首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Infection of C57BL/6 mice with Toxoplasma gondii leads to chronic encephalitis characterized by infiltration into the brain of T cells that produce IFN-gamma and mediate resistance to the parasite. Our studies revealed that expression of B7.1 and B7.2 was up-regulated in brains of mice with toxoplasmic encephalitis (TE). Because CD28/B7-mediated costimulation is important for T cell activation, we assessed the contribution of this interaction to the production of IFN-gamma by T cells from brains and spleens of mice with TE. Stimulation of splenocytes with Toxoplasma Ag or anti-CD3 mAb resulted in production of IFN-gamma, which was inhibited by 90% in the presence of CTLA4-Ig, an antagonist of B7 stimulation. However, production of IFN-gamma by T cells from the brains of these mice was only slightly reduced (20%) by the addition of CTLA4-Ig. To address the role of the CD28/B7 interaction during TE, we compared the development of disease in C57BL/6 wild-type (wt) and CD28-/- mice. Although the parasite burden was similar in wt and CD28-/- mice, CD28-/- mice developed less severe encephalitis and survived longer than wt mice. Ex vivo recall responses revealed that mononuclear cells isolated from the brains of chronically infected CD28-/- mice produced less IFN-gamma than wt cells, and this correlated with reduced numbers of intracerebral CD4+ T cells in CD28-/- mice compared with wt mice. Taken together, our data show that resistance to T. gondii in the brain is independent of CD28 and suggest a role for CD28 in development of immune-mediated pathology during TE.  相似文献   

2.
Cytotoxic cells specific for Toxoplasma gondii-infected cells were detected in the peripheral blood leukocytes from a patient with acute toxoplasmosis. The cytotoxicity was mediated by CD5+, CD4-, CD8+ cells. The cytotoxic T cells lysed Toxoplasma-infected target cells with HLA class I restriction. Two types of T cell clones were established from peripheral blood leukocytes of a patient with chronic toxoplasmosis; one was a CD5+, CD4-, CD8+ cytotoxic cell specific for Toxoplasma-infected cells, and the other was a CD5+, CD4+, CD8- proliferative cell that responded to Toxoplasma antigen. Toxoplasma-infected cell-specific cytotoxic cloned T cells recognize the infected target cells in the context of the HLA class I molecules, and the CD8 molecule was involved in the cytotoxicity. Toxoplasma antigen-specific proliferative cloned T cells were stimulated by Toxoplasma antigen-pulsed or Toxoplasma-infected cells in conjunction with HLA-DR molecule on the target cells. Thus, antigen presentation by Toxoplasma-infected cells for activation of both cytotoxic and proliferative T cells has been demonstrated.  相似文献   

3.
Infection of C57BL/6 mice with Toxoplasma gondii leads to progressive and ultimately fatal chronic Toxoplasma encephalitis (TE). Genetic deletion or inhibition of inducible nitric oxide synthase (iNOS) from the beginning of infection increased the number of T. gondii cysts in the brain and markedly reduced the time-to-death in this mouse strain. In the present study, we addressed whether iNOS also contributes to the control of intracerebral parasites in a clinically stable latent infection that develops in T. gondii-resistant BALB/c mice after resolution of the acute phase of TE. iNOS was expressed in the inflammatory cerebral infiltrates of latently infected BALB/c mice, but the number of iNOS+ cells was significantly lower than in the brains of chronically infected T. gondii-susceptible C57BL/6 mice. In BALB/c mice with latent TE (> 30 days of infection), treatment with the iNOS inhibitors L-N6-iminoethyl-lysine or L-nitroarginine-methylester for < or = 40 days did not result in an increase of the intracerebral parasitic load and a reactivation of the disease, despite the presence of iNOS-suppressive inhibitor levels in the brain. However, L-nitroarginine-methylester treatment had remarkably toxic effects and induced a severe wasting syndrome with high mortality. In contrast to BALB/c mice, L-N6-iminoethyl-lysine treatment rapidly exacerbated the already established chronic TE of C57BL/6 mice. Thus, the containment of latent toxoplasms in T. gondii-resistant BALB/c mice is independent of iNOS, whereas the temporary control of intracerebral parasites in T. gondii-susceptible C57BL/6 mice with chronic TE requires iNOS activity.  相似文献   

4.
The outcome of viral infections is dependent on the function of CD8+ T cells which are tightly regulated by costimulatory molecules. The NK cell receptor 2B4 (CD244) is a transmembrane protein belonging to the Ig superfamily which can also be expressed by CD8+ T cells. The aim of this study was to analyze the role of 2B4 as an additional costimulatory receptor regulating CD8+ T cell function and in particular to investigate its implication for exhaustion of hepatitis C virus (HCV)-specific CD8+ T cells during persistent infection. We demonstrate that (i) 2B4 is expressed on virus-specific CD8+ T cells during acute and chronic hepatitis C, (ii) that 2B4 cross-linking can lead to both inhibition and activation of HCV-specific CD8+ T cell function, depending on expression levels of 2B4 and the intracellular adaptor molecule SAP and (iii) that 2B4 stimulation may counteract enhanced proliferation of HCV-specific CD8+ T cells induced by PD1 blockade. We suggest that 2B4 is another important molecule within the network of costimulatory/inhibitory receptors regulating CD8+ T cell function in acute and chronic hepatitis C and that 2B4 expression levels could also be a marker of CD8+ T cell dysfunction. Understanding in more detail how 2B4 exerts its differential effects could have implications for the development of novel immunotherapies of HCV infection aiming to achieve immune control.  相似文献   

5.
6.
Induction of protective immunity against acute and chronic toxoplasmosis can be achieved using p30, the major membrane and excreted/secreted protein of Toxoplasma gondii. This protein, when administered to outbred mice in the presence of the saponin Quil A, is able to induce almost 100% protection against acute infection without evidence of intracerebral cyst development. Adoptive transfer of immune splenocytes from immunized inbred A/J mice conferred a significant level (p less than 0.001) of protection against subsequent challenge. Phenotypic analysis in outbred as well as two different strains of inbred mice (A/J and C57BL/6) demonstrated that CD8+ T cells are selectively stimulated by this immunization protocol. T cell depletion studies using specific mAb directed at either CD3+ or CD8+ T cell phenotype, followed by adoptive transfer, failed to confer protective immunity, whereas CD4+ depletion had no effect. These cytotoxic CD8+ T cells produced high titers of both IFN-gamma and IL-2. Moreover, these CD8+ T cells were directly parasiticidal against radiolabeled extracellular T. gondii, further supporting the critical immune function of these p30 Ag-specific CD8+ T cells in host immunity against T. gondii infection.  相似文献   

7.
Perforin mediates target cell apoptosis by CTLs and NK cells. Although perforin expression correlates strongly with acute allograft rejection, perforin-deficient mice reject allografts with the same kinetics as wild-type recipients. In this study, we tested the hypothesis that while perforin is dispensable for acute rejection, it is essential for down-regulating the alloimmune response by inducing the apoptosis of host immune cells. Using a skin transplantation model, we found that perforin-deficient mice are resistant to the induction of allograft acceptance by agents that block T cell costimulation. Failure to induce allograft acceptance in these mice was observed irrespective of whether the alloimmune response was CD4 or CD8 T cell-mediated and could be attributed to defective apoptosis of activated CD4 and CD8 T cells. In contrast, perforin did not influence T cell proliferation. Therefore, perforin is an essential immunoregulatory molecule that may be required for the induction of transplantation tolerance.  相似文献   

8.
Fas-mediated apoptosis is an important contributor to contraction of Ag-driven T cell responses acting only on activated Ag-specific T cells. The effects of targeted Fas deletion on selected cell populations are well described however little is known regarding the consequences of Fas deletion on only activated Ag-specific T cells. We addressed this question using the parent-into-F(1) (P-->F(1)) model of acute or chronic (lupus-like) graft-vs-host disease (GVHD) as a model of either a CTL-mediated or T-dependent B cell-mediated response, respectively. By transferring Fas-deficient lpr donor T cells into Fas-intact F(1) hosts, the in vivo role of Ag-specific T cell Fas can be determined. Our results demonstrate a novel dichotomy of Ag-specific T cell Fas function in that: 1) Fas expression on Ag-activated T cells has costimulatory, helper, and down-regulatory roles in vivo and 2) these roles were observed only in a CTL response (acute GVHD) and not in a T-dependent B cell response (chronic GVHD). Specifically, CD4 T cell Fas expression is important for optimal CD4 initial expansion and absolutely required for help for CD8 effector CTL. Donor CD8 T cell Fas expression played an important but not exclusive role in apoptosis and down-regulation. By contrast, CD4 Fas expression played no detectable role in modulating chronic GVHD induction or disease expression. These results demonstrate a novel role for Ag-specific T cell Fas expression in in vivo CTL responses and support a review of the paradigm by which Fas deficiency accelerates lupus in MRL/lpr lupus-prone mice.  相似文献   

9.
Loss of CD4 T cell help correlates with virus persistence during acute hepatitis C virus (HCV) infection, but the underlying mechanism(s) remain unknown. We developed a combined proliferation/intracellular cytokine staining assay to monitor expansion of HCV-specific CD4 T cells and helper cytokines expression patterns during acute infections with different outcomes. We demonstrate that acute resolving HCV is characterized by strong Th1/Th17 responses with specific expansion of IL-21-producing CD4 T cells and increased IL-21 levels in plasma. In contrast, viral persistence was associated with lower frequencies of IL-21-producing CD4 T cells, reduced proliferation and increased expression of the inhibitory receptors T cell immunoglobulin and mucin-domain-containing-molecule-3 (Tim-3), programmed death 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) on HCV-specific CD8 T cells. Progression to persistent infection was accompanied by increased plasma levels of the Tim-3 ligand Galectin-9 (Gal-9) and expansion of Gal-9 expressing regulatory T cells (Tregs). In vitro supplementation of Tim-3high HCV-specific CD8 T cells with IL-21 enhanced their proliferation and prevented Gal-9 induced apoptosis. siRNA-mediated knockdown of Gal-9 in Treg cells rescued IL-21 production by HCV-specific CD4 T cells. We propose that failure of CD4 T cell help during acute HCV is partially due to an imbalance between Th17 and Treg cells whereby exhaustion of both CD4 and CD8 T cells through the Tim-3/Gal-9 pathway may be limited by IL-21 producing Th17 cells or enhanced by Gal-9 producing Tregs.  相似文献   

10.
Although activation and subsequent expansion of naive CD4(+) T cells within lymph nodes is well characterized, the fate of T effector cells activated within peripheral tissues during secondary reactions is poorly defined. Therefore, we studied the recruitment, proliferation and egress of antigen-specific Th1 effector cells in comparison with nonspecific Th1 cells throughout a delayed-type hypersensitivity reaction (DTH). Although we observed a high turnover of Th1 effector cells with unspecific high-rate recruitment and CCR7-dependent egress from the inflamed tissue in the early, acute DTH phase, a strong, selective accumulation of antigen-specific T cells occurred during the chronic, late DTH phase. This was mainly based on local proliferation of CD4(+) effector cells within the DTH tissue and concomitant retention. Considering the strong CCR7-dependent Th cell egress found in this model, the reduced CCR7 expression on antigen-specific T cells isolated from late-phase DTH tissue most likely contributes to the retention of these cells within the tissue. Thus, peripheral tissues can support not only the proliferation of CD8(+) T cells, as recently shown, but also that of CD4(+) T effector cells, forming a pool of tissue-resident T cells.  相似文献   

11.
CD4 T cell activation during peripheral infections not only is essential in inducing protective CD8 T cell memory but also promotes CD8 T cell function and survival. However, the contributions of CD4 T cell help to antiviral CD8 T cell immunity during central nervous system (CNS) infection are not well established. Encephalitis induced by the sublethal coronavirus JHMV was used to identify when CD4 T cells regulate CD8 T cell responses following CNS infection. Peripheral expansion of virus-specific CD8 T cells was impaired when CD4 T cells were ablated prior to infection but not at 4 days postinfection. Delayed CD4 T cell depletion abrogated CD4 T cell recruitment to the CNS but only slightly diminished CD8 T cell recruitment. Nevertheless, the absence of CNS CD4 T cells was associated with reduced gamma interferon (IFN-γ) and granzyme B expression by infiltrating CD8 T cells, increased CD8 T cell apoptosis, and impaired control of infectious virus. CD4 T cell depletion subsequent to CD4 T cell CNS migration restored CD8 T cell activity and virus control. Analysis of γc-dependent cytokine expression indicated interleukin-21 (IL-21) as a primary candidate optimizing CD8 T cell activity within the CNS. These results demonstrate that CD4 T cells play critical roles in both enhancing peripheral activation of CD8 T cells and prolonging their antiviral function within the CNS. The data highlight the necessity for temporally and spatially distinct CD4 T cell helper functions in sustaining CD8 T cell activity during CNS infection.  相似文献   

12.
Infection of the CNS (central nervous system) with a sublethal neurotropic coronavirus (JHMV) induces a vigorous inflammatory response. CD4+ and CD8+ T cells are essential to control infectious virus but at the cost of tissue damage. An enigma in understanding the contribution of T cell subsets in pathogenesis resides in their distinct migration pattern across the BBB (blood brain barrier). CD4+ T cells transiently accumulate within the perivascular space, whereas CD8+ T cells migrate directly into the CNS parenchyma. As MMPs (matrix metalloproteinases) facilitate migration across the glia limitans, specific expression of the TIMP (tissue inhibitor of MMPs)-1 by CD4+ T cells present in the perivascular cuffs suggested that TIMP-1 is responsible for stalling CD4+ T cell migration into the CNS parenchyma. Using TIMP-1 deficient mice, the present data demonstrate an increase rather than a decrease in CD4+ T cell accumulation within the perivascular space during JHMV infection. Whereas virus control was not affected by perivascular retention of CD4+ T cells, disease severity was decreased and associated with reduced IFNγ (interferon γ) production. Moreover, decreased CD4+ T cell recruitment into the CNS parenchyma of TIMP-1 deficient mice was not associated with impaired T cell recruiting chemokines or MMP expression, and no compensation by other TIMP molecules was identified. These data suggest an MMP-independent role of TIMP-1 in regulating CD4+ T cell access into the CNS parenchyma during acute JHMV encephalitis.  相似文献   

13.
Encounter with Ag during chronic infections results in the generation of phenotypically and functionally heterogeneous subsets of Ag-specific CD8 T cells. Influenza, an acute infection, results in the generation of similar CD8 T cell heterogeneity, which may be attributed to long-lived depots of flu Ags that stimulate T cell proliferation well after virus clearance. We hypothesized that the heterogeneity of flu-specific CD8 T cells and maintenance of T cell memory required the recruitment of new CD8 T cells to persistent depots of flu Ag, as was the case for flu-specific CD4 T cell responses. However, robust expansion and generation of highly differentiated cytolytic effectors and memory T cells only occurred when naive CD8 T cells were primed during the first week of flu infection. Priming of new naive CD8 T cells after the first week of infection resulted in low numbers of poorly functional effectors, with little to no cytolytic activity, and a negligible contribution to the memory pool. Therefore, although the presentation of flu Ag during the late stages of infection may provide a mechanism for maintaining an activated population of CD8 T cells in the lung, few latecomer CD8 T cells are recruited into the functional memory T cell pool.  相似文献   

14.
15.
The role of Type I interferon (IFN) during pathogenic HIV and SIV infections remains unclear, with conflicting observations suggesting protective versus immunopathological effects. We therefore examined the effect of IFNα/β on T cell death and viremia in HIV infection. Ex vivo analysis of eight pro- and anti-apoptotic molecules in chronic HIV-1 infection revealed that pro-apoptotic Bak was increased in CD4+ T cells and correlated directly with sensitivity to CD95/Fas-mediated apoptosis and inversely with CD4+ T cell counts. Apoptosis sensitivity and Bak expression were primarily increased in effector memory T cells. Knockdown of Bak by RNA interference inhibited CD95/Fas-induced death of T cells from HIV-1-infected individuals. In HIV-1-infected patients, IFNα-stimulated gene expression correlated positively with ex vivo T cell Bak levels, CD95/Fas-mediated apoptosis and viremia and negatively with CD4+ T cell counts. In vitro IFNα/β stimulation enhanced Bak expression, CD95/Fas expression and CD95/Fas-mediated apoptosis in healthy donor T cells and induced death of HIV-specific CD8+ T cells from HIV-1-infected patients. HIV-1 in vitro sensitized T cells to CD95/Fas-induced apoptosis and this was Toll-like receptor (TLR)7/9- and Type I IFN-dependent. This sensitization by HIV-1 was due to an indirect effect on T cells, as it occurred in peripheral blood mononuclear cell cultures but not purified CD4+ T cells. Finally, peak IFNα levels and viral loads correlated negatively during acute SIV infection suggesting a potential antiviral effect, but positively during chronic SIV infection indicating that either the virus drives IFNα production or IFNα may facilitate loss of viral control. The above findings indicate stage-specific opposing effects of Type I IFNs during HIV-1 infection and suggest a novel mechanism by which these cytokines contribute to T cell depletion, dysregulation of cellular immunity and disease progression.  相似文献   

16.
Immunization of mice with a vaccine (ts-4) strain of Toxoplasma gondii is known to induce complete protection against subsequent lethal infection. Ts-4-mediated protection has been reported to be primarily dependent on IFN-gamma-producing CD8+ T cells. However, duration of CD8+ T cell-mediated immunity in the ts-4-vaccinated animals is not known. In the present study, the kinetics of the CD8+ T cell response in mice immunized with the ts-4 strain of T. gondii was evaluated. Optimal CD8+ T cell immunity persisted at least 6 mo after vaccination, and mice at this time point continued to overcome lethal challenge with a more virulent strain. However, at 9 mo postimmunization, CD8+ T cell immunity was severely diminished and the mice succumbed to Toxoplasma challenge. Pretreatment of animals, vaccinated 9 mo earlier, with rIL-15 prevented the mortality induced by Toxoplasma challenge. The protective effect of IL-15 treatment was due to a rise in the frequency of Ag-specific CD8+ T cells. CD8+ T cells from IL-15-administered animals showed increased proliferation and IFN-gamma production in response to antigenic restimulation. These findings suggest that rIL-15 can reverse the decline in the long-term CD8+ T cell immune response in mice immunized with vaccine strain of T. gondii.  相似文献   

17.
Nam KO  Shin SM  Lee HW 《Cytokine》2006,33(2):87-94
4-1BB, one of co-stimulatory molecules, is a member of TNF receptor superfamily and expressed on T cells upon TCR ligation. We have shown that 4-1BB is a co-stimulatory molecule enhancing cell cycle progression and inhibiting activation-induced cell death of CD8+ T cells by enhancing TCR signaling pathways. Here, we first report that the cross-linking of 4-1BB increased the expression of IL-13 mRNA and protein, and its secretion apparently via calcineurin, a Ca2+/calmodulin-dependent phosphatase. Ligation of 4-1BB with p815-m-4-1BBL evoked intracellular Ca2+ level in CD8+ T cells. CD8+ T cells express IL-13 receptor alpha1 mRNA. Incubation with anti-IL-13 blocking mAb reduced proliferation of CD8+ T cells enhanced by 4-1BB, and the treatment of CD3/4-1BB-ligated CD8+ T cells with recombinant IL-13 enhances cell proliferation, indicating that 4-1BB-induced IL-13 expression is partially responsible for the CD8+ T cell expansion in an autocrine or paracrine manner.  相似文献   

18.
The immune mechanisms involved in dengue fever and dengue hemorrhagic/dengue shock syndrome are not well understood. The ex vivo activation status of immune cells during the dengue disease in patients was examined. CD4 and CD8 T cells were reduced during the acute phase. Interestingly, CD8 T cells co-expressing activation marker HLA-DR, Q, P, and cytolytic granule protein-Tia-1 were significantly higher in dengue patients than in controls. Detection of adhesion molecules indicated that in dengue patients the majority of T cells (CD4 and CD8) express the activation/memory phenotype, characterized as CD44HIGH and lack the expression of the na?ve cell marker, CD62L LOW. Also, the levels of T cells co-expressing ICAM-1 (CD54), VLA-4, and LFA-1 (CD11a) were significantly increased. CD8 T lymphocytes expressed predominantly low levels of anti-apoptotic molecule Bcl-2 in the acute phase, possibly leading to the exhibition of a phenotype of activated/effector cells. Circulating levels of IL-18, TGF-b1 and sICAM-1 were significantly elevated in dengue patients. Early activation events occur during acute dengue infection which might contribute to viral clearance. Differences in expression of adhesion molecules among CD4 and CD8 T cells might underlie the selective extravasation of these subsets from blood circulation into lymphoid organs and/or tissues. In addition, activated CD8 T cells would be more susceptible to apoptosis as shown by the alteration in Bcl-2 expression. Cytokines such as IL-18, TGF-b1, and sICAM-1 may be contributing by either stimulating or suppressing the adaptative immune response, during dengue infection, thereby perhaps establishing a relationship with disease severity.  相似文献   

19.
Chronic beryllium disease (CBD) is caused by workplace exposure to beryllium and is characterized by the accumulation of memory CD4+ T cells in the lung. These cells respond vigorously to beryllium salts in culture by producing proinflammatory Th1-type cytokines. The presence of these inflammatory cytokines leads to the recruitment of alveolar macrophages, alveolitis, and subsequent granuloma development. It has been shown that chronic exposure to conventional Ags leads to up-regulation in the expression of negative regulators of T cells such as programmed death-1 (PD-1). Due to the persistence of beryllium in the lung after the cessation of exposure, aberrant regulation of the PD-1 pathway may play an important role in CBD development. In the present study, PD-1 expression was measured on blood and bronchoalveolar lavage (BAL) CD4+ T cells from beryllium-sensitized and CBD subjects. PD-1 expression was significantly higher on BAL CD4+ T cells compared with those cells in blood, with the highest expression on the beryllium-specific T cell subset. In addition, the expression of PD-1 on BAL CD4+ T cells directly correlated with the severity of the T cell alveolitis. Increased expression of the PD-1 ligands, PD-L1 and PD-L2, on BAL CD14+ cells compared with blood was also seen. The addition of anti-PD-1 ligand mAbs augmented beryllium-induced CD4+ T cell proliferation, and an inverse correlation was seen between PD-1 expression on beryllium-specific CD4+ T cells and beryllium-induced proliferation. Thus, the PD-1 pathway is active in beryllium-induced disease and plays a key role in controlling beryllium-induced T cell proliferation.  相似文献   

20.
We investigated the effect of CD137 costimulatory blockade in the development of murine acute and chronic graft-vs-host diseases (GVHD). The administration of anti-CD137 ligand (anti-CD137L) mAb at the time of GVHD induction ameliorated the lethality of acute GVHD, but enhanced IgE and anti-dsDNA IgG autoantibody production in chronic GVHD. The anti-CD137L mAb treatment efficiently inhibited donor CD8(+) T cell expansion and IFN-gamma expression by CD8(+) T cells in both GVHD models and CD8(+) T cell-mediated cytotoxicity against host-alloantigen in acute GVHD. However, a clear inhibition of donor CD4(+) T cell expansion and activation has not been observed. On the contrary, in chronic GVHD, the number of CD4(+) T cells producing IL-4 was enhanced by anti-CD137L mAb treatment. This suggests that the reduction of CD8(+) T cells producing IFN-gamma promotes Th2 cell differentiation and may result in exacerbation of chronic GVHD. Our results highlight the effective inactivation of CD8(+) T cells and the lesser effect on CD4(+) T cell inactivation by CD137 blockade. Intervention of the CD137 costimulatory pathway may be beneficial for some selected diseases in which CD8(+) T cells are major effector or pathogenic cells. Otherwise, a combinatorial approach will be required for intervention of CD4(+) T cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号