首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The serological diagnosis of Lyme borreliosis is accomplished by the detection of IgG and IgM antibodies specific for relevant antigens of the spirochetal pathogen Borrelia burgdorferi. Instead of the usual enzyme immune assay for screening and the Western blot technique for confirmation, bead based multiplex assays with multiple simultaneously performed distinct reactions can provide quick, automatically derived and reliable results in a single run by flow cytometer technology. The broad analytical dynamic range of assay signals and the high sensitivity and specificity of the multiplex formats allow even for a reliable use in CSF based analyses for antibody specificity index in supposed neuroborreliosis. Fluorescence intensity of the bead based reactions can be transformed into quantified values as U/ml, either for each single antigen or summed up for a group of relevant key antigens. Additionally or alternatively distinct reactions of single bead populations can be transformed to Western blot band equivalents. Internal and external quality controls with the multiplex systems show characteristic data equivalent to the conventional assay formats, so that the advantages of the multiplex assays are ready for use in the routine diagnostic laboratory.  相似文献   

2.
Multiplex cytometric bead assay (CBA) have a number of advantages over ELISA for antibody testing, but little information is available on standardization and validation of antibody CBA to multiple Plasmodium falciparum antigens. The present study was set to determine optimal parameters for multiplex testing of antibodies to P. falciparum antigens, and to compare results of multiplex CBA to ELISA. Antibodies to ten recombinant P. falciparum antigens were measured by CBA and ELISA in samples from 30 individuals from a malaria endemic area of Kenya and compared to known positive and negative control plasma samples. Optimal antigen amounts, monoplex vs multiplex testing, plasma dilution, optimal buffer, number of beads required were assessed for CBA testing, and results from CBA vs. ELISA testing were compared. Optimal amounts for CBA antibody testing differed according to antigen. Results for monoplex CBA testing correlated strongly with multiplex testing for all antigens (r = 0.88-0.99, P values from <0.0001 - 0.004), and antibodies to variants of the same antigen were accurately distinguished within a multiplex reaction. Plasma dilutions of 1:100 or 1:200 were optimal for all antigens for CBA testing. Plasma diluted in a buffer containing 0.05% sodium azide, 0.5% polyvinylalcohol, and 0.8% polyvinylpyrrolidone had the lowest background activity. CBA median fluorescence intensity (MFI) values with 1,000 antigen-conjugated beads/well did not differ significantly from MFI with 5,000 beads/well. CBA and ELISA results correlated well for all antigens except apical membrane antigen-1 (AMA-1). CBA testing produced a greater range of values in samples from malaria endemic areas and less background reactivity for blank samples than ELISA. With optimization, CBA may be the preferred method of testing for antibodies to P. falciparum antigens, as CBA can test for antibodies to multiple recombinant antigens from a single plasma sample and produces a greater range of values in positive samples and lower background readings for blank samples than ELISA.  相似文献   

3.
Rapid identification of bacterial pathogens is important for patient management and initiation of appropriate antibiotic therapy in the early stages of infection. Among the several techniques, capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) analysis combined with small subunit rRNA gene-specific polymerase chain reaction (PCR) has come into the spotlight owing to its sensitivity, resolution, and reproducibility. Despite the advantages of the method, the design of PCR primers and optimization of multiplex PCR conditions remain to be studied so that as many pathogens as possible can be analyzed in a single run. Here we describe a novel two-step technique involving multiplex PCR pathogen detection by CE-SSCP analysis followed by singleplex PCR pathogen quantification by CE-SSCP. Specific PCR primers were designed for optimal separation of their products by CE-SSCP based on molecular weight. PCR conditions were then optimized for multiplex analysis of the targets. Subsequently, detected pathogens were quantified by PCR with specific primers. Eight clinically important strains were simultaneously identified under the optimized conditions. Each individual pathogen was then quantified at a level of sensitivity of tens of cells per milliliter. In conclusion, the two-step pathogen detection method based on CE-SSCP described here allows for sensitive detection of pathogens by multiplex PCR (first step) and quantification by specific PCR (second step). The results illustrate the potential of the method in clinical applications.  相似文献   

4.
The development of subunit vaccine platforms has been of considerable interest due to their good safety profile and ability to be adapted to new antigens, compared to other vaccine typess. Nevertheless, subunit vaccines often lack sufficient immunogenicity to fully protect against infectious diseases. A wide variety of subunit vaccines have been developed to enhance antigen immunogenicity by increasing antigen multivalency, as well as stability and delivery properties, via presentation of antigens on protein nanoparticles. Increasing multivalency can be an effective approach to provide a potent humoral immune response by more strongly engaging and clustering B cell receptors (BCRs) to induce activation, as well as increased uptake by antigen presenting cells and their subsequent T cell activation. Proper orientation of antigen on protein nanoparticles is also considered a crucial factor for enhanced BCR engagement and subsequent immune responses. Therefore, various strategies have been reported to decorate highly repetitive surfaces of protein nanoparticle scaffolds with multiple copies of antigens, arrange antigens in proper orientation, or combinations thereof. In this review, we describe different chemical bioconjugation methods, approaches for genetic fusion of recombinant antigens, biological affinity tags, and enzymatic conjugation methods to effectively present antigens on the surface of protein nanoparticle vaccine scaffolds.  相似文献   

5.
In the present work we develop a multiplex PCR assay for the detection and identification of the fish pathogen Vibrio vulnificus biotype 2 with discriminating potential for zoonotic strains (serovar E). The PCR assay allowed the identification of two new biotype 2 serovar E human isolates from culture collections. Finally, the multiplex was successfully applied to both diagnosis and carrier detection in field samples.  相似文献   

6.
In the present work we develop a multiplex PCR assay for the detection and identification of the fish pathogen Vibrio vulnificus biotype 2 with discriminating potential for zoonotic strains (serovar E). The PCR assay allowed the identification of two new biotype 2 serovar E human isolates from culture collections. Finally, the multiplex was successfully applied to both diagnosis and carrier detection in field samples.  相似文献   

7.
The identification of novel T cell antigens is central to basic and translational research in autoimmunity, tumor immunology, transplant immunology, and vaccine design for infectious disease. However, current methods for T cell antigen discovery are low throughput, and fail to explore a wide range of potential antigen-receptor interactions. To overcome these limitations, we developed a method in which programmable microarrays are used to cost-effectively synthesize complex libraries of thousands of minigenes that collectively encode the content of hundreds of candidate protein targets. Minigene-derived mRNA are transfected into autologous antigen presenting cells and used to challenge complex populations of purified peripheral blood CD8+ T cells in multiplex, parallel ELISPOT assays. In this proof-of-concept study, we apply synthetic minigene screening to identify two novel pancreatic islet autoantigens targeted in a patient with Type I Diabetes. To our knowledge, this is the first successful screen of a highly complex, synthetic minigene library for identification of a T cell antigen. In principle, responses against the full protein complement of any tissue or pathogen can be assayed by this approach, suggesting that further optimization of synthetic libraries holds promise for high throughput antigen discovery.  相似文献   

8.
Antifilarial antibody testing has been established as a sensitive and specific method of diagnosing lymphatic filariasis. However, the development of serological responses to specific filarial antigens and their relationship to acquisition of infection is poorly understood. In order to evaluate whether the development of antigen specific antifilarial antibodies precedes microfilaremia and antigenemia, we compared the antibody responses of serum samples collected between 1990 and 1999 from a cohort of 142 Haitian children followed longitudinally. Antigen status was determined using the Og4C3 ELISA and the presence of microfilaremia was detected using microscopy. Antibody responses to Wb123, a Wuchereria bancrofti L3 antigen, were measured using a Luciferase Immunoprecipitation System (LIPS) assay. Antibody responses to Bm14 and Bm33, Brugia malayi antigens and to a major surface protein (WSP) from Wolbachia were analyzed using a multiplex bead assay. Over follow-up, 80 (56%) of the children became antigen-positive and 30 (21%) developed microfilaremia. Detectable antibody responses to Bm14, Bm33, Wb123, and WSP developed in 95%, 100%, 92%, and 29% of children, respectively. With the exception of WSP, the development of antibody responses generally preceded detection of filarial antigen. Our results show that antifilarial antibody responses can serve as an important epidemiological indicator in a sentinel population of young children and thus, may be valuable as tool for surveillance in the context of lymphatic filariasis elimination programs.  相似文献   

9.
Summary A latex bead technique modified for measuring the plaque-forming cell (PFC) response to teratocarcinoma tumor antigens in syngeneic animals is described.With this method one can detect both the primary (IgM) and the secondary (IgG) immune response to tumor antigens. Optimal detection of the PFC response depends on the proper ratio of sheep red blood cells to latex beads and the dose of tumor cell antigen used for immunization. The presence of fetal calf serum interfered with immunization of animals and the coating of the latex beads with the tumor cell antigens. The plaques obtained in response to immunization with teratocarcinoma cell antigens varied in size, probably reflecting the complex immune response to more than one class of antigens on tumor cells.  相似文献   

10.
A latex bead technique modified for measuring the plaque-forming cell (PFC) response to teratocarcinoma tumor antigens in syngeneic animals is described. With this method one can detect both the primary (IgM) and the secondary (IgG) immune response to tumor antigens. Optimal detection of the PFC response depends on the proper ratio of sheep red blood cells to latex beads and the dose of tumor cell antigen used for immunization. The presence of fetal calf serum interfered with immunization of animals and the coating of the latex beads with the tumor cell antigens. The plaques obtained in response to immunization with teratocarcinoma cell antigens varied in size, probably reflecting the complex immune response to more than one class of antigens on tumor cells.  相似文献   

11.
B-cell responses are initiated by the binding of foreign antigens to the clonally distributed B-cell receptors (BCRs) resulting in the triggering of signaling cascades that activate a variety of genes associated with B-cell activation. Although we now understand the molecular nature of the signaling pathways in considerable detail what remains only poorly understood are the mechanisms by which the information that antigen has bound to the BCR ectodomain is transduced across the B-cell membrane to the BCR cytoplasmic domains to trigger signaling. To a large part this gap in knowledge is because of the paucity of techniques to temporally and spatially resolve changes in the behavior of the BCR that occur within several seconds of antigen binding. With the advent of new live-cell imaging technologies we are gaining our first clear views of the events that lead up to the triggering of BCR signaling cascades. These events may provide potential new targets for therapeutic intervention in disease involving hyper or chronic activation of B cells.Specific, high-affinity antibody responses are the result of processes based on clonal selection (reviewed in Rajewsky 1996). In the absence of antigen, individuals generate a B-cell repertoire in which each B cell expresses a single heavy and light chain gene, the product of somatic recombination of variable and constant region gene segments. Self-reactive B cells are removed from the repertoire and when antigen enters the immune system it selects those B cells expressing BCR’s with highest affinity for the antigen. Under the influence of both T cell and innate immune system regulation the antigen-selected B cells are induced to differentiate into short-lived antibody producing cells or enter germinal centers where they undergo the molecularly linked processes of somatic hypermutation and isotype switching. Antigen selection within the germinal centers results in high-affinity memory B cells expressing isotype switched BCRs. These memory B cells account, in large part, for the high titered, high affinity IgG antibody responses observed upon re-exposure to antigen. Thus, we presume that B cells are capable of initiating responses to the universe of foreign antigens to which individuals are exposed and do so through mechanisms that are sensitive to the affinity of the BCR for antigen and by which isotype switched BCRs are more effective. Until recently, the events by which the binding of antigen to the BCRs triggered signaling remained largely unknown due in a large part to the paucity of experimental approaches that were able to provide the spatial and temporal resolution necessary to capture the earliest events that follow the binding of antigens to BCRs that result in triggering the B cell’s signaling cascades. The conventional biochemical techniques that were used so successfully to describe the components of the BCR signaling cascades were too slow to study early events and could not provide spatial information. The application of new live-cell imaging technologies that allow resolution of single molecules over a timeframe of several seconds to the study of antigen-induced B-cell responses is providing the first views of these processes. Here we review progress in understanding the initiation of the BCR signaling using live-cell imaging technologies and how this new knowledge may explain in part the mechanisms that underlie hyper or chronic activation of B cells in autoimmunity and in B-cell cancers.  相似文献   

12.
Epitope-based vaccines provide a new strategy for prophylactic and therapeutic application of pathogen-specific immunity. A critical requirement of this strategy is the identification and selection of T-cell epitopes that act as vaccine targets. This study describes current methodologies for the selection process, with dengue virus as a model system. A combination of publicly available bioinformatics algorithms and computational tools are used to screen and select antigen sequences as potential T-cell epitopes of supertype human leukocyte antigen (HLA) alleles. The selected sequences are tested for biological function by their activation of T-cells of HLA transgenic mice and of pathogen infected subjects. This approach provides an experimental basis for the design of pathogen specific, T-cell epitope-based vaccines that are targeted to majority of the genetic variants of the pathogen, and are effective for a broad range of differences in human leukocyte antigens among the global human population.  相似文献   

13.
Mantle cell lymphoma (MCL) is characterized by an aggressive clinical course and secondary resistance to currently available therapies in most cases. Therefore, despite recent advances in the treatment of this disease, it is still considered to be incurable in the majority of cases. MCL B cells retain their B cell antigen receptor (BCR) expression during and after neoplastic transformation. BCRs in MCL show distinct patterns of antigen selection and ongoing BCR signaling. However, little is known about the involved antigens and the mechanisms leading to lymphomagenesis and lymphoma progression in MCL. Recent preclinical and clinical studies have established a crucial role of the BCR and the potential of inhibiting its signaling in this disease. This has established the B cell antigen receptor signaling cascade as a very promising therapeutic target to improve outcome in MCL alone or in combination with chemo-immunotherapy in recent years.  相似文献   

14.
Human African trypanosomiasis (HAT) is a disease caused by Kinetoplastid infection. Serological tests are useful for epidemiological surveillance. The aim of this study was to develop a multiplex serological assay for HAT to assess the diagnostic value of selected HAT antigens for sero-epidemiological surveillance.We cloned loci encoding eight antigens from Trypanosoma brucei gambiense, expressed the genes in bacterial systems, and purified the resulting proteins. Antigens were subjected to Luminex multiplex assays using sera from HAT and VL patients to assess the antigens' immunodiagnostic potential. Among T. b. gambiense antigens, the 64-kDa and 65-kDa invariant surface glycoproteins (ISGs) and flagellar calcium binding protein (FCaBP) had high sensitivity for sera from T. b. gambiense patients, yielding AUC values of 0.871, 0.737 and 0.858 respectively in receiver operating characteristics (ROC) analysis. The ISG64, ISG65, and FCaBP antigens were partially cross-reactive to sera from Trypanosoma brucei rhodesiense patients. The GM6 antigen was cross-reactive to sera from T. b. rhodesiense patients as well as to sera from VL patients. Furthermore, heterogeneous antibody responses to each individual HAT antigen were observed. Testing for multiple HAT antigens in the same panel allowed specific and sensitive detection. Our results demonstrate the utility of applying multiplex assays for development and evaluation of HAT antigens for use in sero-epidemiological surveillance.  相似文献   

15.
Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world. Survival of CLL cells depends on their close contact with stromal cells in lymphatic tissues, bone marrow and blood. This microenvironmental regulation of CLL cell survival involves the stromal secretion of chemo- and cytokines as well as the expression of adhesion molecules. Since CLL survival may also be driven by antigenic stimulation through the B-cell antigen receptor (BCR), we explored the hypothesis that these processes may be linked to each other. We tested if stromal cells could serve as an antigen reservoir for CLL cells, thus promoting CLL cell survival by stimulation through the BCR. As a proof of principle, we found that two CLL BCRs with a common stereotyped heavy chain complementarity-determining region 3 (previously characterized as "subset 1") recognize antigens highly expressed in stromal cells--vimentin and calreticulin. Both antigens are well-documented targets of autoantibodies in autoimmune disorders. We demonstrated that vimentin is displayed on the surface of viable stromal cells and that it is present and bound by the stereotyped CLL BCR in CLL-stroma co-culture supernatant. Blocking the vimentin antigen by recombinant soluble CLL BCR under CLL-stromal cell co-culture conditions reduces stroma-mediated anti-apoptotic effects by 20-45%. We therefore conclude that CLL BCR stimulation by stroma-derived antigens can contribute to the protective effect that the stroma exerts on CLL cells. This finding sheds a new light on the understanding of the pathobiology of this so far mostly incurable disease.  相似文献   

16.
Helicobacter pylori vaccine development based on combined subproteome analysis   总被引:11,自引:0,他引:11  
Bumann D  Jungblut PR  Meyer TF 《Proteomics》2004,4(10):2843-2848
Effective vaccines could provide long-term solutions to many important infectious diseases, however, vaccine development has been hampered by the slow identification of protective antigens. Proteomics provides global information about relevant antigen properties and thus might be ideally suited for identifying promising vaccine antigen subsets. Helicobacter pylori proteomics data are stored in a proteomics database (http://www.mpiib-berlin.mpg.de/2D-PAGE/). In this review, we describe how a combined Helicobacter subproteome analysis resulted in the rapid identification of novel, highly protective antigens. This illustrates the great potential of pathogen proteomics for vaccine development.  相似文献   

17.
Fu G  Miles A  Alphey L 《PloS one》2012,7(1):e30340
Probe-based PCR is widely used for SNP (single nucleotide polymorphism) genotyping and pathogen nucleic acid detection due to its simplicity, sensitivity and cost-effectiveness. However, the multiplex capability of hydrolysis probe-based PCR is normally limited to one target (pathogen or allele) per fluorescence channel. Current fluorescence PCR machines typically have 4–6 channels. We present a strategy permitting the multiplex detection of multiple targets in a single detection channel. The technique is named Multiplex Probe Amplification (MPA). Polymorphisms of the CYP2C9 gene (cytochrome P450, family 2, subfamily C, polypeptide 9, CYP2C9*2) and human papillomavirus sequences HPV16, 18, 31, 52 and 59 were chosen as model targets for testing MPA. The allele status of the CYP2C9*2 determined by MPA was entirely concordant with the reference TaqMan® SNP Genotyping Assays. The four HPV strain sequences could be independently detected in a single fluorescence detection channel. The results validate the multiplex capacity, the simplicity and accuracy of MPA for SNP genotyping and multiplex detection using different probes labeled with the same fluorophore. The technique offers a new way to multiplex in a single detection channel of a closed-tube PCR.  相似文献   

18.
Shigella is a well-known human pathogen causing dysentery and their typing is solely based on the O antigens. We investigated the chemical structure and gene cluster of Shigella boydii type 16 O antigen. As judged by sugar and methylation analyses along with NMR spectroscopy data, the O antigen has an O-acetylated branched pentasaccharide repeating O unit, which consists of two D-mannose residues (D-Man), one residue each of d-glucuronic acid (D-GlcA), N-acetylglucosamine (D-GlcNAc) and D-galactose (D-Gal), and the structure of the O unit was established. The O antigen gene cluster of S. boydii type 16 was identified and shown to contain putative genes for the synthesis of GDP-D-Man, genes encoding sugar transferases, O unit flippase (Wzx) and O antigen polymerase (Wzy) as expected. The function of the wzy gene was characterized by mutation test. Genes specific to S. boydii type 16 O antigen gene cluster were identified by screening 186 Escherichia coli and Shigella type strains, and can be used to develop PCR assays for detection of type 16 strains.  相似文献   

19.
Cytotoxic CD8(+) T cells recognize the antigenic peptides presented by class I major histocompatibility complex (MHC) molecules. These T cells have key roles in infectious diseases, autoimmunity and tumor immunology, but there is currently no unbiased method for the reliable identification of their target antigens. This is because of the low affinities of antigen-specific T cell receptors (TCR) to their target MHC-peptide complexes, the polyspecificity of these TCRs and the requirement that these TCRs recognize protein antigens that have been processed by antigen-presenting cells (APCs). Here we describe a technology for the unbiased identification of the antigenic peptides presented by MHC class I molecules. The technology uses plasmid-encoded combinatorial peptide libraries and a single-cell detection system. We validated this approach using a well-characterized influenza-virus–specific TCR, MHC and peptide combination. Single APCs carrying antigenic peptides can be detected among several million APCs that carry irrelevant peptides. The identified peptide sequences showed a converging pattern of mimotopes that revealed the parent influenza antigen. This technique should be generally applicable to the identification of disease-relevant T cell antigens.  相似文献   

20.
Norovirus, Rotavirus group A, the Hepatitis A virus, and Coxsackievirus are all common causes of gastroenteritis. Conventional diagnoses of these causative agents are based on antigen detection and electron microscopy. To improve the diagnostic potential for viral gastroenteritis, internally controlled multiplex real-time polymerase chain reaction (PCR) methods have been recently developed. In this study, individual real-time PCRs were developed and optimized for specific detections of Norovirus genogroup I, Norovirus genogroup II, Rotavirus group A, the Hepatitis A virus, and Coxsackievirus group B1. Subsequently, individual PCRs were combined with multiplex PCR reactions. In general, multiplex real-time PCR assays showed comparable sensitivities and specificities with individual assays. A retrospective clinical evaluation showed increased pathogen detection in 29% of samples using conventional PCR methods. Prospective clinical evaluations were detected in 123 of the 227 (54%) total samples used in the multiplex real-time PCR analysis. The Norovirus genogroup II was found most frequently (23%), followed by Rotavirus (20%), the Hepatitis A virus (4.5%), Coxsackievirus (3.5%), and Norovirus genogroup I (2.6%). Internally controlled multiplex real-time PCR assays for the simultaneous detection of Rotavirus, Coxsackievirus group B, the Hepatitis A virus, and Norovirus genogroups I and II showed significant improvement in the diagnosis of viral gastroenteritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号