首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Arrays of regularly spaced nucleosomes are a hallmark of chromatin, but it remains unclear how they are generated. Recent genome-wide studies, in vitro and in vivo, showed constant nucleosome spacing even if the histone concentration was experimentally reduced. This counters the long-held assumption that nucleosome density determines spacing and calls for factors keeping spacing constant regardless of nucleosome density. We call this a clamping activity. Here, we show in a purified system that ISWI- and CHD1-type nucleosome remodelers have a clamping activity such that they not only generate regularly spaced nucleosome arrays but also generate constant spacing regardless of nucleosome density. This points to a functionally attractive nucleosome interaction that could be mediated either directly by nucleosome-nucleosome contacts or indirectly through the remodelers. Mutant Drosophila melanogaster ISWI without the HAND-SANT-SLIDE (HSS) domain had no detectable spacing activity even though it is known to remodel and slide nucleosomes. This suggests that the role of ISWI remodelers in generating constant spacing is not just to mediate nucleosome sliding; they actively contribute to the attractive interaction. Additional factors are necessary to set physiological spacing in absolute terms.  相似文献   

2.
The nucleosomal ATPase ISWI is the catalytic subunit of several protein complexes that either organize or perturb chromatin structure in vitro. This work reports the cloning and biochemical characterization of a Xenopus ISWI homolog. Surprisingly, whereas we find four complex forms of ISWI in egg extracts, we find no functional homolog of NURF. One of these complexes, xACF, consists of ISWI, Acf1, and a previously uncharacterized protein of 175 kDa. Like both ACF and CHRAC, this complex organizes randomly deposited histones into a regularly spaced array. The remaining three forms include two novel ISWI complexes distinct from known ISWI complexes plus a histone-dependent ATPase complex. This comprehensive biochemical characterization of ISWI underscores the evolutionary conservation of the ACF/CHRAC family.  相似文献   

3.
Modulation of ISWI function by site-specific histone acetylation   总被引:10,自引:0,他引:10       下载免费PDF全文
  相似文献   

4.
The circular dichroism spectra and the thermal denaturation profiles of the nucleosome core particles isolated by micrococcal nuclease digestion from nuclei of calf thymus and the protozoan Tetrahymena pyriformis were compared with those of the homogeneous and hybrid core particles reconstituted from calf core DNA and either calf or Tetrahymena histone octamer. The core DNA was obtained from the calf core particle, and both the histone octamers were reconstituted from the acid-extracted four core histones of calf thymus or Tetrahymena, whose amino acid sequences show the largest differences hitherto known. The reconstituted homogeneous core particle was identical in both the physical properties with the isolated calf core particle, showing that the correct reconstitution was achieved. The circular dichroism spectra of the calf and Tetrahymena core particles and the hybrid core particle showed no essential differences, indicating that the three core particles have the same overall structure. The derivative thermal-denaturation profiles, however, clearly differed; the calf core particle showed two melting transitions at 60 degrees C and 72 degrees C, while the Tetrahymena and hybrid core particles showed the same three transitions at 48-50 degrees C, 60-61 degrees C, and 72 degrees C. Thus, the thermal denaturation properties of nucleosome core particles do not reflect the nature of DNA, but rather that of the histone octamer bound to the DNA. We conclude that the Tetrahymena histones are more weakly bound to the DNA than the calf thymus histones in the same overall structure of nucleosomes.  相似文献   

5.
A Hamiche  R Sandaltzopoulos  D A Gdula  C Wu 《Cell》1999,97(7):833-842
Drosophila NURF is an ATP-dependent chromatin remodeling complex that contains ISWI, a member of the SWI2/SNF2 family of ATPases. We demonstrate that NURF catalyzes the bidirectional redistribution of mononucleosomes reconstituted on hsp70 promoter DNA. In the presence of NURF, nucleosomes adopt one predominant position from an ensemble of possible locations within minutes. Movements occur in cis, with no transfer to competing DNA. Migrating intermediates trapped by Exo III digestion reveal progressive nucleosome motion in increments of several base pairs. All four core histones are retained quantitatively during this process, indicating that the general integrity of the histone octamer is maintained. We suggest that NURF remodels nucleosomes by transiently decreasing the activation energy for short-range sliding of the histone octamer.  相似文献   

6.
In this paper we describe a detailed investigation of the reconstitution of nucleosome cores from poly (dA-dT) and the octamer of histones. We also attempted the reconstitution from the copolymers poly dA.poly dT, poly dG.poly dC and poly (dG-dC). The repeat of the reconstituted chromatin fibre is discussed. The micrococcal nuclease released poly (dA-dT) core particle is found to contain a considerably narrower DNA size distribution that of the native random DNA nucleosome core (12). In addition we have succeeded in obtaining small crystals of the poly (dA-dT) nucleosome core. The DNAase I digestion pattern of the poly (dA-dT) containing nucleosome core is presented. The periodicity of DNAase I cutting sites is found to be about 10.5 bases and is similar to that of the native nucleosome core (12, 13).  相似文献   

7.
8.
The mechanisms by which multisubunit histone acetyltransferase (HAT) complexes recognize and perform efficient acetylation on nucleosome substrates are largely unknown. Here, we use a variety of biochemical approaches and compare histone-based substrates of increasing complexity to determine the critical components of nucleosome recognition by the MOZ, Ybf2/Sas3, Sas2, Tip60 family HAT complex, Piccolo NuA4 (picNuA4). We find the histone tails to be dispensable for binding to both nucleosomes and free histones and that the H2A, H3, and H2B tails do not influence the ability of picNuA4 to tetra-acetylate the H4 tail within the nucleosome. Most notably, we discovered that the histone-fold domain (HFD) regions of histones, particularly residues 21-52 of H4, are critical for tight binding and efficient tail acetylation. Presented evidence suggests that picNuA4 recognizes the open surface of the nucleosome on which the HFD of H4 is located. This binding mechanism serves to direct substrate access to the tails of H4 and H2A and allows the enzyme to be "tethered", thereby increasing the effective concentration of the histone tail and permitting successive cycles of H4 tail acetylation.  相似文献   

9.
A complex between the single-stranded DNA of the bacteriophage M13 and the histone octamer was analyzed by electron microscopy, low-angle X-ray diffraction and nuclease analysis. The morphology and the diffraction pattern of the complex strongly resemble those of the nucleosome. These results, as well as the finding of a protected DNA fragment about 100 nucleotides long following single-stranded DNA specific nuclease digestion, indicate that 'a nucleosome-like' complex can be formed between single-stranded DNA and the histone octamer. Competition experiments suggest that under physiological conditions the histone octamer is transferred from single- to double-stranded DNA.  相似文献   

10.
Spectropolarimetric analysis of the core histone octamer and its subunits   总被引:3,自引:0,他引:3  
The secondary structure of the calf thymus core histone octamer, (H2A-H2B-H3-H4)2, and its two physiological subunits, the H2A-H2B dimer and (H3-H4)2 tetramer, was analyzed by ORD spectropolarimetry as a function of temperature and solvent ionic strength within the ranges of these experimental parameters where assembly of the core histone octamer exhibits pronounced sensitivity. While the secondary structure of the dimer is relatively stable from 0.1 to 2.0 M NaCl, the secondary structure of the tetramer exhibits complex changes over this range of NaCl concentrations. Both complexes exhibit only modest responses to temperature changes. ORD spectra of very high and very low concentrations of stoichiometric mixtures of the core histones revealed no evidence of changes in the ordered structure of the histones as a result of the octamer assembly process at NaCl concentrations above 0.67 M, nor were time-dependent changes detected in the secondary structure of tetramer dissolved in low ionic strength solvent. The secondary structure of the chicken erythrocyte octamer dissolved in high concentrations of ammonium sulfate, including those of our crystallization conditions, was found to be essentially unchanged from that in 2 M NaCl when examined by both ORD and CD spectropolarimetry. The two well-defined cleaved products of the H2A-H2B dimer, cH2A-H2B and cH2A-cH2B, exhibited reduced amounts of ordered structure; in the case of the doubly cleaved moiety cH2A-cH2B, the reductions were so pronounced as to suggest marked structural rearrangements.  相似文献   

11.
The Holliday junction is a key intermediate in genetic recombination. Here, we examine the effect of a nucleosome core on movement of the Holliday junction in vitro by spontaneous branch migration. Histone octamers consisting of H2A, H2B, H3, and H4 are reconstituted onto DNA duplexes containing an artificial nucleosome-positioning sequence consisting of a tandem array of an alternating AT-GC sequence motif. Characterization of the reconstituted branch migration substrates by micrococcal nuclease mapping and exonuclease III and hydroxyl radical footprinting reveal that 70% of the reconstituted octamers are positioned near the center of the substrate and the remaining 30% are located at the distal end, although in both cases some translational degeneracy is observed. Branch migration assays with the octamer-containing substrates reveal that the Holliday junction cannot migrate spontaneously through DNA organized into a nucleosomal core unless DNA-histone interactions are completely disrupted. Similar results are obtained with branch migration substrates containing an octamer positioned on a naturally occurring sequence derived from the yeast GLN3 locus. Digestion of Holliday junctions with T7 endonuclease I establishes that the junction is not trapped by the octamer but can branch migrate in regions free of histone octamers. Our findings suggest that migration of Holliday junctions during recombination and the recombinational repair of DNA damage requires proteins not only to accelerate the intrinsic rate of branch migration but also to facilitate the passage of the Holliday junction through a nucleosome.  相似文献   

12.
Wu C  Travers A 《Biochemistry》2005,44(43):14329-14334
Using a novel competition assay to determine the relative strength of different histone octamer-binding sites, we have compared three natural and two synthetic sites. We show that the relative affinities of these sites for the histone octamer depend upon both the temperature and octamer concentration. In particular, under certain conditions, a natural octamer-binding site from a yeast promoter outcompetes a synthetic sequence of comparable affinity to the strongest previously described positioning sequence. Under other conditions, this synthetic sequence is the preferred octamer ligand. We infer that sequence selection by the histone octamer depends strongly upon both the sequence-dependent anisotropy of DNA bending and on DNA deformability and that these parameters may contribute differently to nucleosome formation. These findings indicate that previous studies designed to identify strong octamer-binding sites may fail to select some natural strong binding sites.  相似文献   

13.
The ATPase ISWI can be considered the catalytic core of several multiprotein nucleosome remodeling machines. Alone or in the context of nucleosome remodeling factor, the chromatin accessibility complex (CHRAC), or ACF, ISWI catalyzes a number of ATP-dependent transitions of chromatin structure that are currently best explained by its ability to induce nucleosome sliding. In addition, ISWI can function as a nucleosome spacing factor during chromatin assembly, where it will trigger the ordering of newly assembled nucleosomes into regular arrays. Both nucleosome remodeling and nucleosome spacing reactions are mechanistically unexplained. As a step toward defining the interaction of ISWI with its substrate during nucleosome remodeling and chromatin assembly we generated a set of nucleosomes lacking individual histone N termini from recombinant histones. We found the conserved N termini (the N-terminal tails) of histone H4 essential to stimulate ISWI ATPase activity, in contrast to other histone tails. Remarkably, the H4 N terminus, but none of the other tails, was critical for CHRAC-induced nucleosome sliding and for the generation of regularity in nucleosomal arrays by ISWI. Direct nucleosome binding studies did not reflect a dependence on the H4 tail for ISWI-nucleosome interactions. We conclude that the H4 tail is critically required for nucleosome remodeling and spacing at a step subsequent to interaction with the substrate.  相似文献   

14.
Gottesfeld JM  Luger K 《Biochemistry》2001,40(37):10927-10933
Previous studies have compared the relative free energies for histone octamer binding to various DNA sequences; however, no reports of the equilibrium binding affinity of the octamer for unique sequences have been presented. It has been shown that nucleosome core particles (NCPs) dissociate into free DNA and histone octamers (or free histones) on dilution without generation of stable intermediates. Dissociation is reversible, and an equilibrium distribution of NCPs and DNA is rapidly attained. Under low ionic strength conditions (<400 mM NaCl), NCP dissociation obeys the law of mass action, making it possible to calculate apparent equilibrium dissociation constants (K(d)s) for NCPs reconstituted on defined DNA sequences. We have used two DNA sequences that have previously served as model systems for nucleosome reconstitution studies, human alpha-satellite DNA and Lytechinus variegatus 5S DNA, and find that the octamer exhibits K(d)s of 0.03 and 0.06 nM, respectively, for these sequences at 50 mM NaCl. These DNAs form NCPs that are approximately 2 kcal/mol more stable than total NCPs isolated from cellular chromatin. As for mixed-sequence NCPs, increasing ionic strength or temperature promotes dissociation. van't Hoff plots of K(a)s versus temperature reveal that the difference in binding free energy for alpha-satellite and 5S NCPs compared to bulk NCPs is due almost entirely to a more favorable entropic component for NCPs formed on the unique sequences compared to mixed-sequence NCPs. Additionally, we address the contribution of the amino-terminal tail domains of histones H3 and H4 to octamer affinity through the use of recombinant tailless histones.  相似文献   

15.
Nucleosome positioning in the somatic macronuclear genome of the ciliated protozoan Tetrahymena thermophila was analyzed by indirect end labeling. Nucleosomes were positioned nonrandomly in three different regions of the Tetrahymena genome. Nucleosome repeat length varied between adjacent nucleosomes. Nucleosome positioning in a histone H1 knockout strain was indistinguishable from that in a strain with wild type histone H1.  相似文献   

16.
17.
Nucleosomal core particles containing the right- and left-handed conformations of DNA were examined for their ability to support the BZ or ZB transition. Nucleosomes were assembled onto the B- and Z-conformations of poly[d(Gm5C)] and the B-conformation of poly[d(GC)] as previously described (1). Absorbance and circular dichroic spectroscopy indicated that the DNA on all three core particle populations could undergo the conformational BZ transition. Further, the right- to left-handed transition for both poly[d(Gm5C)] and poly[d(GC)] appeared to be facilitated by the DNAs association with the histone octamer. The DNA remained associated with the protein core subsequent to the transition, and electron microscopy and sedimentation velocity analysis indicated that there were no gross changes in nucleosomal structure. However, a change in the sedimentation value of the poly[d(Gm5C)] core particles was detected when the conformation of the DNA was altered from B to Z, resulting in a lower S20,w value for the Z-form particles than for the corresponding B-form particles.  相似文献   

18.
19.
The Drosophila Polycomb group protein E(z) is a histone methyltransferase (HMTase) that is essential for maintaining HOX gene silencing during development. E(z) exists in a multiprotein complex called Polycomb repressive complex 2 (PRC2) that also contains Su(z)12, Esc and Nurf55. Reconstituted recombinant PRC2 methylates nucleosomes in vitro, but recombinant E(z) on its own shows only poor HMTase activity on nucleosomes. Here, we investigate the function of the PRC2 subunits. We show that PRC2 binds to nucleosomes in vitro but that individual PRC2 subunits alone do not bind to nucleosomes. By analysing PRC2 subcomplexes, we show that Su(z)12-Nurf55 is the minimal nucleosome-binding module of PRC2 and that Esc contributes to high-affinity binding of PRC2 nucleosomes. We find that nucleosome binding of PRC2 is not sufficient for histone methylation and that only complexes that contain Esc protein show robust HMTase activity. These observations suggest that different subunits provide mechanistically distinct functions within the PRC2 HMTase: the nucleosome-binding subunits Su(z)12 and Nurf55 anchor the E(z) enzyme on chromatin substrates, whereas Esc is needed to boost enzymatic activity.  相似文献   

20.
Hexasomes and tetrasomes are intermediates in nucleosome assembly and disassembly. Their formation is promoted by histone chaperones, ATP-dependent remodelers, and RNA polymerase II. In addition, hexasomes are maintained in transcribed genes and could be an important regulatory factor. While nucleosome composition has been shown to affect the structure and accessibility of DNA, its influence on histone tails is largely unknown. Here, we investigate the conformational dynamics of the H3 tail in the hexasome and tetrasome. Using a combination of NMR spectroscopy, MD simulations, and trypsin proteolysis, we find that the conformational ensemble of the H3 tail is regulated by nucleosome composition. As has been found for the nucleosome, the H3 tails bind robustly to DNA within the hexasome and tetrasome, but upon loss of the H2A/H2B dimer, we determined that the adjacent H3 tail has an altered conformational ensemble, increase in dynamics, and increase in accessibility. Similar to observations of DNA dynamics, this is seen to be asymmetric in the hexasome. Our results indicate that nucleosome composition has the potential to regulate chromatin signaling and ultimately help shape the chromatin landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号