首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Microevolution and origins of Bradyrhizobium populations associated with soybeans at two field sites (A and B, 280 km apart in Canada) with contrasting histories of inoculation was investigated using probabilistic analyses of six core (housekeeping) gene sequences. These analyses supported division of 220 isolates in five lineages corresponding either to B. japonicum groups 1 and 1a or to one of three novel lineages within the genus Bradyrhizobium. None of the isolates from site A and about 20% from site B (the only site with a recent inoculation history) were attributed to inoculation sources. The data suggest that most isolates were of indigenous origin based on sequence analysis of 148 isolates of soybean‐nodulating bacteria from native legumes (Amphicarpaea bracteata and Desmodium canadense). Isolates from D. canadense clustered with B. japonicum group 1, whereas those from A. bracteata were placed in two novel lineages encountered at soybean field sites. One of these novel lineages predominated at soybean sites and exhibited a significant clonal expansion likely reflecting selection by the plant host. Homologous recombination events detected in the 35 sequence types from soybean sites had an effect on genetic diversification that was approximately equal to mutation. Interlineage transfer of core genes was infrequent and mostly attributable to gyrB that had a history of frequent recombination. Symbiotic gene sequences (nodC and nifH) of isolates from soybean sites and native legumes clustered in two lineages corresponding to B. japonicum and B. elkani with the inheritance of these genes appearing predominantly by vertical transmission. The data suggest that soybean‐nodulating bacteria associated with native legumes represent a novel source of ecologically adapted bacteria for soybean inoculation.  相似文献   

2.
The development of rhizobial inoculants with increased resistance to abiotic stress is critical to mitigating the challenges related to climate change. This study aims at developing a soybean stress-tolerant Bradyrhizobium inoculant to be used under the mixed stress conditions of acidity, high temperature, and drought. Six isolates of Bradyrhizobium with high symbiotic performance on soybean were tested to determine their growth or survival abilities under in vitro conditions. The representative stress-tolerant Bradyrhizobium isolates 184, 188, and 194 were selected to test their ability to promote soybean growth under stress conditions compared to the type strain Bradyrhizobium diazoefficiens USDA110. The plant experiment indicated that isolate 194 performed better in symbiosis with soybean than other Bradyrhizobium strains under stress conditions. Based on the stress tolerance index, soybeans inoculated with isolate 194 showed a high growth performance and significantly better nodulation competition ability than USDA110 under several stress conditions. Interestingly, supplementation of sucrose in the culture medium significantly enhances the survival of the isolate and leads to improved plant biomass under various stress conditions. Analysis of the intra-cellular sugars of isolate 194 supplemented with sucrose showed the accumulation of compatible solutes, such as trehalose and glycerol, that may act as osmoprotectants. This study indicates that inoculation of stress-tolerant Bradyrhizobium together with sucrose supplementation in a medium could enhance bacterial survival and symbiosis efficiency under stress conditions. Although it can be applied for inoculant production, this strategy requires validation of its performance in field conditions before adopting this technology.  相似文献   

3.
Aiming at learning the microsymbionts of Arachis duranensis, a diploid ancestor of cultivated peanut, genetic and symbiotic characterization of 32 isolates from root nodules of this plant grown in its new habitat Guangzhou was performed. Based upon the phylogeny of 16S rRNA, atpD and recA genes, diverse bacteria belonging to Bradyrhizobium yuanmingense, Bradyrhizobium elkanii, Bradyrhizobium iriomotense and four new lineages of Bradyrhizobium (19 isolates), Rhizobium/Agrobacterium (9 isolates), Herbaspirillum (2 isolates) and Burkholderia (2 isolates) were defined. In the nodulation test on peanut, only the bradyrhizobial strains were able to induce effective nodules. Phylogeny of nodC divided the Bradyrhizobium isolates into four lineages corresponding to the grouping results in phylogenetic analysis of housekeeping genes, suggesting that this symbiosis gene was mainly maintained by vertical gene transfer. These results demonstrate that A. duranensis is a promiscuous host preferred the Bradyrhizobium species with different symbiotic gene background as microsymbionts, and that it might have selected some native rhizobia, especially the novel lineages Bradyrhizobium sp. I and sp. II, in its new habitat Guangzhou. These findings formed a basis for further study on adaptation and evolution of symbiosis between the introduced legumes and the indigenous rhizobia.  相似文献   

4.
The toxic legume plant, Galega officinalis, is native to the Eastern Mediterranean and Black Sea regions. This legume is considered to be a noxious weed, and its establishment in Canada may have resulted from ornamental planting and/or field trials. In its native range, a highly specific nitrogen‐fixing symbiosis with the bacterium, Neorhizobium galegae symbiovar (sv.) officinalis, is required for normal growth. In North America, nothing is known about the bacterial symbionts of G. officinalis. Our purpose was to determine the species and symbiovar identity of symbiotic bacteria associated with invasive plants of G. officinalis at five sites in the province of Ontario, Canada.  Sequence analysis of four housekeeping (16S rRNA, atpD, glnII, and recA) and two symbiosis (nodC and nifH) genes showed that all 50 bacterial isolates from root nodules of G. officinalis at the five Canadian sites were identical to strains of N. galegae sv. officinalis originating either from Europe or the Caucasus. Plant tests indicated that soils collected from four Canadian sites without a history of agriculture or presence of G. officinalis were deficient in symbiotic bacteria capable of eliciting nodules on this plant. Collectively our data support the hypothesis of anthropogenic co‐introduction of G. officinalis and its specific symbiotic bacterium into Canada from the Old World. Factors that may limit the spread of G. officinalis in new environments are discussed.  相似文献   

5.
Initial interaction between rhizobia and legumes actually starts via encounters of both partners in the rhizosphere. In this study, the global expression profiles of Bradyrhizobium japonicum USDA 110 in response to soybean (Glycine max) seed extracts (SSE) and genistein, a major soybean-released isoflavone for nod genes induction of B. japonicum, were compared. SSE induced many genomic loci as compared with genistein (5.0 µM), nevertheless SSE-supplemented medium contained 4.7 µM genistein. SSE markedly induced four predominant genomic regions within a large symbiosis island (681 kb), which include tts genes (type III secretion system) and various nod genes. In addition, SSE-treated cells expressed many genomic loci containing genes for polygalacturonase (cell-wall degradation), exopolysaccharide synthesis, 1-aminocyclopropane-1-carboxylate deaminase, ribosome proteins family and energy metabolism even outside symbiosis island. On the other hand, genistein-treated cells exclusively showed one expression cluster including common nod gene operon within symbiosis island and six expression loci including multidrug resistance, which were shared with SSE-treated cells. Twelve putatively regulated genes were indeed validated by quantitative RT-PCR. Several SSE-induced genomic loci likely participate in the initial interaction with legumes. Thus, these results can provide a basic knowledge for screening novel genes relevant to the B. japonicum- soybean symbiosis.Key words: soybean seed extracts, Bradyrhizobium japonicum, expression clusters, genistein, symbiosis  相似文献   

6.
Leucaena leucocephala is a Mimosoid legume tree indigenous to America that has spread to other continents, although it is not still present in some European countries such as Portugal. Nevertheless, we found that this legume can be nodulated in this country by slow-growing rhizobial strains which were identified as Bradyrhizobium canariense trough the analysis of the core genes recA and glnII. The analysis of the symbiotic gene nodC showed that these strains belong to the symbiovar genistearum, which commonly nodulates Genistoid legumes. Although two strains nodulating L. leucocephala in China and Brazil were classified within the genus Bradyrhizobium, they belong to undescribed species and to the symbiovars glycinearum and tropici, respectively. Therefore, we report here for the first time the ability of L. leucocephala to establish symbiosis with strains of B. canariense sv genistearum confirming the high promiscuity of L. leucocephala, that allows it to establish symbiosis with rhizobia native to different continents increasing its invasiveness potential.  相似文献   

7.
Breeding for better symbiosis   总被引:6,自引:0,他引:6  
Z. Rengel 《Plant and Soil》2002,245(1):147-162
The present review gives a critical assessment of the literature dealing with symbiosis between rhizobia and legumes and between AM fungi and most plants. Associative N2 fixation (even though strictly speaking not a symbiotic relationship) does have some characteristics of symbiosis due to mutualistic dependence and usefulness of the relationship, and is therefore covered in this review. Nodulation in the rhizobia–legume symbiosis may be limited by an insufficient amount of the nod-gene inducers released from seed and/or roots. However, there is genotypic variation in the germplasm of legume species in all components of the signalling pathway, suggesting a prospect for improving nodulation by selecting and/or transforming legume genotypes for increased exudation of flavonoids and other signalling compounds. Deciphering chromosomal location as well as cloning nod, nif and other genes important in nodulation and N2 fixation will allow manipulation of the presence and expression of these genes to enhance the symbiotic relationship. Increased efficacy of symbiotic N2 fixation can be achieved by selecting not only the best host genotypes but by selecting the best combination of host genotype and nodule bacteria. As flavonoids exuded by legume seedlings may not only be nod-gene inducers, but also stimulants for hyphal growth of the AM fungi, selecting and/or transforming plants to increase exudation of these flavonoids may result in a double benefit for mycorrhizal legumes. Mutants unable to sustain mycorrhizal colonisation are instrumental in understanding the colonisation process, which may ultimately pay off in breeding for the more effective symbiosis. In conclusion, targeted efforts to breed genotypes for improved N2 fixation and mycorrhizal symbiosis will bring benefits in increased yields of crops under a wide range of environmental conditions and will contribute toward sustainability of agricultural ecosystems in which soil-plant-microbe interactions will be better exploited.  相似文献   

8.
Bradyrhizobium are N2-fixing microsymbionts of legumes with relevant applications in agricultural sustainability, and we investigated the phylogenetic relationships of conserved and symbiotic genes of 21 bradyrhizobial strains. The study included strains from Western Australia (WA), isolated from nodules of Glycine spp. the country is one genetic center for the genus and from nodules of other indigenous legumes grown in WA, and strains isolated from forage Glycine sp. grown in South Africa. The 16S rRNA phylogeny divided the strains in two superclades, of B. japonicum and B. elkanii, but with low discrimination among the species. The multilocus sequence analysis (MLSA) with four protein-coding housekeeping genes (dnaK, glnII, gyrB and recA) pointed out seven groups as putative new species, two within the B. japonicum, and five within the B. elkanii superclades. The remaining eleven strains showed higher similarity with six species, B. lupini, B. liaoningense, B. yuanmingense, B. subterraneum, B. brasilense and B. retamae. Phylogenetic analysis of the nodC symbiotic gene clustered 13 strains in three different symbiovars (sv. vignae, sv. genistearum and sv. retamae), while seven others might compose new symbiovars. The genetic profiles of the strains evaluated by BOX-PCR revealed high intra- and interspecific diversity. The results point out the high level of diversity still to be explored within the Bradyrhizobium genus, and further studies might confirm new species and symbiovars.  相似文献   

9.
Root nodule bacterial strains were isolated from the little-studied legumes Eriosema chinense and Flemingia vestita (both in tribe Phaseoleae, Papilionoideae) growing in acidic soil of the sub-Himalayan region of the Indian state of Meghalaya (ME), and were identified as novel strains of Bradyrhizobium on the basis of their 16S rRNA sequences. Seven isolates selected on the basis of phenotypic characters and assessment of ARDRA and RAPD patterns were subjected to multilocus sequence analysis (MLSA) using four protein-coding housekeeping genes (glnII, recA, dnaK and gyrB). On the basis of 16S rRNA phylogeny as well as a concatenated MLSA five strains clustered in a single separate clade and two strains formed novel lineages within the genus Bradyrhizobium. The phylogenies of the symbiotic genes (nodA and nifH) were in agreement with the core gene phylogenies. It appears that genetically diverse Bradyrhizobium strains are the principal microsymbionts of these two important native legumes. The novel genotypes of Bradyrhizobium strains isolated in the present study efficiently nodulate the Phaseoloid crop species Glycine max, Vigna radiata and Vigna umbellata. These strains are genetically different from strains of Bradyrhizobium isolated earlier from a different agro-climatic region of India suggesting that the acidic nature of the soil, high precipitation and other local environmental conditions are responsible for the evolution of these newly-described Bradyrhizobium strains. In global terms, the sub-Himalayan region of India is geographically and climatically distinct and the Bradyrhizobium strains nodulating its legumes appear to be novel and potentially unique to the region.  相似文献   

10.
Blastobacter spp. are freshwater bacteria that form rosette structures by cellular attachment to a common base. Comparative analyses of ribosomal 16S rRNA gene and internally transcribed spacer region sequences indicated that B. denitrificans is a member of the α-subdivision of Proteobacteria. Among the α-Proteobacteria, B. denitrificans was related to a cluster of genera, including Rhodopseudomonas palustris, Afipia felis, Nitrobacter hamburgensis, and Bradyrhizobium spp. Although the precise phylogenetic relationships among these genera could not be established with a high degree of confidence, the sequences of B. denitrificans and several bradyrhizobial isolates from nodules of Aeschynomene indica were almost identical. Bradyrhizobia are bacteria that form nitrogen-fixing symbioses with legumes, including soybeans (Glycine max) and members of the genus Aeschynomene. From symbiotic infectiveness tests we demonstrated that the type strain for B. denitrificans, IFAM 1005, was capable of forming an effective nitrogen-fixing symbiosis with A. indica. Not only do these results reveal a previously unknown ecological adaptation of a relatively obscure aquatic bacterium, but they also demonstrate how evidence gathered from molecular systematic analyses can sometimes provide clues for predicting ecological behavior.  相似文献   

11.
A Rhizobium trifolii symbiotic plasmid specific gene library was constructed and the physical organisation of regions homologous to nifHDK, nifA and nod genes was determined. These symbiotic gene regions were localised to u 25 kb region on the sym-plasmid, pPN1. In addition four copies of a reiterated sequence were identified on this plasmid, with one copy adjacent to nifH. No rearrangement of these reiterated sequences was observed between R. trifolii bacterial and bacteroid DNA. Analysis of a deletion derivative of pPN1 showed that these sequences were spread over a 110 kb region to the left of nifA.  相似文献   

12.
The genomic diversity of a collection of 103 indigenous rhizobia isolates from Lupinus mariae-josephae (Lmj), a recently described Lupinus species endemic to alkaline-limed soils from a restricted habitat in Eastern Spain, was investigated by molecular methods. Isolates were obtained from soils of four geographic locations in the Valencia province that harbored the known Lmj plant populations. Using an M13 RAPD fingerprinting technique, 19 distinct RAPD profiles were identified. Phylogenetic analysis based on 16S rDNA and the housekeeping genes glnII, recA and atpD showed a high diversity of native Bradyrhizobium strains that were able to establish symbiosis with Lmj. All the strains grouped in a clade unrelated to strains of the B. canariense and B. japonicum lineages that establish symbioses with lupines in acid soils of the Mediterranean area. The phylogenetic tree based on concatenated glnII, recA and atpD gene sequences grouped the Lmj isolates in six different operational taxonomic units (OTUs) at the 93% similarity level. These OTUs were not associated to any specific geographical location, and their observed divergence predicted the existence of different Bradyrhizobium genomic species. In contrast, phylogenetic analysis of symbiotic genes based on nodC and nodA gene sequences, defined only two distinct clusters among the Lmj strains. These two Lmj nod gene types were largely distinct from nod genes of bradyrhizobia nodulating other Old World lupine species. The singularity and large diversity of these strains in such a small geographical area makes this an attractive system for studying the evolution and adaptation of the rhizobial symbiont to the plant host.  相似文献   

13.
Many bacteria belonging to the order Rhizobiales have fixNOQP genes which encode cytochrome oxidase with high affinity to oxygen required for oxidative phosphorylation in microaerophilic conditions. There is one copy of the identified fixNOQP operon in ancestral forms of rhizobia (Bradyrhizobium), as well as in their putative evolutionary predecessors (bacteria related to Rhodopseudomonas). At the same time, forms deeply specialized in symbiosis (Rhizobium leguminosarum, Sinorhizobium meliloti) have multiple (2–3) copies, some of them have a high similarity (>90%) to fixNOQP genes of Bradyrhizobium and Rhodopseudomonas, and others have only 30–50% similarity. Two divergent copies fixNOQP are detected in Tardiphaga, which is a representative of the Bradyrhizobiaceae family, lacking the ability to fix N2 (lack of nif genes encoding the synthesis of nitrogenase) and to induce the formation of nodules on legumes roots (lack of nod genes encoding the synthesis of signal Nod factors activating symbiosis development). The presence of Tardiphaga in nodule bacterial communities from a range of legumes, including Vavilovia formosa (relic representative of the tribe Fabeae, for which R. leguminosarum bv. viciae is the main microsymbiont), suggests that the ancestral gene duplication and subsequent divergence of fixNOQP operon in bacteria related to Tardiphaga opened the possibility of wide dissemination of functionally different copies of this cluster among symbiotically active forms of Rhizobiales. It is possible that the acquisition of fixNOQP genes determines adaptation of bacteria to microaerophilic niches not only in plants nodules but also in their environment (the rhizosphere, rhizoplane, internal portions of soil aggregates).  相似文献   

14.
The lateral transfer of symbiotic genes converting a predisposed soil bacteria into a legume symbiont has occurred repeatedly and independently during the evolution of rhizobia. We experimented the transfer of a symbiotic plasmid between Bradyrhizobium strains. The originality of the DOA9 donor is that it harbours a symbiotic mega-plasmid (pDOA9) containing nod, nif and T3SS genes while the ORS278 recipient has the unique property of inducing nodules on some Aeschynomene species in the absence of Nod factors (NFs). We observed that the chimeric strain ORS278-pDOA9* lost its ability to develop a functional symbiosis with Aeschynomene. indica and Aeschynomene evenia. The mutation of rhcN and nodB led to partial restoration of nodule efficiency, indicating that T3SS effectors and NFs block the establishment of the NF-independent symbiosis. Conversely, ORS278-pDOA9* strain acquired the ability to form nodules on Crotalaria juncea and Macroptillium artropurpureum but not on NF-dependent Aeschynomene (A. afraspera and A. americana), suggesting that the ORS278 strain also harbours incompatible factors that block the interaction with these species. These data indicate that the symbiotic properties of a chimeric rhizobia cannot be anticipated due to new combination of symbiotic and non-symbiotic determinants that may interfere during the interaction with the host plant.  相似文献   

15.
Acacia saligna is an invasive alien species that has the ability to establish symbiotic relationships with rhizobia. In the present study, genotypic and symbiotic diversity of native rhizobia associated with A. saligna in Tunisia were studied. A total of 100 bacterial strains were selected and three different ribotypes were identified based on rrs PCR-RFLP analysis. Sequence analyses of rrs and four housekeeping genes (recA, atpD, gyrB and glnII) assigned 30 isolates to four putative new lineages and a single strain to Sinorhizobium meliloti. Thirteen slow-growing isolates representing the most dominant IGS (intergenic spacer) profile clustered distinctly from known rhizobia species within Bradyrhizobium with the closest related species being Bradyrhizobium shewense and Bradyrhizobium niftali, which had 95.17% and 95.1% sequence identity, respectively. Two slow-growing isolates, 1AS28L and 5AS6L, had B. frederekii as their closest species with a sequence identity of 95.2%, an indication that these strains could constitute a new lineage. Strains 1AS14I, 1AS12I and 6AS6 clustered distinctly from known rhizobia species but within the Rhizobium leguminosarum complex (Rlc) with the most closely related species being Rhizobium indicum with 96.3% sequence identity. Similarly, the remaining 11 strains showed 96.9 % and 97.2% similarity values with R. changzhiense and R. indicum, respectively. Based on nodC and nodA phylogenies and cross inoculation tests, these 14 strains of Rlc species clearly diverged from strains of Sinorhizobium and Rlc symbiovars, and formed a new symbiovar for which the name sv. “salignae” is proposed. Bacterial strains isolated in this study that were taxonomically assigned to Bradyrhizobium harbored different symbiotic genes and the data suggested a new symbiovar, for which sv. “cyanophyllae” is proposed. Isolates formed effective nodules on A. saligna.  相似文献   

16.
Bradyrhizobium comprises most tropical symbiotic nitrogen-fixing strains, but the correlation between symbiotic and core genes with host specificity is still unclear. In this study, the phylogenies of the nodY/K and nifH genes of 45 Bradyrhizobium strains isolated from legumes of economic and environmental importance in Brazil (Arachis hypogaea, Acacia auriculiformis, Glycine max, Lespedeza striata, Lupinus albus, Stylosanthes sp. and Vigna unguiculata) were compared to 16S rRNA gene phylogeny and genetic diversity by rep-PCR. In the 16S rRNA tree, strains were distributed into two superclades—B. japonicum and B. elkanii—with several strains being very similar within each clade. The rep-PCR analysis also revealed high intra-species diversity. Clustering of strains in the nodY/K and nifH trees was identical: 39 strains isolated from soybean grouped with Bradyrhizobium type species symbionts of soybean, whereas five others occupied isolated positions. Only one strain isolated from Stylosanthes sp. showed similar nodY/K and nifH sequences to soybean strains, and it also nodulated soybean. Twenty-one representative strains of the 16S rRNA phylogram were selected and taxonomically classified using a concatenated glnII-recA phylogeny; nodC sequences were also compared and revealed the same clusters as observed in the nodY/K and nifH phylograms. The analyses of symbiotic genes indicated that a large group of strains from the B. elkanii superclade comprised the novel symbiovar sojae, whereas for another group, including B. pachyrhizi, the symbiovar pachyrhizi could be proposed. Other potential new symbiovars were also detected. The co-evolution hypotheses is discussed and it is suggested that nodY/K analysis would be useful for investigating the symbiotic diversity of the genus Bradyrhizobium.  相似文献   

17.

Background

Symbiosis genes (nod and nif) involved in nodulation and nitrogen fixation in legumes are plasmid-borne in Rhizobium. Rhizobial symbiotic variants (symbiovars) with distinct host specificity would depend on the type of symbiosis plasmid. In Rhizobium etli or in Rhizobium phaseoli, symbiovar phaseoli strains have the capacity to form nodules in Phaseolus vulgaris while symbiovar mimosae confers a broad host range including different mimosa trees.

Results

We report on the genome of R. etli symbiovar mimosae strain Mim1 and its comparison to that from R. etli symbiovar phaseoli strain CFN42. Differences were found in plasmids especially in the symbiosis plasmid, not only in nod gene sequences but in nod gene content. Differences in Nod factors deduced from the presence of nod genes, in secretion systems or ACC-deaminase could help explain the distinct host specificity. Genes involved in P. vulgaris exudate uptake were not found in symbiovar mimosae but hup genes (involved in hydrogen uptake) were found. Plasmid pRetCFN42a was partially contained in Mim1 and a plasmid (pRetMim1c) was found only in Mim1. Chromids were well conserved.

Conclusions

The genomic differences between the two symbiovars, mimosae and phaseoli may explain different host specificity. With the genomic analysis presented, the term symbiovar is validated. Furthermore, our data support that the generalist symbiovar mimosae may be older than the specialist symbiovar phaseoli.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-575) contains supplementary material, which is available to authorized users.  相似文献   

18.
Agrobacterium transconjugants containing symbiotic plasmids from different Rhizobium spp. strains that nodulate Phaseolus vulgaris were obtained. All transconjugants conserved the parental nodulation host range. Symbiotic (Sym) plasmids of Rhizobium strains isolated originally from P. vulgaris nodules, which had a broad nodulation host range, and single-copy nitrogenase genes conferred a Fix+ phenotype to the Agrobacterium transconjugants. A Fix phenotype was obtained with Sym plasmids of strains isolated from P. vulgaris nodules that had a narrow host range and reiterated nif genes, as well as with Sym plasmids of strains isolated from other legumes that presented single nif genes and a broad nodulation host range. This indicates that different types of Sym plasmids can confer the ability to establish an effective symbiosis with P. vulgaris.  相似文献   

19.
Parker MA 《Molecular ecology》2012,21(7):1769-1778
Bradyrhizobium strains sampled from 14 legume genera native to eastern North America showed substantial host‐related phylogenetic clustering at three loci in the symbiotic island (SI) region (nodC, nifD, nifH), indicating selection of distinct suites of SI lineages by different legumes. Bacteria assorted consistently with particular legumes across two regions separated by 800 km, implying recurrent assembly of the same symbiotic combinations. High genetic polymorphism of all three SI loci relative to four nonsymbiotic loci supported the inference that a form of multiple‐niche balancing selection has acted on the SI region, arising from differential symbiont utilization by different legume taxa. Extensive discordance between the tree for SI variants and a phylogenetic tree inferred for four housekeeping loci implied that lateral transfer of the symbiosis island region has been common (at least 26 transfer events among 85 Bradyrhizobium strains analysed). Patterns of linkage disequilibrium also supported the conclusion that recombination has impacted symbiotic and nonsymbiotic regions unequally. The high prevalence of lateral transfer suggests that acquisition of a novel SI variant may often confer a strong selective advantage for recipient cells.  相似文献   

20.
To investigate the effects of land use and crop management on soybean rhizobial communities, 280 nodule isolates were trapped from 7 fields with different land use and culture histories. Besides the known Bradyrhizobium japonicum, three novel genospecies were isolated from these fields. Grassland (GL) maintained a higher diversity of soybean bradyrhizobia than the other cultivation systems. Two genospecies (Bradyrhizobium spp. I and III) were distributed widely in all treatments, while Bradyrhizobium sp. II was found only in GL treatment. Cultivation with soybeans increased the rhizobial abundance and diversity, except for the soybean monoculture (S-S) treatment. In monoculture systems, soybeans favored Bradyrhizobium sp. I, while maize and wheat favored Bradyrhizobium sp. III. Fertilization decreased the rhizobial diversity indexes but did not change the species composition. The organic carbon (OC) and available phosphorus (AP) contents and pH were the main soil parameters positively correlated with the distribution of Bradyrhizobium spp. I and II and Bradyrhizobium japonicum and negatively correlated with Bradyrhizobium sp. III. These results revealed that different land uses and crop management could not only alter the diversity and abundance of soybean rhizobia, but also change interactions between rhizobia and legume or nonlegume plants, which offered novel information about the biogeography of rhizobia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号