首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ce3+‐doped calcium aluminosilicate phosphor was prepared by a combustion‐assisted method at an initiating temperature of 600°C. Structural characterization was carried out using X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The absorption spectra of Ca2Al2SiO7:Ce3+ showed an absorption edge at 230 nm. The optical characterization of Ca2Al2SiO7:Ce3+ phosphor was investigated in a fracto‐mechanoluminescence (FML) and thermoluminescence (TL) study. The peak of ML intensity increased as the height of impact of the moving piston increased. The TL intensity of Ca2Al2SiO7:Ce3+ was recorded for different exposure times of UV and γ‐irradiation and it was observed that TL intensity was maximum for a UV irradiation time of 30 min and for a γ‐dose of 1180 Gy. The TL intensity had three peaks for UV irradiation at temperatures 82°C, 125°C and 203°C. Also the TL intensity had a single peak at 152°C for γ‐irradiation. The TL and ML emission spectra of Ca2Al2SiO7:Ce3+ phosphor showed maximum emission at 400 nm. The possible mechanisms involved in the TL and ML processes of the Ca2Al2SiO7:Ce3+ phosphor are also explained. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This paper focuses on an optical study of a Tb3+/Bi3+‐doped and Sm3+/La3+‐ doped Ca2Al2SiO7 phosphor synthesized using combustion methods. Here, Ca2Al2SiO7:Sm3+ showed a red emission band under visible light excitation but, when it co‐doped with La3+ ions, the emission intensity was further enhanced. Ca2Al2SiO7:Tb3+ shows the characteristic green emission band under near‐ultraviolet light excitation wavelengths, co‐doping with Bi3+ ions produced enhanced photoluminescence intensity with better colour tunable properties. The phosphor exhibited better phase purity and crystallinity, confirmed by X‐ray diffraction. Binding energies of Ca(2p), Al(2p), Si(2p), O(1s) were studied using X‐ray photoelectron spectroscopy. The reported phosphor may be a promising visible light excited red phosphor for light‐emitting diodes and energy conversion devices.  相似文献   

3.
Ca2MgSi2O7:Eu2+,Dy3+ phosphor was prepared by the solid‐state reaction method under a weak reducing atmosphere. The obtained phosphor was characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FT‐IR) techniques. The phase structure of the Ca2MgSi2O7:Eu2+,Dy3+ phosphor was akermanite type, which is a member of the melilite group. The surface morphology of the sintered phosphor was not uniform and phosphors aggregated tightly. EDX and FT‐IR spectra confirm the elements present in the Ca2MgSi2O7:Eu2+,Dy3+ phosphor. Under UV excitation, a broadband emission spectrum was found. The emission spectra observed in the green region centered at 535 nm, which is due to the 4f–5d transition. The mechanoluminescence (ML) intensity of the prepared phosphor increased linearly with increases in the mechanical load. The ML spectra were similar to the photoluminescence (PL), which indicates that ML is emitted from the same emitting center of Eu2+ ions as PL. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Piyush Jha 《Luminescence》2016,31(7):1302-1305
This paper reports the luminescence behavior of Sr0.097Al2O4:Eu0.01,Dy0.02 phosphors under UV‐irradiation. The effect of UV‐irradiation on afterglow (AG), thermoluminescence (TL) and mechanoluminescence (ML) of Sr0.097Al2O4:Eu0.01,Dy0.02 phosphors is investigated. The space group of Sr0.097Al2O4:Eu0.01,Dy0.02 phosphors is monoclinic P21. The prepared phosphors exhibit a long AG, intense TL and ML. It is found that the AG, ML intensity and TL increase with increasing duration of irradiation time. The ML intensity decreases with successive impact of the load onto the phosphors, whereby the diminished ML intensity can be recovered by UV‐irradiation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
We report synthesis of a cerium‐activated strontium pyrophosphate (Sr2P2O7) phosphor using a high‐temperature combustion method. Samples were characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), photoluminescence (PL) and thermoluminescence (TL). The XRD pattern reveals that Sr2P2O7 has an α‐phase with crystallization in the orthorhombic space group of Pnam. The IR spectrum of α‐Sr2P2O7 displays characteristic bands at 746 and 1190 cm‐1 corresponding to the absorption of (P2O7)‐4. PL emission spectra exhibit a broad emission band around 376 nm in the near‐UV region due to the allowed 5d–4f transition of cerium and suggest its applications in a UV light‐emitting diode (LED) source. PL also reveals that the emission originates from 5d–4f transition of Ce3+ and intensity increases with doping concentration. TL measurements made after X‐ray irradiation, manifest a single intense glow peak at around 192°C, which suggests that this is an outstanding candidate for dosimetry applications. The kinetic parameters, activation energy and frequency factor of the glow curve were calculated using different analysis methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Ca2MgSi2O7:Ce3+, Ca2MgSi2O7:Eu2+ and Ca2MgSi2O7:Eu2+,Ce3+ phosphors were prepared using the solid‐state reaction method. The crystal structures of the sintered phosphors were of melilite type, which has a tetragonal crystallography. The chemical compositions of the sintered phosphors was confirmed by energy dispersive X‐ray spectroscopy. The different thermoluminescence kinetic parameters [activation energy (E), frequency factor (s) and order of the kinetics (b)] of these phosphors were evaluated and compared using the peak shape method. Under ultraviolet excitation, the emission spectra of both Ca2MgSi2O7:Eu2+ and Ca2MgSi2O7:Eu2+,Ce3+ phosphors were composed of a broad emission band peaking at 530 nm. When the Ca2MgSi2O7:Eu2+ phosphor is co‐doped with Ce3+ ions, photoluminescence, afterglow and mechanoluminescence intensity was strongly enhanced. Ca2MgSi2O7:Eu2+ showed some afterglow with a short persist time. On incorporation of Ce3+, efficient energy transfer from Ce3+ to Eu2+ was found and the emission intensity of Eu2+ was enhanced. The mechanoluminescence intensities of Ca2MgSi2O7:Ce3+, Ca2MgSi2O7:Eu2+ and Ca2MgSi2O7:Eu2+,Ce3+ phosphors increased proportionally increased with the increase in impact velocity, which suggests that these phosphors can be used as sensors to detect stress in an object.  相似文献   

7.
Single crystals of KCl doped with Ce3+,Tb3+ were grown using the Bridgeman–Stockbarger technique. Thermoluminescence (TL), optical absorption, photoluminescence (PL), photo‐stimulated luminescence (PSL), and thermal‐stimulated luminescence (TSL) properties were studied after γ‐ray irradiation at room temperature. The glow curve of the γ‐ray‐irradiated crystal exhibits three peaks at 420, 470 and 525 K. F‐Light bleaching (560 nm) leads to a drastic change in the TL glow curve. The optical absorption measurements indicate that F‐ and V‐centres are formed in the crystal during γ‐ray irradiation. It was attempted to incorporate a broad band of cerium activator into the narrow band of terbium in the KCl host without a reduction in the emission intensity. Cerium co‐doped KCl:Tb crystals showed broad band emission due to the d–f transition of cerium and a reduction in the intensity of the emission peak due to 5D37Fj (j = 3, 4) transition of terbium, when excited at 330 nm. These results support that energy transfer occurs from cerium to terbium in the KCl host. Co‐doping Ce3+ ions greatly intensified the excitation peak at 339 nm for the emission at 400 nm of Tb3+. The emission due to Tb3+ ions was confirmed by PSL and TSL spectra. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A europium (Eu)‐doped di‐calcium magnesium di‐silicate phosphor, Ca2MgSi2O7:Eu2+, was prepared using a solid‐state reaction method. The phase structure, particle size, surface morphology, elemental analysis, different stretching mode and luminescence properties were analyzed by X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) with energy dispersive X‐ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, photoluminescence (PL) and mechanoluminescence (ML). The phase structure of Ca2MgSi2O7:Eu2+ was an akermanite‐type structure, which belongs to the tetragonal crystallography with space group P4?21m; this structure is a member of the melilite group and forms a layered compound. The surface of the prepared phosphor was not found to be uniform and particle distribution was in the nanometer range. EDX and FTIR confirm the components of Eu2+‐doped Ca2MgSi2O7 phosphor. Under UV excitation, the main emission peak appeared at 530 nm, belonging to the broad emission ascribed to the 4f65d1→4f7 transition of Eu2+. The ML intensity of the prepared phosphor increased linearly with increasing impact velocity. A CIE color chromaticity diagram and ML spectrum confirmed that the prepared Ca2MgSi2O7:Eu2+ phosphor would emit green color and the ML spectrum was similar to that of PL, which indicated that ML is emitted from the same center of Eu2+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
We report the thermoluminescence properties of Sr1.96Al2SiO7:Eu0.04 and Sr1.92Al2SiO7:Eu0.04Dy0.04 phosphors. These phosphors were prepared by a high‐temperature solid‐state reaction method. The prepared phosphors were characterized by X‐ray diffraction. A 254 nm source was used for ultraviolet (UV) irradiation and a 60Co source was used for γ‐irradiation. The effect of heating rate and UV‐exposure were examined. The thermoluminescence temperature shifts to higher values with increasing heating rate and thermoluminescence intensity increases with increasing UV exposure time. The trapping parameters such as activation energy (E), order of kinetics and frequency factor (s) were calculated by peak shape method. The effect of γ‐ and UV‐irradiation on thermoluminescence studies was also examined.  相似文献   

10.
Dy3+ and Eu3+ activated Ca3Y2Si3O12 phosphors were synthesized by the solid‐state synthesis method. The phosphors were characterized by X‐ray diffraction (XRD), mechanoluminescence (ML), thermoluminescence (TL) and photoluminescence (PL) to determine structure and luminescence. For ML glow curves, only one peak was observed, as only one type of luminescence centre was formed during irradiation. The Ca3Y2Si3O12:Dy3+ TL glow curve showed a single peak at 151.55°C and the Ca3Y2Si3O12:Eu3+ TL glow curve peaked at 323°C with a small peak at 192°C, indicating that two types of traps were activated. The trapping parameters for both the samples were calculated using Chen's peak shape method. Dy3+‐activated Ca3Y2Si3O12 showed emission at 482 and 574 nm when excited by a 351 nm excitation wavelength, whereas the Eu3+‐activated Ca3Y2Si3O12 phosphor PL emission spectra showed emission peaks at 613 nm, 591 nm, 580 nm when excited at 395 nm wavelength. When excited at 466 nm, prominent emission peaks were observed at their respective positions with very slight shifts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A series of Ca2Mg0.25Al1.5Si1.25O7:Ce3+/Eu2+/Tb3+ phosphors was been prepared via a conventional high temperature solid‐state reaction and their luminescence properties were studied. The emission spectra of Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Eu2+ and Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Tb3+ phosphors show not only a band due to Ce3+ ions (409 nm) but also as a band due to Eu2+ (520 nm) and Tb3+ (542 nm) ions. More importantly, the effective energy transfer from Ce3+ to Eu2+ and Tb3+ ions was confirmed and investigated by emission/excitation spectra and luminescent decay behaviors. Furthermore, the energy level scheme and energy transfer mechanism were investigated and were demonstrated to be of resonant type via dipole–dipole (Ce3+ to Eu2+) and dipole–quadrupole (Ce3+ to Tb3+) reactions, respectively. Under excitation at 350 nm, the emitting color could be changed from blue to green by adjusting the relative doping concentration of Ce3+ and Eu2+ ions as well as Ce3+ and Tb3+ ions. The above results indicate that Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Eu2+/Tb3+ are promising single‐phase blue‐to‐green phosphors for application in phosphor conversion white‐light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Ca3SiO4Cl2 co‐doped with Ce3+,Eu2+ was prepared by high temperature reaction. The structure, luminescent properties and the energy transfer process of Ca3SiO4Cl2: Ce3+,Eu2+ were investigated. Eu2+ ions can give enhanced green emission through Ce3+ → Eu2+ energy transfer in these phosphors. The green phosphor Ca2.9775SiO4Cl2:0.0045Ce3+,0.018Eu2+ showed intense green emission with broader excitation in the near‐ultraviolet light range. A green light‐emitting diode (LED) based on this phosphor was made, and bright green light from this green LED could be observed by the naked eye under 20 mA current excitation. Hence it is considered to be a good candidate for the green component of a three‐band white LED. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A new Na3Ca2(SO4)3F: Ce3+ phosphor synthesized by a solid state diffusion method is reported. The photoluminescence study showed a single high intensity emission peak at 307 nm wavelength when excited by UV light of wavelength 278 nm. An unresolved peak of comparatively less intensity was also observed at 357 nm along with the main peak. The characteristic emission of dopant Ce in Na3Ca2(SO4)3F phosphor clearly indicated that it resides in the host lattice in trivalent form. The emission peak can be attributed to 5d → 4f transition of rare earth Ce3+. The prepared sample is also characterized for its thermoluminescence properties. The TL glow curve of prepared sample showed a single broad peak at 147°C. The trapping parameters are also evaluated by Chen's method. The values of trap depth (E) and frequency factor (s) were found to be 0.64 ± 0.002 eV and 1.43 × 107 s–1 respectively. The study of PL and TL along with evaluation of trapping parameters has been undertaken and discussed for the first time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Using a high‐temperature solid‐state reaction, the chlorine in Ba2YB2O6Cl is gradually replaced by F, and a new compound with the nominal chemical formula Ba2YB2O6F and two phosphors doped with Ce3+ and Eu3+, respectively, are obtained. X‐Ray diffraction and photoluminescence spectroscopy are used to characterize the as‐synthesized samples. The as‐synthesized Ba2YB2O6Cl exhibits bright blue emission in the spectral range ~ 330–410 nm with a maximum around 363 nm under X‐ray or UV excitation. Ba2YB2O6F:0.01Ce3+ exhibits blue emission in the range ~ 340–570 nm with a maximum around 383 nm. Ba2YB2O6F:0.01Eu3+ exhibits a predominantly 5D07 F2 emission (~610 nm) and the relative intensities of the 5D07 F0,1,2 emissions are tunable under different wavelength UV excitation. The luminescence behaviors of the two phosphors are explained simply in terms of the host composition and site occupancy probability of Ce3+ and Eu3+, respectively. The results indicate that these phosphors have potential application as a blue phosphor or as a red phosphor. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Ce3+/Eu2+ co‐doped Na3Ca6(PO4)5 phosphors were prepared using a combustion‐assisted synthesis method. X‐Ray powder diffraction (XRD) analysis confirmed the formation of a Na3Ca6(PO4)5 crystal phase. Na3Ca6(PO4)5:Eu2+ phosphors have an efficient bluish‐green emission band that peaks at 489 nm, whereas Ce3+‐doped Na3Ca6(PO4)5 showed a bright emission band at 391 nm. Analysis of the experimental results suggests that enhancement of the Eu2+ emission intensity in co‐doped Na3Ca6(PO4)5:Eu2+,Ce3+ phosphors is due to a resonance‐type energy transfer from Ce3+ to Eu2+ ions, which is predominantly governed by an exchange interaction mechanism. These results indicate that Ce3+/Eu2+ co‐doped Na3Ca6(PO4)5 is potentially useful as a highly efficient, bluish‐green emitting, UV‐convertible phosphor for white‐light‐emitting diodes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Y2O3:Tm3+ and Li+ co‐doped Y2O3:Tm3+ nanopowders were synthesized using the solution combustion method for possible application in ultraviolet (UV) light dosimetry. X‐ray diffraction revealed the crystallite sizes to be in the range 21–44 nm and 30–121 nm using the Scherrer equation and the W‐H plot relationship, respectively. Field emission scanning electron microscopy confirmed that, after co‐doping with 4 mol% concentration of Li+, the particles were spherical in nature with an average size of ~30 nm. Fourier transformed infrared spectroscopy results showed bands at wavenumbers of 556, 1499, 1704, 2342, 2358, 2973, 3433, and 3610 cm?1 that corresponded to the stretching and bending vibrations of Y–O, C=O and O–H. Thermoluminescence (TL) glow peaks for Y2O3:Tm3+ nanophosphors observed at 399 and 590 K were attributed to oxygen defects caused using UV irradiation. These oxygen defects firstly resulted in an increased prominent peak TL intensity for up to 270 min of irradiation and then a decrease. This was attributed to the presence of oxygen defect clusters that caused a reduction in recombination centres. The Li+ co‐doped sample showed peaks at 356, 430, and 583 K and its intensity sublinearly increased up to 90 min and then thereafter decreased. The TL trapping parameters were calculated using computerized glow curve deconvolution methods. The Li+ co‐doped sample exhibited less fading and high trap density under the UV radiation.  相似文献   

17.
The individual emission and energy transfer between Ce3+ and Eu2+ or Dy3+ in BaCa(SO4)2 mixed alkaline earth sulfate phosphor prepared using a co‐precipitation method is described. The phosphor was characterized by X‐ray diffraction (XRD) and photoluminescence (PL) studies and doped by Ce;Eu and Dy rare earths. All phosphors showed excellent blue–orange emission on excitation with UV light. PL measurements reveal that the emission intensity of Eu2+ or Dy3+ dopants is greater than when they are co‐doped with Ce3+. An efficient Ce3+ → Eu2+ [2T2g(4f65d) → 8S7/2(4f7)] and Ce3+ → Dy3+ (4 F9/26H15/2 and 4 F9/26H13/2) energy transfer takes place in the BaCa(SO4)2 host. A strong blue emission peak was observed at 462 nm for Eu2+ ions and an orange emission peak at 574 nm for Dy3+ ions. Hence, this phosphor may be used as a lamp phosphor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
White light‐emitting diodes (LEDs) for green lighting are new solutions for energy saving and environmental protection. Ca3SiO4Cl2:Ce,Eu is an efficient phosphor for white LEDs. Effective energy transfer from Ce3+ to Eu2+ occurs in Ca3SiO4Cl2:Ce,Eu due to good spectrum overlap between the emission band of Ca3SiO4Cl2:Ce and the excitation band of Ca3SiO4Cl2:Eu, and hues vary systematically from blue to green at different Ce concentrations. A great improvement in the luminescent property of Ca3SiO4Cl2:Eu has been observed on Ce3+ doping, which is attributed to energy transfer from Ce3+ to Eu2+ and an increase in the number of luminescent centers (Eu2+) on Ce doping. The optimal sample has a quantum efficiency of up to 75%, and can be an efficient green phosphor for white LEDs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A blue CaMgSi2O6:Eu2+ phosphor was prepared by the solid‐state reaction method and the phosphor characterized in terms of crystal structure, particle size, photoluminescence (PL), thermoluminescence (TL) and mechanoluminescence (ML) properties using X‐ray diffraction (XRD), transmission electron microscopy (TEM), PL spectroscopy, TLD reader and ML impact technique. The XRD result shows that phosphor is formed in a single phase and has a monoclinic structure with the space group C2/c. Furthermore, the PL excitation spectra of Eu2+‐doped CaMgSi2O6 phosphor showed a strong band peak at 356 nm and the PL emission spectrum has a peak at 450 nm. The depths and frequency factors of trap centers were calculated using the TL glow curve by deconvolution method in which the trap depths were found to be 0.48 and 0.61 eV. The formation of CaMgSi2O6:Eu2+ phosphor was confirmed by Fourier transform infrared spectroscopy. The ML intensity increased linearly with the impact velocity of the piston used to deform the phosphor. It was shown that the local piezoelectricity‐induced electron bombardment model is responsible for the ML emission. Finally, the optical properties of CaMgSi2O6:Eu2+ phosphors are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Ca2Al2O5:Eu3+, Ca2Al2O5:Dy3+ and Ca2Al2O5:Tb3+ phosphors were synthesized using a combustion synthesis method. The prepared phosphors were characterized by X‐ray powder diffraction for phase purity, by scanning electron microscopy for morphology, and by photoluminescence for emission and excitation measurements. The Ca2Al2O5:Eu3+ phosphors could be efficiently excited at 396 nm and showed red emission at 594 nm and 616 nm due to 5D0 → 7F1 and 5D0 → 7F2 transitions. Dy3+‐doped phosphors showed blue emission at 482 nm and yellow emission at 573 nm. Ca2Al2O5:Tb3+ phosphors showed emission at 545 nm when excited at 352 nm. Concentration quenching occurred in both Eu3+ and Dy3+phosphors at 0.5 mol%. Photoluminescence results suggested that the aluminate‐based phosphor could be a potential candidate for application in environmentally friendly based lighting technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号