首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protoplast fusion technology has been utilized in many crops to generate allotetraploid somatic hybrids, and sometimes autotetraploids as a byproduct of the process. A brief history of this technology development is provided, along with a simple protocol developed for citrus, which can be easily adapted to other plants. Protoplast fusion has become a significant tool in ploidy manipulation that can be applied in various cultivar improvement schemes. In rare cases, a new somatic hybrid may have direct utility as an improved cultivar; however, the most important application of somatic hybridization is the building of novel germplasm as a source of elite breeding parents for various types of conventional crosses for both scion and rootstock improvement. Somatic hybridization is generating superior allotetraploid breeding parents for use in interploid crosses to generate seedless triploids. Seedlessness is a primary breeding objective for new fresh fruit citrus varieties, and several thousand triploid hybrids have been produced using somatic hybrids as the tetraploid parent. Protoplast fusion is also being utilized to produce somatic hybrids that combine complementary diploid rootstocks, which have shown good potential for tree size control. Tree size control has gained importance as a means of reducing harvesting costs, maximizing the efficiency of modern cold protection methodology, and facilitating the adaptation of new fruit production systems. Successful somatic hybridization in citrus rootstock improvement has enabled rootstock breeding at the tetraploid level via sexual hybridization, which can yield maximum genetic diversity in zygotic progeny upon which to impose selection for the many traits required in improved rootstock cultivars, including disease and insect resistance, broad adaptation, tree size control, and the ability to consistently produce high yields of quality fruit. Recent progress and successful examples of these applications are discussed. Finally, a discussion of the genetic potential of somatic hybrids as breeding parents, including meiotic behavior and inheritance is provided.  相似文献   

2.
Summary Although somatic hybridization techniques are being ignored by variety improvement programs for most commodities, their contribution to citrus variety improvement continnes to expland and with increasing complexity. Citrus is, one of the few commodities where somatic hybridization is reaching its predicted potential, as somatic hybrids are now possible from most desirable parental combinations. Somatic hybrid citrus plants have been produced from more than 250 parental combinations, including more than 130 at the CREC. The CREC hybrids include 34 from sexually compatible intergeneric combinations, 16 from sexually incompatible combinations, and 81 interspecific combinations. The objective of this report is to demonstrate the impact of somatic hybridization on citrus improvement programs, and to discuss its potential with other commodities. For citrus scion improvement, several applications are aimed at the development of improved seedless fresh fruit varieties, and these include symmetric somatic hybridization, haploid+diploid fusion, targeted cybridization to transfer cytoplasmic male sterility (mtCMS) from Satsuma mandarin, and triploidy via interploid crosses using somatic hybrid allotetrapoid breeding parents. For rootstock improvement symmetric somatic hybridization provides an opportunity to hybridize complementary rootstocks without breaking up successful gene combinations. Rootstock somatic hybridization is providing opportunities for improving disease and inseet resistance, soil adaptation, and tree size control. Wide somatic hybridization provides an opportunity for gene transfer from related species, including some that are sexually incompatible. Extensive field research on citrus somatic hybrid rootstocks combined with emerging molecular analyses of citrus has allowed for the development of additional strategies for rootstock improvement. These include rootstock breeding and selection, at the tetraploid level using somatic hybrid parents, and the resynthesis of important rootstocks at the tetraploid level via fusion of selected superior parents. Ongoing examples of each strategy will be provided, along with ideas for extending the technology to other commodities.  相似文献   

3.
The prevalence of sour orange rootstock in the southern and eastern part of the Mediterranean Basin is presently threatened by the spread of Citrus Tristeza Virus (CTV) and its main vector Toxoptera citricida, combined with abiotic constraints such as drought, salinity and alkalinity. The search for alternative CTV-resistant rootstocks that also withstand the other constraints is now considered an urgent priority for a sustainable citrus industry in the area. Complementary progenitors can be found in citrus germplasm to combine the desired traits, particularly between Poncirus and Citrus genera. The production of somatic hybrids allows cumulating all dominant traits irrespective of their heterozygosity level, and would appear to be an effective way to solve the rootstock challenge facing the Mediterranean citrus industry. This paper presents the results obtained during a regional collaborative effort between five countries, to develop new rootstocks by somatic hybridization. New embryogenic callus lines to be used for somatic hybridization have been created. Protoplast fusions have been performed at CIRAD and IVIA laboratories, focusing on intergeneric combinations. Analysis of ploidy level by flow cytometry and molecular markers confirmed the acquisition of new interesting tetraploid somatic hybrids for six combinations. Diploid cybrids with intergeneric (Citrus?×?Poncirus) nucleus and C. reticulata or C. aurantifolia mitochondria were also identified for four combinations. The agronomical performance of a pre-existing somatic hybrid between Poncirus trifoliata and Citrus reticulata was validated in calcareous soils in Morocco. Somatic hybridization is now integrated into the breeding programs of the five Mediterranean countries.  相似文献   

4.
Polyploidization is an important speciation mechanism for all eukaryotes, and it has profound impacts on biodiversity dynamics and ecosystem functioning. Green fluorescent protein (GFP) has been used as an effective marker to visually screen somatic hybrids at an early stage in protoplast fusion. We have previously reported that the intensity of GFP fluorescence of regenerated embryoids was also an early indicator of ploidy level. However, little is known concerning the effects of ploidy increase on the GFP expression in citrus somatic hybrids at the plant level. Herein, allotetraploid and diploid cybrid plants with enhanced GFP (EGFP) expression were regenerated from the fusion of embryogenic callus protoplasts from ‘Murcott’ tangor (Citrus reticulata Blanco × Citrus sinensis (L.) Osbeck) and mesophyll protoplasts from transgenic ‘Valencia’ orange (C. sinensis (L.) Osbeck) expressing the EGFP gene, via electrofusion. Subsequent simple sequence repeat (SSR), chloroplast simple sequence repeat and cleaved amplified polymorphic sequence analysis revealed that the two regenerated tetraploid plants were true allotetraploid somatic hybrids possessing nuclear genomic DNA of both parents and cytoplasmic DNA from the callus parent, while the five regenerated diploid plants were cybrids containing nuclear DNA of the leaf parent and with complex segregation of cytoplasmic DNA. Furthermore, EGFP expression was compared in cells and protoplasts from mature leaves of these diploid cybrids and allotetraploid somatic hybrids. Results showed that the intensity of GFP fluorescence per cell or protoplast in diploid was generally brighter than in allotetraploid. Moreover, same hybridization signal was detected on allotetraploid and diploid plants by Southern blot analysis. By real-time RT-PCR and Western blot analysis, GFP expression level of the diploid cybrid was revealed significantly higher than that of the allotetraploid somatic hybrid. These results suggest that ploidy level conversion can affect transgene expression and citrus diploid cybrid and allotetraploid somatic hybrid represents another example of gene regulation coupled to ploidy.  相似文献   

5.
Somatic hybridization by protoplast fusion from cell suspension cultures and leaf parent has been a well-established technique holding great potential for citrus variety improvement. In this study, somatic hybrid plants were regenerated from the following two fusion combinations: ‘Murcott’ tangor (Citrus reticulata Blanco × Csinensis (L.) Osbeck) + Hirado Buntan Pink pummelo (HBP) (Cgrandis (L.) Osbeck) and ‘Bingtang’ orange (Csinensis (L.) Osbeck) + Calamondin (Cmicrocarpa Bunge). Somatic hybrids were selected at an early stage based on their higher capacity for embryogenesis comparing to non-hybrid cells. Flow cytometry analysis showed that all plants from pre-selected lines of the two combinations were tetraploid. SSR analysis confirmed their hybrid nature, with nuclear DNA from both fusion parents, and absence of parental specific bands was also detected. Cytoplasmic compositions of the recovered plants were further revealed by CAPS and cpSSR analysis. The allotetraploid somatic hybrids from the ‘Murcott’ tangor + HBP combination will be applied to develop triploid seedless cultivars by interploid crossing with diploid seedy citrus cultivars, and those from ‘Bingtang’ orange + Calamondin could be valuable for Asiatic citrus canker-tolerant and ornamental citrus breeding.  相似文献   

6.
We have developed an efficient protoplast-fusion method to produce somatic hybrid allopolyploid plants that combine Citrus with seven related genera, including four that are sexually incompatible. In this paper we report the creation of 18 new allotetraploid hybrids of Citrus, including ten among sexually incompatible related genera, that may have direct cultivar potential as improved citrus rootstocks. All hybrids were confirmed by cytological and RAPD analyses. If fertile, the attributes of these hybrids may be amenable to further genetic manipulation by breeding at the tetraploid level. Wide somatic hybridization of Citrus via protoplast fusion bypasses biological barriers to the natural allopolyploidization of Citrus, and creates new evolutionary opportunities that would be difficult or impossible to achieve by natural or conventional hybridization.Florida Agricultural Experiment Station Journal Series No. R-04520  相似文献   

7.
Somatic hybridization was performed via electrofusion between embryogenic suspension-derived protoplasts of transgenic green fluorescent protein (GFP) Satsuma mandarin (Citrus unshiu Marc. cv. Guoqing No. 1) (G1) callus and mesophyll protoplasts of calamondin (Citrus microcarpa Bunge), and three embryoids expressing GFP under UV light were obtained after 60 days of culture. The three embryoids were considered not as diploid cybrids but true allotetraploid somatic hybrids, as it was based on: (1) citrus heterokaryons are generally more vigorous and have higher capacity for embryogenesis as compared with unfused and homo-fused embryogenic callus protoplasts; (2) the callus line of G1 Satsuma mandarin has lost the embryogenesis capacity; and (3) citrus diploid cybrids produced by symmetric fusion always possess nuclear genome of mesophyll parent, and calamondin without GFP gene was used as leaf parent in this study. Subsequent flow cytometry, simple sequence repeat and cleaved amplified polymorphic sequence analysis of one regenerated callus mass and three resulting plants validated this supposition, i.e., the callus was derived from transgenic G1 callus protoplasts, and the three plants were true allotetraploid somatic hybrids possessing nuclear genomic DNA of both parents and cytoplasmic DNA from callus parent. The potential of transgenic GFP citrus callus as suspension parent in citrus somatic fusion to study the mechanism of cybrid formation, create new citrus cybrids, and transfer organelle-encoded agronomic traits was also discussed.  相似文献   

8.
Summary Sour orange (Citrus aurantium L.) rootstock has historically been a widely utilized eitrus rootstock throughout the world due to its wide soil adaptability and superior horticultural performance. However, quick-decline isolates of citrus tristeza virus (CTV) have demolished entire industries of sour orange rootstock in some countries, including Brazil and Venezuela. CTV is presently destroying millions of trees of sour orange rootstock in Florida and threatens the citrus industries of Texas and Mexico, where sour orange is the predominant rootstock. Efforts to replace sour orange rootstock are combining traditional breeding and biotechnology approaches, including somatic hybridization and transformation. Molecular techniques have confirmed that sour orange is probably a hybrid of mandarin and pummelo. A major focus of our program continues to be the somatic hybridization of superior mandarins with pre-selected pummelo parents. Here, we report the regeneration of allotetraploid somatic hybrid plants from seven new mandarin+pummelo combinations and one new sweet orange+pummelo combination. All new somatic hybrids were confirmed by leaf morphology, ploidy analysis via flow cytometry, and random amplified polymorphic DNA analysis to show nuclear contributions from both parents in corresponding hybrids. These new somatic hybrids are being propagated by tissue culture and/or rooted cuttings for further evaluation of disease resistance and horticultural performance in field trials.  相似文献   

9.
柑橘体细胞杂种有性后代的创造及杂种鉴定   总被引:1,自引:0,他引:1  
110 plantlets were obtained from the cross between citrus allotetraploid somatic hybrid [Hamlin sweet orange (Citrus sinensis Osback) + Rough Lemon (C. jambhiri Luss)] (as the pollen parent) and mono-embryonic diploid type Iben No.4 [Huanongbendizao tangerine (C. reticulata Blanco) x Ichang papeda (C. ichangensis Swingle)] by the means of young embryo culture in vitro, and there were 93 triploids and 17 diploids through chromosome counting and the ploidy analyser identification. RAPD analyses showed that all sexual progenies were hybrid.  相似文献   

10.
采用流式细胞术(flow cytometry,FCM)、简单重复序列(simple sequence repeat,SSR)和酶切扩增多型性序列(cleaved amplifiedpolymorphic sequence,CAPS)等技术分析酸橙(Citrus aurantium L.)叶肉原生质体和甜橙(C.sinenis Osbeck cv.Shamouti)胚性愈伤组织原生质体电融合再生的体细胞杂种.FCM研究结果表明,所有的体细胞杂种植株荧光强度是二倍体对照的2倍,说明所分析的植株为四倍体.用SSR和CAPS分析了体细胞杂种的核质遗传组成,在试验的4对SSR引物中,有2对能区分开融合亲本.在2对引物中,体细胞杂种植株包含双亲的全部特异带,表明它们为异核杂种.通用引物扩增结合限制性内切酶酶切能鉴别融合亲本,在具有多型性的引物/酶组合中,所有体细胞杂种的线粒体和叶绿体DNA带型与胚性亲本(甜橙)完全一样.结果表明体细胞杂种核基因组来自双亲,而胞质基因组来自悬浮系亲本.讨论了所用技术的特点、柑橘四倍体体细胞杂种核质遗传规律及本组合体细胞杂种的应用.  相似文献   

11.
甜橙与酸橙体细胞杂种核质组成鉴定(英文)   总被引:2,自引:0,他引:2  
采用流式细胞术(flow cytometry, FCM)、简单重复序列(simple sequence repeat, SSR)和酶切扩增多型性序列(cleaved amplified polymorphic sequence, CAPS)等技术分析酸橙(Citrus aurantium L. )叶肉原生质体和甜橙(C. sinenis Osbeck cv. Shamouti)胚性愈伤组织原生质体电融合再生的体细胞杂种。FCM研究结果表明,所有的体细胞杂种植株荧光强度是二倍体对照的2倍,说明所分析的植株为四倍体。用SSR和CAPS分析了体细胞杂种的核质遗传组成,在试验的4对SSR引物中,有2对能区分开融合亲本。在2对引物中,体细胞杂种植株包含双亲的全部特异带,表明它们为异核杂种。通用引物扩增结合限制性内切酶酶切能鉴别融合亲本,在具有多型性的引物/酶组合中,所有体细胞杂种的线粒体和叶绿体DNA带型与胚性亲本(甜橙)完全一样。结果表明体细胞杂种核基因组来自双亲,而胞质基因组来自悬浮系亲本。讨论了所用技术的特点、柑橘四倍体体细胞杂种核质遗传规律及本组合体细胞杂种的应用。  相似文献   

12.
Artificial tetraploid somatic hybrids have been developed for sterile triploid citrus breeding by sexual hybridization between diploid and tetraploid somatic hybrids. The genetic structure of diploid gametes produced by tetraploid genotypes depends on the mode of chromosome association at meiosis. In order to evaluate tetraploid inheritance in a tetraploid interspecific somatic hybrid between mandarin and lemon, we performed segregation studies using cytogenetic and single sequence repeat molecular markers. Cytogenetic analysis of meiosis in the somatic hybrid revealed 11% tetravalents and 76% bivalents. Inheritance of the tetraploid hybrid was analyzed by genotyping the triploid progeny derived from a cross between a diploid pummelo and the tetraploid somatic hybrid, in order to derive genotypes of the meiospores produced by the tetraploid. A likelihood-based approach was used to distinguish between disomic, tetrasomic, and intermediate inheritance models and to estimate the double reduction rate. In agreement with expectations based the cytogenetic data, marker segregation was largely compatible with tetrasomic and inheritance intermediate between disomic and tetrasomic, with some evidence for preferential pairing of homoeologous chromosomes. This has important implications for the design of breeding programs that involve tetraploid hybrids, and underscores the need to consider inheritance models that are intermediate between disomic and tetrasomic.  相似文献   

13.
哈姆林甜橙与粗柠檬体细胞杂种的育性   总被引:2,自引:0,他引:2  
对异源四倍体柑桔体细胞杂种“哈姆林甜橙+粗柠檬”及其亲本的花粉活力、花器官发育、花器官形态发生与花粉母细胞减数分裂四分体阶段进行了观测和统计.结果发现“哈姆林甜橙+粗柠檬”的花粉染色活力、萌发率、每花药中花粉粒数均居于其双亲之间,花器官发育及其形态发生具有双亲的特点.但小花粉及花粉母细胞减数分裂过程中形成的不正常四分体比率远远高于其双亲.以体细胞杂种“哈姆林甜橙+粗柠檬”为花粉亲本,与二倍体单胚类型宜昌橙与华农本地早的有性后代杂交,获得了110棵有性后代植株,其中三倍体82棵,二倍体和其它倍性的植株28棵.  相似文献   

14.
Summary Five diploid potato clones have been transformed by electroporation of protoplasts with different selectable markers. The resulting diploid regenerated plants have been used in somatic hybridization. It has been shown that hybrid cell selection on the basis of antibiotic or herbicide resistances brought by the two parents of fusion is an efficient method for the recovery of tetraploid somatic hybrids.  相似文献   

15.
Thirty-one polymorphic decamer primers were selected to genotype 92 progenies from the cross between Yiben No.4, a monoembryonic diploid F1 hybrid of Citrus reticulata Blanco cv Huanongbendizao tangerine and C. ichangensis Swingle, and [Hamlin sweet orange + Rough lemon], an allotetraploid somatic hybrid of Citrus sinensis Osbeck cv. Hamlin and C. jambhiri Lush cv. Rough Lemon. χ2 (Chi-square) analysis of RAPD markers in the progenies indicated they were randomly transmitted from the four donor parents, without significant difference between the diploids and triploids. However, these progenies were clustered into three major groups using dendrogram constructed by UPGMA, skewed to three parents in certain degrees, 15 (13 triploids and 2 diploids) to Hamlin, 16 (9 and 7) to Yiben No. 4, and 61 (57 and 4) to [Hamlin sweet orange + Rough Lemon] from which genomic contribution was predominant in progenies, respectively.  相似文献   

16.
Cytoplasmic male sterility (CMS) is known to be controlled by mitochondrial genome in higher plants including Satsuma mandarin (Citrus unshiu Marc.). Citrus symmetric fusion experiments often produce diploid cybrids possessing nuclear DNA from the mesophyll parent and mitochondrial DNA (mtDNA) from the embryogenic callus parent. Therefore, it is possible to transfer CMS from Satsuma mandarin as callus parent to seedy citrus cultivars as leaf one by somatic cybridization. Herein, symmetric fusion technique was adopted to create cybrids for potential seedlessness by transferring CMS from Citrus unshiu Marc. cv. Guoqing No. 1 (G1) to two traditional Chinese seedy citrus cultivars, ‘Shatian’ pummelo (C. grandis (L) Osbeck) and ‘Bingtang’ orange (C. sinensis (L) Osbeck). Flow cytometry analysis showed that 19 plants recovered from G1 + ‘Bingtang’ orange and 17 of 35 plants regenerated from G1 + ‘Shatian’ pummelo were diploid. The remaining plants from G1 + ‘Shatian’ pummelo were tetraploid. The diploid plants from the two combinations were confirmed as true cybrids by simple sequence repeat (SSR) and cleaved amplified polymorphic sequence (CAPS) analysis, with nuclear DNA from their corresponding leaf parent and mtDNA from their common suspension parent, G1 Satsuma mandarin. The remaining plants from G1 + ‘Shatian’ pummelo were identified as somatic hybrids with mtDNA from G1. The chloroplast simple sequence repeat (cp-SSR) analysis revealed somatic hybrid/cybrid plants from the two combinations in most cases possessed either of their parental chloroplast type, and two plants from G1 +‘Shatian’ pummelo and all embryoids analyzed from G1 + ‘Bingtang’ orange possessed chloroplast DNA (cpDNA) from both parents. These results demonstrated that we succeeded in introducing mtDNA from G1 Satsuma mandarin into the two target seedy citrus cultivars for potential seedlessness through symmetric fusion.  相似文献   

17.
以 3个柑桔原生质体融合而来的四倍体体细胞杂种为父本 ,与二倍体单胚性种柚子 (Citrusgrandis)以及单多胚混合型品种“华农本地早”桔 (C.reticulata)有性杂交 ,授粉后 90 d,发现种子干瘪 ,大部分种子的胚败育。将干瘪种子在 MT附加 1mg/L GA3 或 50 0 mg/L麦芽浸出物的培养基中 ,经培养抢救 ,有 2 5.6%的种子萌发成苗或继续进行胚的生长 ,后者进一步诱导能形成丛芽 ,经试管嫁接或诱导生根形成完整植株。共获得 6个组合 73棵完整植株 ,染色体数检查表明 ,2 0株为三倍体 (2 n=3x=2 7) ,32株为二倍体 (2 n=2 x=18) ,8株为非整倍体 ,其它 13株还有待于进一步检查。  相似文献   

18.
Tetraploid citrus rootstocks are more tolerant to salt stress than diploid   总被引:2,自引:0,他引:2  
Citrus trees are subject to several abiotic constraints such as salinity. Providing new rootstocks more tolerant is thus a requirement. In this article, we investigated salt stress tolerance of three tetraploid rootstock genotypes when compared to their respective diploid rootstocks (Poncirus trifoliata, Carrizo citrange, Cleopatra mandarin). Plant growth, leaf fall and ion contents were investigated. At the end of the experiment, leaf fall was observed only for diploid Poncirus trifoliata plants as well as chlorosis symptoms for Poncirus trifoliata and Carrizo citrange diploid plants. The diploid Cleopatra mandarin plants growth rate was not affected by salt stress and has even been increased for tetraploid Cleopatra mandarin. Ion contents investigation has shown lower accumulations of chloride ions in leaves of the tetraploid plants when compared to diploid plants. Our results suggest that citrus tetraploid rootstocks are more tolerant to salt stress than their corresponding diploid. To cite this article: B. Saleh et al., C. R. Biologies 331 (2008).  相似文献   

19.
Hybridizing the diploid monoembryonic pummelo (Citrus grandis) and polyembryonic tangerine (C. reticulata cv. Huanongbendizao) with allotetraploid somatic hybrids from protoplast fusion were conducted. Seeds of pollinated fruits were found to be abortive 90 days after pollination. The aborted seeds were then cultured on media of MT supplement with 1 mg/L GA3 or with 500 mg/L of malt extract. 25.6% of the seeds germinated or developed into embryoids: The entire plants were transplanted into soil after grafting shoots on the root-stocks of trifoliate orange in vitro, if the germinated embryos have poor roots or no root at all. A total of 73 plants from 6 different combinations were obtained, among which 20 were verified as triploids with 2n= 3x=27 chromosomes, 32 diploids 2n= 2x= 18, 8 a- neuploids and the rest 13 unconfirmed.  相似文献   

20.
Abstract. Theoretical models indicate that the evolution of tetraploids in diploid populations will depend on both the relative fitness of the tetraploid and that of the diploid-tetraploid hybrids. Hybrids are believed to have lower fitness due to imbalances in either the ploidy (endosperm imbalance) or the ratio of maternal to paternal genomes in their endosperm (genomic imprinting). In this study we created diploids, tetraploids, and hybrid triploids of Chamerion angustifolium from crosses between field-collected diploid and tetraploid plants and evaluated them at six life stages in a greenhouse comparison. Diploid offspring (from 2 x × 2 x crosses) had significantly higher seed production and lower biomass than tetraploid offspring (from 4 x × 4 x crosses). Relative to the diploid, the cumulative fitness of tetraploids was 0.67. In general, triploids (from 2 x × 4 x , 4 x × 2 x crosses) had significantly lower seed production, lower pollen viability, and higher biomass than diploid individuals. Triploid offspring derived from diploid maternal parents had lower germination rates, but higher pollen production than those with tetraploid mothers. Relative to diploids, the cumulative fitness of 2 x × 4 x triploids and 4 x × 2 x triploids was 0.12 and 0.06, respectively, providing some support for effect of differing maternal:paternal ratios and endosperm development as a mechanism of hybrid inviability. Collectively, the data show that tetraploids exhibit an inherent fitness disadvantage, although the partial viability and fertility of triploids may help to reduce the barrier to tetraploid establishment in sympatric populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号