首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental data suggest that the P transposable element has invaded the Drosophila melanogaster genome after a horizontal transfer from the phylogenetically distant species Drosophila willistoni. The differences between P element phylogeny and that of the Drosophila genus could in part be explained by horizontal transfers. In vivo experiments show that P elements are able to transpose in the genomes of other Drosophila species. This suggests that horizontal transmission of P elements could have taken place in many species of this genus. The regulation, transposition, and deleterious effects of the P element in D. melanogaster were formalized and integrated in a global model to produce a simulation program that simulates a P element invasion. The simulations show that our knowledge of the P element in D. melanogaster can explain its behavior in the Drosophila genus. The equilibrium state of the invaded population of a new species depends on its ability to repair damage caused by P element activity. If repair is efficient, the equilibrium state tends to be of the P type state, in which case the element could subsequently invade other populations of the species. Conversely, the equilibrium state is of the M′ type state when the ability to repair damage is low. The invasion of the P element into other populations of this new species can then only occur by genetic drift and it is likely to be lost. The success of a P element invasion into a new species thus greatly depends on its ability to produce dysgenic crosses. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The P transposable element family in Drosophila melanogaster is responsible for the syndrome of hybrid dysgenesis which includes chromosomal rearrangements, male recombination, high mutability and temperature sensitive agametic sterility (called gonadal dysgenesis sterility). P element activity is controlled by a complex regulation system, encoded by the elements themselves, which keeps their transposition rate low within the strain bearing P elements and limits copy number by genome. A second regulatory mechanism, which acts on the level of RNA processing, prevents P mobility to somatic cells. The oldest available strains, representing most major geographical regions of the world, exhibited no detectable hybridization to the P-element. In contrast, all recently collected natural populations that were tested carried P-element sequences. The available evidence is consistent with the hypothesis of a worldwide P-element invasion of D. melanogaster during the past 30 years. Timing and direction of the invasion are discussed. The lack of P-element in older strains of Drosophila melanogaster as well as in the species must closely related to Drosophila melanogaster, suggests that P entered the Drosophila melanogaster genome recently, probably by horizontal transfer from an other species. The analysis of P-element elsewhere in the genus Drosophila reveals that several more distantly related species carried transposable elements with sequences quite similar to P. The species with the best-matching P-element is D. willistoni. A P-element from this species was found to match all but one of the 2907 nucleotides of the Drosophila melanogaster P-element. The phylogenic distributions and the likely horizontal transfers of the two other Drosophila transposable elements are discussed.  相似文献   

3.
Gypsy is an endogenous retrovirus of Drosophila melanogaster. Phylogenetic studies suggest that occasional horizontal transfer events of gypsy occur between Drosophila species. gypsy possesses infective properties associated with the products of the envelope gene that might be at the origin of these interspecies transfers. We report here the existence of DNA sequences putatively encoding full-length Env proteins in the genomes of Drosophila species other than D. melanogaster, suggesting that potentially infective gypsy copies able to spread between sexually isolated species can occur. The ability of gypsy to invade the genome of a new species is conditioned by its capacity to be expressed in the naive genome. The genetic basis for the regulation of gypsy activity in D. melanogaster is now well known, and it has been assigned to an X-linked gene called flamenco. We established an experimental simulation of the invasion of the D. melanogaster genome by gypsy elements derived from other Drosophila species, which demonstrates that these non- D. melanogaster gypsy elements escape the repression exerted by the D. melanogaster flamenco gene.  相似文献   

4.
I elements and the Drosophila genome   总被引:3,自引:0,他引:3  
  相似文献   

5.
Several studies have suggested that P elements have rapidly spread through natural populations of Drosophila melanogaster within the last four decades. This observation, together with the observation that P elements are absent in the other species of the melanogaster subgroup, has lead to the suggestion that P elements may have entered the D. melanogaster genome by horizontal transmission from some more distantly related species. In an effort to identify the potential donor in the horizontal transfer event, we have undertaken an extensive survey of the genus Drosophila using Southern blot analysis. The results showed that P-homologous sequences are essentially confined to the subgenus Sophophora. The strongest P hybridization occurs in species from the closely related willistoni group. A wild-derived strain of D. willistoni was subsequently selected for a more comprehensive molecular examination. As part of the analysis, a complete P element was cloned and sequenced from this line. Its nucleotide sequence was found to be identical to the D. melanogaster canonical P, with the exception of a single base substitution at position 32. When the cloned element was injected into D. melanogaster embryos, it was able to both promote transposition of a coinjected marked transposon and induce singed-weak mutability, thus demonstrating its ability to function as an autonomous element. The results of this study suggest that D. willistoni may have served as the donor species in the horizontal transfer of P elements to D. melanogaster.  相似文献   

6.
M D Brennan  R G Rowan  W J Dickinson 《Cell》1984,38(1):147-151
When a plasmid carrying a P-transposable element (derived from Drosophila melanogaster) is injected into young embryos of D. hawaiiensis, the P-element sequence from the plasmid transposes into the germ-line chromosomes. The introduction of this P element into D. hawaiiensis provides an opportunity to study the behavior of the transposable element in a novel context. Germ-line transposition and numerical increase of the P elements are readily detected in D. hawaiiensis. Thus these aspects of P-element function do not require chromosomal or cytoplasmic properties that are unique to D. melanogaster. Since D. hawaiiensis is among those Drosophila that are most distantly related to D. melanogaster, these results suggest that P-element-mediated transformation may function in many species.  相似文献   

7.
R1 is a non-long terminal repeat (non-LTR) retrotransposable element that inserts into a specific sequence of insect 28S ribosomal RNA genes. We have previously shown that this element has been maintained through vertical transmission in the melanogaster species subgroup of Drosophila. To address whether R1 elements have been vertically transmitted for longer periods of evolutionary time, the analysis has been extended to 11 other species from four species groups of the genus Drosophila (melanogaster, obscura, testecea, and repleta). All sequenced elements appeared functional on the basis of the preservation of their open-reading frames and consistently higher rate of substitution at synonymous sites relative to replacement sites. The phylogenetic relationships of the R1 elements from all species analyzed were congruent with the species phylogenies, suggesting that the R1 elements have been vertically transmitted since the inception of the Drosophila genus, an estimated 50-70 Mya. The stable maintenance of R1 through the germ line appears to be the major mechanism for the widespread distribution of these elements in Drosophila. In two species, D. neotestecea of the testecea group and D. takahashii of the melanogaster group, a second family of R1 elements was also present that differed in sequence by 46% and 31%, respectively, from the family that was congruent with the species phylogeny. These second families may represent occasional horizontal transfers or, alternatively, they could reflect the ability of R1 elements to diverge into new families within a species and evolve independently.   相似文献   

8.
Distribution and conservation of mobile elements in the genus Drosophila   总被引:13,自引:1,他引:12  
Essentially nothing is known of the origin, mode of transmission, and evolution of mobile elements within the genus Drosophila. To better understand the evolutionary history of these mobile elements, we examined the distribution and conservation of homologues to the P, I, gypsy, copia, and F elements in 34 Drosophila species from three subgenera. Probes specific for each element were prepared from D. melanogaster and hybridized to genomic DNA. Filters were washed under conditions of increasing stringency to estimate the similarity between D. melanogaster sequences and their homologues in other species. The I element homologues show the most limited distribution of all elements tested, being restricted to the melanogaster species group. The P elements are found in many members of the subgenus Sophophora but, with the notable exception of D. nasuta, are not found in the other two subgenera. Copia-, gypsy-, and F-element homologues are widespread in the genus, but their similarity to the D. melanogaster probe differs markedly between species. The distribution of copia and P elements and the conservation of the gypsy and P elements is inconsistent with a model that postulates a single ancient origin for each type of element followed by mating-dependent transmission. The data can be explained by horizontal transmission of mobile elements between reproductively isolated species.   相似文献   

9.
Vieira C  Biémont C 《Genetica》2004,120(1-3):115-123
Transposable elements (TEs) in the two sibling species, Drosophila melanogaster and D. simulans, differ considerably in amount and dynamics, with D. simulans having a smaller amount of TEs than D. melanogaster. Several hypotheses have been proposed to explain these differences, based on the evolutionary history of the two species, and claim differences either in the effective size of the population or in genome characteristics. Recent data suggest, however, that the higher amount of TEs in D. melanogaster could be associated with the worldwide invasion of D. melanogaster a long time ago while D. simulans is still under the process of such geographical spread. Stresses due to new environmental conditions and crosses between migrating populations could explain the mobilization of TEs while the flies colonize. Colonization and TE mobilization may be strong evolutionary forces that have shaped and are still shaping the eukaryote genomes.  相似文献   

10.
The gypsy element of Drosophila melanogaster is the first retrovirus identified so far in invertebrates. According to phylogenetic data, gypsy belongs to the same group as the Ty3 class of LTR-retrotransposons, which suggests that retroviruses evolved from this kind of retroelements before the radiation of vertebrates. There are other invertebrate retroelements that are also likely to be endogenous retroviruses because they share with gypsy some structural and functional retroviral-like characteristics. Gypsy is controlled by a Drosophila gene called flamenco, the restrictive alleles of which maintain the retrovirus in a repressed state. In permissive strains, functional gypsy elements transpose at high frequency and produce infective particles. Defective gypsy proviruses located in pericentromeric heterochromatin of all strains seem to be very old components of the genome of Drosophila melanogaster, which indicates that gypsy invaded this species, or an ancestor, a long time ago. At that time, Drosophila melanogaster presumably contained permissive alleles of the flamenco gene. One can imagine that the species survived to the increase of genetic load caused by the retroviral invasion because restrictive alleles of flamenco were selected. The characterization of a retrovirus in Drosophila, one of the most advanced model organisms for molecular genetics, provides us with an exceptional clue to study how a species can resist a retroviral invasion. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Changes in the genetic structure of the Katsunuma natural population of Drosophila melanogaster have been examined during the past 35 years. The frequency of recessive lethal genes on the second chromosome once increased from 15% to 30% in the early 1970s, then decreased to about 24% in the late 1970s, and thereafter showed no significant changes. Sterility genes, the frequency of which is always less than the lethals, showed a similar tendency. The SD (segregation distorter) mutant gene disappeared but some others such as rbl (reduced bristle) and bw (brown) persisted in the population. The frequency of inversion-carrying chromosomes gradually decreased in the period, such that the standard chromosome frequency in the second and third chromosomes increased from about 40% to more than 80%. Coincident with these frequency changes is the invasion of a transposable element P into the Katsunuma population. The P element should have invaded into Katsunuma in the late 1960s. It spread over the population apparently inducing deleterious mutations, causing the decrease in the allelism rate, and hence increasing the effective population size. Soon, however, most flies became resistant to the P element-mediated transposition as they began to harbor defective P elements. During the course of spreading, the P element must also have induced deleterious mutations on the polymorphic inversions, breaking up the heterotic gene complexes along the chromosomes, which probably caused the reduction in the frequency of inversion chromosomes. Temporal invasion of D. simulans, a sibling species of D. melanogaster, into Katsunuma occurred several times after 1978, and the species seems to have been settled since 1990. This, however, did not have any effect on the genetic structure of D. melanogaster population.  相似文献   

12.
Polymerase chain reaction (PCR) screening for P elements was carried out in 77 species with a primer set highly specific for the M-type subfamily. In the course of this search M-type elements were detected in 29 species: In the melanogaster (subgroups montium and rhopaloa ) and obscura species groups of Drosophila (25 out of 71 species examined), and in the genus Scaptomyza (four out of six species). M-type elements are present in all species of the montium subgroup investigated so far (21), but occur only sporadically in other groups. Within the montium subgroup 20 species possess only incomplete copies, only one species ( D. lacteicornis ) harbours apparently full-sized elements. In contrast, outside the montium subgroup almost all species with M-type elements carry full-sized copies suggesting transpositional activity, at least in the recent past. The interior section of the full-sized M-type element of D. lacteicornis was partially sequenced (936 bp). In addition, the complete sequences of four internally deleted M-type elements of D. lacteicornis, D. rufa, D. quadraria , and D. triauraria were determined. Sequence comparisons (including sequence data from previous investigations) revealed striking discrepancies between P element phylogeny and the cladogenesis of their host species. Among several possible pathways for interspecific transfers of M-type elements, we favour the hypothesis assuming the invasion of Scaptomyza as well as the obscura group species of Drosophila via independent transmission routes originating from Asian species of the montium subgroup of Drosophila . The logical geographic scenario for these events would be East-Asia.  相似文献   

13.
The spread of a transposable element family through a wild population may be of astonishing rapidity. At least three families of transposable genetic elements have recently invaded Drosophila melanogaster worldwide, including the P element. The mechanism has been a process of effectively replicative transposition, and, for the P element, has occurred notwithstanding the sterility induced by unrestricted movement. This element's invasion into D. melanogaster has been accompanied by the development of heterogeneity between P sequences, most of which now have internal deletions. Increasing evidence suggests that some deleted elements can repress P transposition, thereby protecting the host from the harmful effects of complete elements. Such repressing elements may rise to high frequencies in populations as a result of selection at the level of the host. We here investigate selective sweeps invoked by the spread of P sequences in D. melanogaster populations. Numerous high-frequency sites have been identified on the X chromosome, which differ in frequency between populations, and which are associated with repression of P-element transposition. Unexpectedly, sequences adjacent to high-frequency P-element sites do not show reduced levels of genetic diversity, and DNA variability is in linkage equilibrium with the presence or absence of a P element at the adjacent selected site. This might be explained by multiple insertions or through a selection for recombination analogous to that seen in 'hitchhiking'.  相似文献   

14.
S. B. Daniels  A. Chovnick    M. G. Kidwell 《Genetics》1989,121(2):281-291
The molecular and phenotypic analysis of several previously described P element-transformed lines of Drosophila simulans was extended in order to determine whether they had the potential to produce a syndrome of P-M hybrid dysgenesis analogous to the one in Drosophila melanogaster. The transformed line with the highest number of P elements at the beginning of the analysis, DsP pi-5C, developed strong P activity potential and P element regulation, properties characteristic of D. melanogaster P strains. The subsequent analysis of sublines derived from 34 single pair matings of DsP pi-5C revealed that they were heterogeneous with respect to both their P element complements and P activity potentials, but similar with respect to their regulatory capabilities. The subline with the highest P activity, DsP pi-5C-27, was subsequently used as a reference P strain in the genetic analysis of the D. simulans transformants. In these experiments, the reciprocal cross effect was observed with respect to both gonadal sterility and male recombination. As in D. melanogaster, the induction of gonadal sterility in D. simulans was shown to be temperature-dependent. Molecular analysis of DsP pi-5C-27 revealed that it has approximately 30 P elements per genome, at least some of which are defective. The number of potentially complete P elements in its genome is similar to the number in the D. melanogaster P strain, Harwich-77. Overall our analysis indicates that P-transformed lines of D. simulans are capable of expressing the major features of P-M hybrid dysgenesis previously demonstrated in D. melanogaster and that P elements appear to behave in a similar way in the two sibling species.  相似文献   

15.
Phylogenetic relationships were determined for 76 partial P-element sequences from 14 species of the melanogaster species group within the Drosophila subgenus Sophophora. These results are examined in the context of the phylogeny of the species from which the sequences were isolated. Sequences from the P-element family fall into distinct subfamilies, or clades, which are often characteristic for particular species subgroups. When examined locally among closely related species, the evolution of P elements is characterized by vertical transmission, whereby the P-element phylogeny traces the species phylogeny. On a broader scale, however, the P-element phylogeny is not congruent with the species phylogeny. One feature of P-element evolution in the melanogaster group is the presence of more than one P-element subfamily, differing by as much as 36%, in the genomes of some species. Thus, P elements from several individual species are not monophyletic, and a likely explanation for the incongruence between P-element and species phylogenies is provided by the comparison of paralogous sequences. In certain instances, horizontal transfer seems to be a valid alternative explanation for lack of congruence between species and P-element phylogenies. The canonical P-element subfamily, which represents the active, autonomous transposable element, is restricted to D. melanogaster. Thus, its origin clearly lies outside of the melanogaster species group, consistent with the earlier conclusion of recent horizontal transfer.   相似文献   

16.
The maintenance of the telomeres in Drosophila species depends on the transposition of the non-LTR retrotransposons HeT-A, TAHRE and TART. HeT-A and TART elements have been found in all studied species of Drosophila suggesting that their function has been maintained for more than 60 million years. Of the three elements, HeT-A is by far the main component of D. melanogaster telomeres and, unexpectedly for an element with an essential role in telomere elongation, the conservation of the nucleotide sequence of HeT-A is very low. In order to better understand the function of this telomeric retrotransposon, we studied the degree of conservation along HeT-A copies. We identified a small sequence within the 3' UTR of the element that is extremely conserved among copies of the element both, within D. melanogaster and related species from the melanogaster group. The sequence corresponds to a piRNA target in D. melanogaster that we named HeT-A_pi1. Comparison with piRNA target sequences from other Drosophila retrotransposons showed that HeT-A_pi1 is the piRNA target in the Drosophila genome with the highest degree of conservation among species from the melanogaster group. The high conservation of this piRNA target in contrast with the surrounding sequence, suggests an important function of the HeT-A_pi1 sequence in the co-evolution of the HeT-A retrotransposon and the Drosophila genome.  相似文献   

17.
We have investigated the distribution of sequences homologous to Bari-1, a Tc1-like transposable element first identified in Drosophila melanogaster, in 87 species of the Drosophila genus. We have also isolated and sequenced Bari-1 homologues from D. simulans, D. mauritiana, and D. sechellia, the species constituting with D. melanogaster the melanogaster complex, and from D. diplacantha and D. erecta, two phylogenetically more distant species of the melanogaster group. Within the melanogaster complex the Bari-1 elements are extremely similar to each other, showing nucleotide identity values of at least 99.3%. In contrast, Bari-1-like elements from D. diplacantha and D. erecta are on average only 70% similar to D. melanogaster Bari-1 and are usually defective due to nucleotide deletions and/or insertions in the ORFs encoding their transposases. In D. erecta the defective copies are all located in the chromocenter and on chromosome 4. Surprisingly, while D. melanogaster Bari-1 elements possess 26-bp inverted terminal repeats, their D. diplacantha and D. erecta homologues possess long inverted terminal repeats similar to the terminal structures observed in the S elements of D. melanogaster and in several other Tc1-like elements of different organisms. This finding, together with the nucleotide and amino acid identity level between D. diplacantha and D. erecta elements and Bari-1 of D. melanogaster, suggests a common evolutionary origin and a rapid diversification of the termini of these Drosophila Tc1-like elements.  相似文献   

18.
S J Bray  J Hirsh 《The EMBO journal》1986,5(9):2305-2311
The dopa decarboxylase gene (Ddc) has been isolated from Drosophila virilis and introduced into the germ-line of Drosophila melanogaster by P-element mediated transformation. The integrated gene is induced at the correct stages during development with apparently normal tissue specificity, indicating that cis-acting elements required for regulation are functionally conserved between the two species. A comparison of the DNA sequences from the 5' flanking regions reveals a cluster of small (8-16 bp) conserved sequence elements within 150 bp upstream of the RNA startpoint, a region required for normal expression of the D. melanogaster Ddc gene.  相似文献   

19.
Boussy IA  Itoh M 《Genetica》2004,120(1-3):125-136
The transposon hobo is present in the genomes of Drosophila melanogaster and Drosophila simulans (and D. mauritiana and probably D. sechellia, based on Southern blots) as full-size elements and internally deleted copies. The full-size melanogaster, simulans and mauritiana hobo elements are 99.9% identical at the DNA sequence level, and internally deleted copies in these species essentially differ only in having deletions. In addition to these, hobo-related sequences are present and detectable with a hobo probe in all these species. Those in D. melanogaster are 86-94% identical to the canonical hobo, but with many indels. We have sequenced one that appears to be inserted in heterochromatin (GenBank Acc. No. AF520587). It is 87.6% identical to the canonical hobo, but quite fragmented by indels, with remnants of other transposons inserted in and near it, and clearly is defunct. Numerous similar elements are found in the sequenced D. melanogaster genome. It has recently been shown that some are fixed in the euchromatic genome, but it is probable that still more reside in heterochromatic regions not included in the D. melanogaster genome database. They are probably all relics of an earlier introduction of hobo into the ancestral species. There appear to have been a minimum of two introductions of hobo into the melanogaster subgroup, and more likely three, two ancient and one quite recent. The recent introduction of hobo was probably followed by transfers between the extant species (whether 'horizontally' or by infrequent interspecific hybridization).  相似文献   

20.
Forty-six strains derived from American and French natural populations of Drosophila melanogaster were tested for the presence and activity of hobo elements by using Southern blotting and a gonadal dysgenesis assay. The oldest available strains exhibited weak detectable hybridization to the hobo-element probe and revealed neither hobo-activity potential nor hobo-repression potential. In contrast, all recently collected strains harbored hobo sequences and revealed a strong hobo-repression potential but no strong hobo-activity potential. On the basis of restriction-enzyme analysis, old strains appear to have numerous fragments hybridizable to hobo sequences, several probably conserved at the same locations in the genome of the tested strain and others dispersed. In recently isolated strains, and unlike the situation in the published sequence of the cloned hobo108 element, a PvuII site is present in the great majority of full-sized hobo elements and their deletion derivatives. When the genetic and molecular characteristics are considered together, the available evidence is consistent with the hypothesis of a worldwide hobo-element invasion of D. melanogaster during the past 50 years. Comparison of data from the I-R and P-M systems suggests that the putative invasion followed the introduction of the I element but preceded that of the P element. This hypothesis poses the problem of the plausibility of three virtually simultaneous element invasions in this species. Such a possibility might be due to a modification of the genetic structure of American populations of D. melanogaster during the first part of the 20th century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号