiquitous distribution of Compsopogon in tropical/subtropical regions and its low genetic variation are probably facilitated by the alga's ability to tolerate a wide range of stream conditions and its propagation via asexual spores. Given the findings of previous culture-based studies, morphometric research and field observations, coupled with the results of our study, we conclude there is only a single monospecific genus worldwide and that the species is correctly called C. caeruleus, since this is the oldest validly published name; all other previously described species of Compsopogon and Compsopogonopsis are synonyms.  相似文献   

19.
20.
Although the diverse uses of Gelidium as food and in the production of agar and paper pulp have increased research interest in this genus, the taxonomy and biogeography of several species of Gelidium remain largely unstudied. We conducted phylogenetic analyses of mitochondrial cox1 and plastid rbcL sequences of selected species of Gelidium. The data revealed that Gelidium allanii, Gelidium johnstonii, and Gelidium koshikianum, species that share a similar morphology, formed a monophyletic clade with a wide distribution around the Pacific rim. Because G. johnstonii Setchell & Gardner has nomenclatural priority over G. allanii V.J. Chapman and G. koshikianum Shimada et al., we synonymize the latter two species with the former. Based on the extremely low genetic divergences (0.0–0.2 % for rbcL and 0.0–0.4 % for cox1) between Korean and Mexican specimens of G. johnstonii and its sister relationship with Asian species, we consider that G. johnstonii may have been recently dispersed by anthropogenic agents. The New Zealand endemic Gelidium longipes and Gelidium crinale from Australia were compared with both rbcL and cox1, and were found to be identical. Although the transfer of G. logipes to G. crinale is necessary, the Australasian group within G. crinale is separated from other populations of the species, and we therefore recognize it as a subspecies. Biogeography of Gelidium on the basis of rbcL phylogeny of the 59 Gelidium species is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号