首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Microcarriers are synthetic particles used in bioreactor-based cell manufacturing of anchorage-dependent cells to promote proliferation at efficient physical volumes, mainly by increasing the surface area-to-volume ratio. Mesenchymal stromal cells (MSCs) are adherent cells that are used for numerous clinical trials of autologous and allogeneic cell therapy, thus requiring avenues for large-scale cell production at efficiently low volumes and cost. Here, a dissolvable gelatin-based microcarrier is developed for MSC expansion. This novel microcarrier shows comparable cell attachment efficiency and proliferation rate when compared to several commercial microcarriers, but with higher harvesting yield due to the direct dissolution of microcarrier particles and thus reduced cell loss at the cell harvesting step. Furthermore, gene expression and in vitro differentiation suggest that MSCs cultured on gelatin microcarriers maintain trilineage differentiation with similar adipogenic differentiation efficiency and higher chondrogenic and osteogenic differentiation efficiency when compared to MSCs cultured on 2D planar polystyrene tissue culture flask; on the contrary, MSCs cultured on conventional microcarriers appear to be bipotent along osteochondral lineages whereby adipogenic differentiation potential is impeded. These results suggest that these gelatin microcarriers are suitable for MSC culture and expansion, and can also potentially be extended for other types of anchorage-dependent cells.  相似文献   

2.
Human mesenchymal stromal cells (hMSCs) cells are attractive for applications in tissue engineering and cell therapy. Because of the low availability of hMSCs in tissues and the high doses of hMSCs necessary for infusion, scalable and cost‐effective technologies for in vitro cell expansion are needed to produce MSCs while maintaining their functional, immunophenotypic and cytogenetic characteristics. Microcarrier‐based culture systems are a good alternative to traditional systems for hMSC expansion. The aim of the present study was to develop a scalable bioprocess for the expansion of human bone marrow mesenchymal stromal cells (hBM‐MSCs) on microcarriers to optimize growth and functional harvesting. In general, the results obtained demonstrated the feasibility of expanding hBM‐MSCs using microcarrier technology. The maximum cell concentration (n = 5) was ~4.82 ± 1.18 × 105 cell mL?1 at day 7, representing a 3.9‐fold increase relative to the amount of inoculated cells. At the end of culture, 87.2% of the cells could be harvested (viability = 95%). Cell metabolism analysis revealed that there was no depletion of important nutrients such as glucose and glutamine during culture, and neither lactate nor ammonia byproducts were formed at inhibitory concentrations. The cells that were recovered after the expansion retained their immunophenotypic and functional characteristics. These results represent an important step toward the implementation of a GMP‐compliant large‐scale production system for hMSCs for cellular therapy. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:889–895, 2014  相似文献   

3.
The kinetics of mammalian cell growth in a microcarrier culture are affected by the distribution of cells on microcarriers. It has been shown previously that a critical cell number per microcarrier is required for the growth of FS-4 cells on microcarriers. It is advantageous to alter the cell distribution on microcarriers to allow for a larger fraction of microcarriers to acquire enough cells to initiate normal growth. This can be achieved by selecting the diameter of the microcarriers employed. It has also been shown previously that the critical cell number could be reduced by choosing a better culture medium to support low density growth. However, even if all cells inoculated into a culture are capable of growing to confluence, it is still necessary to select the microcarrier diameter ration ally to improve the growth kinetics. The method of selecting the microcarrier diameter is discussed. By employing a improved medium as well as using microcarriers of selected diameter, the multiplication ratio was in creased to 15- to 16-fold for FS-4 cells, as opposed to 3- to 4-fold typically obtained in a batch culture.  相似文献   

4.
A cellular automaton model for microcarrier cultures   总被引:2,自引:0,他引:2  
In order to achieve high cell densities anchoragedependent cells are commonly cultured on microcarriers, where spatial restrictions to cell growth complicates the determination of the growth kinetics. To design and operate large-scale bioreactors for microcarrier cultures, the effect of this spatial restriction to growth, referred to as contact inhibition, must be decoupled from the growth kinetics. In this article, a cellular automaton approach is recommended to model the growth of anchorage-dependent cells on microcarriers. The proposed model is simple to apply yet provides an accurate representation of contact-inhibited cell growth on microcarriers. The distribution of the number of neighboring cells per cell, microcarrier surface areas, and inoculation densities are taken into account with this model. When compared with experimental data for Vero and MRC-5 microcarrier cultures, the cellular automaton predictions were very good. Furthermore, the model can be used to generate contact-inhibition growth curves to decouple the effect of contact-inhibition from growth kinetics. With this information, the accurate determination of kinetic parameters, such as nutrient uptake rates, and the effects of other environmental factors, such as toxin levels, may be determined. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
For the cultivation of mammalian cells on microcarriers a minimum inoculum concentration is required to initiate cell attachment and subsequent cell growth. A critical cell number model has been proposed to elucidate the mechanism of the inoculum requirement. In this model it was hypothesized that after inoculation a critical number of cells per microcarrier is required for normal growth to occur; failure to acquire enough cells will impede cell growth. This critical cell number model was expressed mathematically and used to simulate cell distribution and growth on microcarriers under different cultivation conditions. By comparing the simulated growth kinetics with the experimental results, the actual critical cell number per microcarrier was identified. The critical number could be reduced by employing an improved medium for the cultivation.  相似文献   

6.
Small patches of polyethylene terephthalate (PET) nonwoven microfibrous matrices have excellent properties and can be used as carriers for culturing cells in agitated bioreactors. The microfibrous carriers are highly porous and can provide large surface areas and three‐dimensional space for high‐density cell growth. In this work, the microfibrous carriers and several commercial microcarriers were used to study cell attachment kinetics, growth, and monoclonal antibody production with Chinese hamster ovary cells. Compared with commercial solid and macroporous microcarriers, the microfibrous carriers showed better or similar performances. In addition, the microfibrous carriers provided a wider operable range for agitation rate than commercial microcarriers, effectively protecting cells from shear stress and carrier collisions. In addition, the microfibrous carriers are available at a much lower cost than commercial microcarriers, providing an attractive alternative to microcarrier‐based large‐scale cell cultures. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

7.
Mesenchymal stem/stromal cells (MSC) are being widely explored as promising candidates for cell‐based therapies. Among the different human MSC origins exploited, umbilical cord represents an attractive and readily available source of MSC that involves a non‐invasive collection procedure. In order to achieve relevant cell numbers of human MSC for clinical applications, it is crucial to develop scalable culture systems that allow bioprocess control and monitoring, combined with the use of serum/xenogeneic (xeno)‐free culture media. In the present study, we firstly established a spinner flask culture system combining gelatin‐based Cultispher®S microcarriers and xeno‐free culture medium for the expansion of umbilical cord matrix (UCM)‐derived MSC. This system enabled the production of 2.4 (±1.1) x105 cells/mL (n = 4) after 5 days of culture, corresponding to a 5.3 (±1.6)‐fold increase in cell number. The established protocol was then implemented in a stirred‐tank bioreactor (800 mL working volume) (n = 3) yielding 115 million cells after 4 days. Upon expansion under stirred conditions, cells retained their differentiation ability and immunomodulatory potential. The development of a scalable microcarrier‐based stirred culture system, using xeno‐free culture medium that suits the intrinsic features of UCM‐derived MSC represents an important step towards a GMP compliant large‐scale production platform for these promising cell therapy candidates.  相似文献   

8.
The emerging paradigm that MSCs are immune privileged has fostered the use of “off-the-shelf” allogeneic MSC-based therapies in human clinical trials. However, this approach ignores studies in experimental animals wherein transplantation of MSCs across MHC boundaries elicits measurable allo-immune responses. To determine if MSCs are hypo-immunogeneic, we characterized the immune response in rhesus macaques following intracranial administration of allogeneic vs. autologous MSCs. This analysis revealed unambiguous evidence of productive allo-recognition based on expansion of NK, B and T cell subsets in peripheral blood and detection of allo-specific antibodies in animals administered allogeneic but not autologous MSCs. Moreover, the degree of MHC class I and II mismatch between the MSC donor and recipient significantly influenced the magnitude and nature of the allo-immune response. Consistent with these findings, real-time PCR analysis of brain tissue from female recipients administered varying doses of male, allogeneic MSCs revealed a significant inverse correlation between MSC engraftment levels and cell dose. Changes in post-transplant neutrophil and lymphocyte counts also correlated with dose and were predictive of overall MSC engraftment levels. However, secondary antigen challenge failed to elicit a measurable immune response in allogeneic recipients. Finally, extensive behavior testing of animals revealed no main effect of cell dose on motor skills, social development, or temperament. Collectively, these data indicate that allogeneic MSCs are weakly immunogenic when transplanted across MHC boundaries in rhesus macaques and this negatively impacts durable engraftment levels. Therefore the use of unrelated donor MSCs should be carefully evaluated in human patients.  相似文献   

9.
In order to apply newly developed non‐invasive in‐situ microscope systems for the monitoring of microcarrier‐based cultivations, appropriate image analysis systems must be available. Thus a simple, but effective greyscale distribution scan algorithm was tested for the evaluation of images generated by either a standard phase‐contrast microscope or an in‐situ microscope. The images were analyzed according to their greyscale pattern in order to examine whether the greyscale distribution is a possibility to gain information about the covering ratio. The mouse fibroblast cell line (NIH–3T3) was grown on different microcarrier spheres. At first, different microcarriers were tested with respect to their suitability for microscopic observation. In a second part, the phase‐contrast pictures and in‐situ microscope pictures of the microcarrier were separately analyzed using the histogram function of CorelPhotopaint, which analyzes the greyscale distribution within the chosen area. Due to the low optical density of the polydextrin matrix, the images of Cytodex 1 microcarriers proved to be an ideal model for the image analysis. Significant differences in the greyscale distribution of this microcarrier without cells and with increased cell density were observed. Therefore a relationship between the cell density on the microcarriers and the greyscale pattern can be assumed. After automating this image analysis and calibrating the cell number/greyscale pattern relationship, it should be possible to analyze the plating efficiency/covering ratio on the microcarrier online by in‐situ microscopy.  相似文献   

10.
Adult stem cells are considered multipotent. Especially, human bone marrow‐derived mesenchymal stem cells (hBM‐MSCs) have the potential to differentiate into nerve type cells. Electromagnetic fields (EMFs) are widely distributed in the environment, and recently there have been many reports on the biological effects of EMFs. hBM‐MSCs are weak and sensitive pluripotent stem cells, therefore extremely low frequency‐electromagnetic fields (ELF‐EMFs) could be affect the changes of biological functions within the cells. In our experiments, ELF‐EMFs inhibited the growth of hBM‐MSCs in 12 days exposure. Their gene level was changed and expression of the neural stem cell marker like nestin was decreased but the neural cell markers like MAP2, NEUROD1, NF‐L, and Tau were induced. In immunofluorescence study, we confirmed the expression of each protein of neural cells. And also both oligodendrocyte and astrocyte related proteins like O4 and GFAP were expressed by ELF‐EMFs. We suggest that EMFs can induce neural differentiation in BM‐MSCs without any chemicals or differentiation factors. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

11.
An assay for measuring the number of adherent cells on microcarriers that is independent from dilution errors in sample preparation was used to investigate attachment dynamics and cell growth. It could be shown that the recovery of seeded cells is a function of the specific rates of cell attachment and cell death, and finally a function of the initial cell‐to‐bead ratio. An unstructured, segregated population balance model was developed that considers individual classes of microcarriers covered by 1–220 cells/bead. The model describes the distribution of initially attached cells and their growth in a microcarrier system. The model distinguishes between subpopulations of dividing and nondividing cells and describes in a detailed way cell attachment, cell growth, density‐dependent growth inhibition, and basic metabolism of Madin‐Darby canine kidney cells used in influenza vaccine manufacturing. To obtain a model approach that is suitable for process control applications, a reduced growth model without cell subpopulations, but with a formulation of the specific cell growth rate as a function of the initial cell distribution on microcarriers after seeding was developed. With both model approaches, the fraction of growth‐inhibited cells could be predicted. Simulation results of two cultivations with a different number of initially seeded cells showed that the growth kinetics of adherent cells at the given cultivation conditions is mainly determined by the range of disparity in the initial distribution of cells on microcarriers after attachment. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

12.
Microcarrier cultures have been shown to allow extensive cell expansion of tissue engineering relevant cells, such as chondrocytes, while maintaining their phenotype. Our aim was to investigate the in vitro three-dimensional expansion of porcine bone-marrow-derived primary mesenchymal stem cells (MSC) using commercially available Cytodex type 1, type 2, and type 3 microcarriers. In comparison, the Cytodex type 1 microcarriers showed the best results for adherence with over 80% adherent cells after 3 h of incubation, analyzed by the Poisson distribution. Different start cell densities ranging from 1 to 3 x 106 cells per 100 cm2 had only a minor influence on adhesion. The proliferation was examined on Cytodex type 1 microcarriers over a cultivation time of 28 days, which could reveal cell growth and proof of cells recolonizing freshly added microcarriers. Scanning electron microscopy displayed appropriate cell morphology and confirmed cell proliferation. After enzymatic harvest from microcarriers, the osteogenic and chondrogenic differentiation of these cells was induced and shown by relevant histochemistry, such as von Kossa and Alcian blue staining. Totaling the results, we have shown that the three-dimensional expansion of MSC on microcarriers represents a beneficial alternative to the conventional two-dimensional monolayer cultivation method.  相似文献   

13.
Adult bone marrow mesenchymal stromal cells (MSCs) have cross-functional, intrinsic potency that is of therapeutic interest. Their ability to regenerate bone, fat, and cartilage, modulate the immune system, and nurture the growth and function of other bone marrow hematopoietic stem/progenitor cells have all been evaluated by transplant applications of MSCs. These applications require the isolation and expansion scaled cell production. To investigate biophysical properties of MSCs that can be feasibly utilized as predictors of bioactivity during biomanufacturing, we used a low-density seeding model to drive MSCs into proliferative stress and exhibit the hallmark characteristics of in vitro aging. A low-density seeding method was used to generate MSCs from passages 1–7 to simulate serial expansion of these cells to maximize yield from a single donor. MSCs were subjected to three bioactivity assays in parallel to ascertain whether patterns in MSC age, size, and shape were associated with the outcomes of the potency assays. MSC age was found to be a predictor of adipogenesis, while cell and nuclear shape was strongly associated to hematopoietic-supportive potency. Together, these data evaluate morphological changes associated with cell potency and highlight new strategies for purification or alternatives to assessing MSC quality.  相似文献   

14.
《Cytotherapy》2022,24(5):456-472
Therapies using mesenchymal stromal cells (MSCs) to treat immune and inflammatory conditions are now at an exciting stage of development, with many MSC-based products progressing to phase II and III clinical trials. However, a major bottleneck in the clinical translation of allogeneic MSC therapies is the variable immunomodulatory properties of MSC products due to differences in their tissue source, donor heterogeneity and processes involved in manufacturing and banking. This variable functionality of MSC products likely contributes to the substantial inconsistency observed in the clinical outcomes of phase III trials of MSC therapies; several trials have failed to reach the primary efficacy endpoint. In this review, we discuss various strategies to consistently maintain or enhance the immunomodulatory potency of MSCs during ex vivo expansion, which will enable the manufacture of allogeneic MSC banks that have high potency and low variability. Biophysical and biochemical priming strategies, the use of culture additives such as heparan sulfates, and genetic modification can substantially enhance the immunomodulatory properties of MSCs during in vitro expansion. Furthermore, robust donor screening, the use of biomarkers to select for potent MSC subpopulations, and rigorous quality testing to improve the release criteria for MSC banks have the potential to reduce batch-to-batch heterogeneity and enhance the clinical efficacy of the final MSC product. Machine learning approaches to develop predictive models of individual patient response can enable personalized therapies and potentially establish correlations between in vitro potency measurements and clinical outcomes in human trials.  相似文献   

15.
The effects on human mesenchymal stem cell growth of choosing either of two spinner flask impeller geometries, two microcarrier concentrations and two cell concentrations (seeding densities) were investigated. Cytodex 3 microcarriers were not damaged when held at the minimum speed, NJS, for their suspension, using either impeller, nor was there any observable damage to the cells. The maximum cell density was achieved after 8–10 days of culture with up to a 20-fold expansion in terms of cells per microcarrier. An increase in microcarrier concentration or seeding density generally had a deleterious or neutral effect, as previously observed for human fibroblast cultures. The choice of impeller was significant, as was incorporation of a 1 day delay before agitation to allow initial attachment of cells. The best conditions for cell expansion on the microcarriers in the flasks were 3,000 microcarriers ml−1 (ca. 1 g dry weight l−1), a seeding density of 5 cells per microcarrier with a 1 day delay before agitation began at NJS (30 rpm), using a horizontally suspended flea impeller with an added vertical paddle. These findings were interpreted using Kolmogorov’s theory of isotropic turbulence.  相似文献   

16.
As a result of their pluripotency and potential for unlimited self‐renewal, human embryonic stem cells (hESCs) hold tremendous promise in regenerative medicine. An essential prerequisite for the widespread application of hESCs is the establishment of effective and efficient protocols for large‐scale cell culture, storage, and distribution. At laboratory scales hESCs are cultured adherent to tissue culture plates; these culture techniques are labor‐intensive and do not scale to high cell numbers. In an effort to facilitate larger scale hESC cultivation, we investigated the feasibility of culturing hESCs adherent to microcarriers. We modified the surface of Cytodex 3 microcarriers with either Matrigel or mouse embryonic fibroblasts (MEFs). hESC colonies were effectively expanded in a pluripotent, undifferentiated state on both Matrigel‐coated microcarriers and microcarriers seeded with a MEF monolayer. While the hESC expansion rate on MEF‐microcarriers was less than that on MEF‐plates, the doubling time of hESCs on Matrigel‐microcarriers was indistinguishable from that of hESCs expanded on Matrigel‐coated tissue culture plates. Standard hESC cryopreservation methodologies are plagued by poor viability and high differentiation rates upon thawing. Here, we demonstrate that cryopreservation of hESCs adherent to microcarriers in cryovials provides a higher recovery of undifferentiated cells than cryopreservation of cells in suspension. Together, these results suggest that microcarrier‐based stabilization and culture may facilitate hESC expansion and storage for research and therapeutic applications. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

17.
For the large-scale operation of microcarrier culture to be successful, a technically feasible method for sequential inoculation is essential. Using human foreskin fibroblasts, FS-4, we have achieved this by detaching cells viably from microcarriers employing a selection pH trypsinization technique. Cells thus detached are able to reattach to microcarriers and grow normally after subsequent reinoculation into new cultures. However, after reinoculation cells attach to new microcarriers at a higher rate than to used microcarriers on which cells have previously grown. The effect of this differential cell attachment was analyzed and overcome by employing a low inoculum concentration. FS-4 cells could thus be serially propagated on microcarriers and subsequently used for beta-interferon production. This technique has also been applied to the cultivation of a monkey kidney cell line, Vero. We have also shown that Vero cells directly inoculated from a seed microcarrier culture could be used for virus production.  相似文献   

18.
Hematopoietic stem cell transplantation (HSCT) is the ultimate choice of treatment for patients with hematological diseases and cancer. The success of HSCT is critically dependent on the number and engraftment efficiency of the transplanted donor hematopoietic stem cells (HSCs). Various studies show that bone marrow‐derived mesenchymal stromal cells (MSCs) support hematopoiesis and also promote ex vivo expansion of HSCs. MSCs exert their therapeutic effect through paracrine activity, partially mediated through extracellular vesicles (EVs). Although the physiological function of EVs is not fully understood, inspiring findings indicate that MSC‐derived EVs can reiterate the hematopoiesis, supporting the ability of MSCs by transferring their cargo containing proteins, lipids, and nucleic acids to the HSCs. The activation state of the MSCs or the signaling mechanism that prevails in them also defines the composition of their EVs, thereby influencing the fate of HSCs. Modulating or preconditioning MSCs to achieve a specific composition of the EV cargo for the ex vivo expansion of HSCs is, therefore, a promising strategy that can overcome several challenges associated with the use of naïve/unprimed MSCs. This review aims to speculate upon the potential role of preconditioned/primed MSC‐derived EVs as “cell‐free biologics,” as a novel strategy for expanding HSCs in vitro.  相似文献   

19.
The ability to serially propagate mammalian cells in microcarrier cultures is essential for large-scale operation. The success of such serial propagation depends on viable dissociation of cells from microcarriers and the normal growth and product formation after subsequent reinoculation. The high pH treatment developed for dissociating cells from DEAE-derivatized microcarriers was not as effective for a number of cell strains cultivated on gelatin-coated microcarriers. By prewashing the cell-laden microcarriers with buffer containing a chelating agent, bovine kidney cells, BK, human embryonic foreskin fibroblasts, FS-4, and continuous human kidney cells, TCL-598 which produces prourokinase, were viably dissociated from commercially available gelatin-coated microcarriers, Cytodex-3. Cells dissociated from microcarriers reattached and grew on micro-carriers subsequent to inoculation into subcultures. However, after subculturing, cells may attach at different rates to newly added beads and to conditioned microcarriers which cells had previously grown. It resulted in an uneven cell distribution on microcarriers and inferior growth kinetics. This effect was more profound for BK and FS-4 cells which are propagated with a low multiplication ratio. Specifically, BK cells attach to conditioned beads at a faster rate than to new beads, while FS-4 cells attach to new beads faster than to conditioned beads. Thus, for these two cell strains, a separator was used to separate the microcarriers from the suspension of dissociated cells before subsequent inoculation. For TCL-598 cells, which are propagated at a high multiplication ratio, this dissociation technique can be applied directly without the separation of dissociated cells and conditioned microcarriers. All the three cell lines tested exhibit normal growth kinetics in serial propagation on microcarriers. Furthermore, the production of prourokinase by TCL598 cells serially propagated on microcarriers was comparable to that inoculated from roller bottles.  相似文献   

20.
We have investigated conditions that inhibit the tendency of CHO K1 cells to form cellular bridges between microcarriers and dense clumps of cellular overgrowth in microcarrier cultures. Microcarrier aggregation by cellular bridge formation was found to occur only during periods of rapid cell growth. The level of microcarrier aggregation decreased with increasing agitation intensity. Dense masses of cellular overgrowth formed inside bridges connecting the microcarriers and in clumps that protruded off the microcarrier surface. To replace cells that were continuously sheared from the microcarriers, cell growth occurred preferentially in areas of overgrowth after confluent microcarriers were maintained in a serum-free medium. This ultimately led to poor surface coverage as bare spots developed on the microcarrier away from the areas of dense cellular overgrowth. The development of bare spots was inhibited when confluent microcarriers were maintained in medium supplemented with 1% serum. The development of cellular overgrowth was inhibited by dimethyl sulfoxide. Thus, maintaining confluent microcarriers in medium supplemented with 1% dimethyl sulfoxide and 1% calf serum resulted in microcarriers that appeared similar to monolayer cultures. There was also a decrease in bridging in cultures supplemented with either 1% calf serum or 1% dimethyl sulfoxide/1% calf serum compared to serum-free cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号