首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusion of peptide‐based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram‐range amounts of proteins. IMAC‐Ni(II) columns have become the natural partners of 6xHis‐tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His‐tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur‐containing molecules. In this work, we evaluated two different cysteine‐ and histidine‐containing six amino acid tags linked to the N‐terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine‐containing tagged GFPs were able to bind to IMAC‐Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC‐Ni(II) system reaches less than 20% recovery of the cysteine‐containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC‐Pd(II) yields a recovery of 45% with a purification factor of 13. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Aptamers are synthetic nucleic acid‐based high affinity ligands that are able to capture their corresponding target via molecular recognition. Here, aptamer‐based affinity purification for His‐tagged proteins was developed. Two different aptamers directed against the His‐tag were immobilized on magnetic beads covalently. The resulting aptamer‐modified magnetic beads were characterized and successfully applied for purification of different His‐tagged proteins from complex E. coli cell lysates. Purification effects comparable to conventional immobilized metal affinity chromatography were achieved in one single purification step. Moreover, we have investigated the possibility to regenerate and reuse the aptamer‐modified magnetic beads and have shown their long‐term stability over a period of 6 months. Biotechnol. Bioeng. 2011;108: 2371–2379. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
The protocol describes a method for capture of secreted hexahistidine-tagged proteins using expanded-bed adsorption immobilized-metal affinity chromatography. The starting material for the procedure is any crude feedstock that contains a histidine (His)-tagged target protein. The protocol is exemplified using unclarified broth from Pichia pastoris fermentation as feedstock. The protocol can be used for laboratory studies or as part of a process for production of recombinant biotherapeutics to standards of good manufacturing practice. It takes approximately 5 h to purify proteins from 10 liters of feedstock and a further 5-6 h to sterilize and regenerate the column.  相似文献   

4.
Although immobilized metal affinity chromatography (IMAC) offers high capacity and protein selectivity it is not typically used commercially for the capture of native proteins from mammalian cell culture harvest. This is due mainly to the potential for low target recovery due to the presence of strong metal ion chelating species in the harvest that compete for the metal immobilized on the resin. To address this issue a buffer exchange step, such as tangential flow filtration (TFF), is added after harvest clarification and prior to IMAC to remove the interfering harvest components. The addition of a TFF step adds process time and cost and reduces target protein recovery. The elimination of the TFF might make IMAC competitive with other orthogonal methods of protein capture. In this study, we developed a modified IMAC method to allow the direct loading of clarified mammalian harvest without prior buffer exchange (direct IMAC). Although the target enzyme recovery was lower than that from standard IMAC the elimination of the buffer exchange step resulted in a 19% increase in overall enzyme recovery. The target enzyme capacity in direct IMAC was higher, in our experience, than the capacity of hydrophobic interaction (HIC) and ion-exchange (IEX) for protein capture. An economic evaluation of using direct IMAC as a capture step in manufacturing is also discussed.  相似文献   

5.
The use of cell‐free systems to produce recombinant proteins has grown rapidly over the past decade. In particular, cell‐free protein synthesis (CFPS) systems based on mammalian cells provide alternative methods for the production of many proteins, including those that contain disulfide bonds, glycosylation, and complex structures such as monoclonal antibodies. In the present study, we show robust production of turbo green fluorescent protein (tGFP) and streptokinase in a cell‐free system using instrumented mini‐bioreactors for highly reproducible protein production. We achieved recombinant protein production (~600 μg/ml of tGFP and 500 μg/ml streptokinase) in 2.5 hr of expression time, comparable to previously reported yields for cell‐free protein expression. Also, we demonstrate the use of two different affinity tags for product capture and compare those to a tag‐free self‐cleaving intein capture technology. The intein purification method provided a product recovery of 86%, compared with 52% for conventionally tagged proteins, while resulting in a 30% increase in total units of activity of purified recombinant streptokinase compared with conventionally tagged proteins. These promising beneficial features combined with the intein technology makes feasible the development of dose‐level production of therapeutic proteins at the point‐of‐care.  相似文献   

6.
Expression of recombinant proteins with poly-histidine tags enables their convenient capture and purification using immobilized metal affinity chromatography (IMAC). The 6×His-tagged protein binds to a chelating resin charged with metal ions such as Ni2+, Cu2+ or Zn2+, and can therefore be separated from proteins which have lower, or no, affinity for the resin. Two recombinant proteins, a malaria transmission-blocking vaccine candidate secreted extracellularly by S. cerevisiae and a modified diphtheria toxin produced intracellularly by E. coli, were expressed with 6×His tags and could therefore be purified using IMAC. In an effort to further simplify the initial capture of these proteins, an expanded bed adsorption technique using a chelating resin (Streamline Chelating) was introduced. It was possible to capture the intracellular diphtheria protein from E. coli directly after cell lysis, without prior centrifugation or filtration. The extracellular malaria vaccine candidate was also directly captured from a high cell density yeast culture. Detailed information on the experimental work performed, and the capture processes developed, is provided.  相似文献   

7.
The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S‐transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine‐containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7‐triazacyclononane (tacn). The use of this tag‐tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli‐expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP‐1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI‐TOF MS analysis of the cleaved products from the DAP‐1 digestion of the recombinant N‐terminally tagged proteins confirmed the complete removal of the tag within 4‐12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn‐based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli‐expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Transient transfection of mammalian cells has proven to be a useful technique for the rapid production of recombinant proteins because of its ability to produce milligram quantities within 2 weeks following cloning of their corresponding cDNA. This rapid production also requires a fast and efficient purification scheme that can be applied generically, typically through the use of affinity tags such as the polyhistidine-tag for capture by immobilized metal-affinity chromatography (IMAC) or the Strep-tag II, which binds to the StrepTactin affinity ligand. However, one-step purification using either of these tags has disadvantages in terms of yield, elution conditions, and purity. Here, we show that the addition of both Strep-tag-II and (His)(8) to the C-terminal of r-proteins allows efficient purification by consecutive IMAC and StrepTactin affinity. This approach has been successfully demonstrated using the intracellular protein DsRed, as well as two secreted proteins, secreted alkaline phosphatase (SEAP) and vascular endothelial growth factor (VEGF), all produced by transient transfection of HEK293-EBNA1 cells in medium supplemented with bovine calf serum. All proteins were purified to >99% homogeneity with yields varying from 29 to 81%.  相似文献   

9.
This study describes the use of a hexa‐histidine tagged exopeptidase for the cleavage of hexa‐histidine tags from recombinant maltose binding protein (MBP) when both tagged species are bound to an immobilized metal affinity chromatography (IMAC) matrix. On‐column exopeptidase cleavage only occurred when the cleavage buffer contained an imidazole concentration of 50 mM or higher. Two strategies were tested for the on‐column tag cleavage by dipeptidylaminopeptidase (DAPase): (i) a post‐load wash was performed after sample loading using cleavage buffers containing varying imidazole concentrations and (ii) a post‐load wash was omitted following sample loading. In the presence of 50 mM imidazole, 46% of the originally adsorbed hexa‐histidine tagged MBP was cleaved, released from the column, and recovered in a sample containing 100% native (i.e., completely detagged) MBP. This strategy renders the subsequent purification steps unnecessary as any tagged contaminants remained bound to the column. At higher imidazole concentrations, binding of both hexa‐histidine tagged MBP and DAPase to the column was minimized, leading to characteristics of cleavage more closely resembling that of a batch cleavage. An on‐column cleavage yield of 93% was achieved in the presence of 300 mM imidazole, albeit with contamination of the detagged protein with tag fragments and partially tagged MBP. The success of the on‐column exopeptidase cleavage makes the integration of the poly‐histidine tag removal protocol within the IMAC protein capture step possible. The many benefits of using commercially available exopeptidases, such as DAPase, for poly‐histidine tag removal can now be combined with the on‐column tag cleavage operation. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

10.
The complete enzymatic removal of affinity tags from tagged recombinant proteins is often required but can be challenging when slow points for cleavage exist. This study documents a general approach to remove N‐terminal tags from recombinant proteins specifically designed to be efficiently captured by IMAC resins. In particular, site‐directed mutagenesis procedures have been used to modify the amino acid sequence of metal binding tags useful in IMAC purifications of recombinant proteins with the objective to increase cleavage efficiency with the exopeptidase, dipeptidyl aminopeptidase 1. These tags were specifically developed for application with borderline metal ions, such as Ni2+ or Cu2+ ions, chelated to the immobilized ligands, 1,4,7‐triazacyclononane (tacn) and its analogs. Due to the ability to control cleavage site structure and accessibility via site directed mutagenesis methods, these procedures offer considerable scope to obtain recombinant proteins with authentic native N‐termini, thus avoiding any impact on structural stability, humoral and cellular immune responses, or other biological functions. Collectively, these IMAC‐based methods provide a practical alternative to other procedures for the purification of recombinant proteins with tag removal. Overall, this approach is essentially operating as an integrated down‐stream purification capability.  相似文献   

11.
Downstream purification of a model recombinant protein (human myelin basic protein) from milk of transgenic cows is described. The recombinant protein was expressed as a His tagged fusion protein in the milk of transgenic cows and was found associated with the casein micellar phase. While difficulties in obtaining good recoveries were found when employing conventional micelle disruption procedures, direct capture using the cation exchanger SP Sepharose Big Beads? was found successful in the extraction of the recombinant protein. Early breakthrough suggested a slow release of the recombinant protein from the micelles and dictated micelle disruption in order to obtain good yields. A new approach for deconstruction of the calcium core of the casein micelles, employing the interaction between the micellar calcium and the active sites of the cation exchanger resin was developed. Milk samples were loaded to the column in aliquots with a column washing step after each aliquot. This sequential loading approach successfully liberated the recombinant protein from the micelles and was found superior to the conventional sample loading approach. It increased the recovery by more than 25%, reduced fouling due to milk components and improved the column hydrodynamic properties as compared to the conventional sample loading approach. Hardware and software modifications to the chromatography system were necessary in order to keep the whole process automated. A second purification step using a Ni2+ affinity column was used to isolate the recombinant protein at purity more than 90% and a recovery percentage of 78%.  相似文献   

12.
This paper describes a new strategy, which aims to make on-column poly-histidine tag removal more useful in the production of recombinant proteins by improving the yield and efficiency of on-column exopeptidase cleavage. This involves improvement of the on-column cleavage condition by using imidazole concentrations in the range of 100-500 mM in the cleavage buffer. At 300 mM imidazole, maximum on-column cleavage yield (in excess of 99%) was achieved in 3h of incubation. However, as a result of the increased imidazole concentration, this new strategy of on-column cleavage results in some residual uncleaved poly-histidine tagged proteins (~0.1%) and the production of cleaved dipeptides, both of which need to be further removed in a subsequent step. A method involving the recirculation of recovered proteins and peptides through the immobilized metal affinity chromatography (IMAC) column (same-column recirculation) was found to be superior to subtractive IMAC for the purpose of contaminant clearance. Recovery of the detagged target proteins was achieved using 10 column volumes of recovery buffer, which had the effect of diluting the imidazole concentration to a suitably low level for contaminant removal by same-column recirculation. This strategy was also applicable at a higher adsorbent loading of 10 mg protein/mL adsorbent with an optimal ratio of 200 mU of DAPase per mg of adsorbed tagged maltose binding protein (MBP), giving a cleavage yield of 99.1% in 3 h. Finally, on-column cleavage conditions including the effect of protease concentration and incubation time on the new strategy have been investigated and comparisons are made for different tag removal strategies.  相似文献   

13.
Carcinoembryonic antigen (CEA) is a seven domain membrane glycoprotein widely used as a tumour marker for adenocarcinomas and as a target for antibody-directed therapies. Structural models have proposed that the first two domains of CEA (the N terminal and adjoining A1 domains) bind MFE-23, a single chain Fv antibody in experimental clinical use. We aimed to produce recombinant N-A1 to test this hypothesis. The N-A1 domains were expressed as soluble protein with a C-terminal hexahistidine tag (His6-tag) in the yeast Pichia pastoris. His6-tagged N-A1 was captured from the supernatant by batch purification with copper-loaded Streamline Chelating, an immobilised metal affinity chromatography (IMAC) matrix usually utilised in expanded bed techniques. Purified N-A1 was heterogeneous with a molecular weight range from 38 to 188 kDa. Deglycosylation with endoglycosidase H (Endo H) resulted in three discrete molecular weight forms of N-A1, one partially mannosylated, one fully Endo H-digested and one fully Endo H-digested but lacking the His6-tag. These were separated by concanavalin A chromatography followed by HiTrap IMAC. The procedure resulted in single-band-purity, mannose-free N-A1. The binding interaction of MFE-23 to N-A1 was analysed by surface plasmon resonance. The affinity constants retrieved were KD = 4.49 x 10(-9)M for the P. pastoris expressed, native N-A1, and 5.33 x 10(-9) M for the Endo H-treated N-A1. To our knowledge this is the first time that two consecutive domains of CEA have been stably expressed and purified from P. pastoris. This work confirms that the CEA epitope recognised by MFE-23 resides in N-A1.  相似文献   

14.
Immobilised metal-ion affinity chromatography (IMAC) is widely used for the purification of recombinant proteins in which a poly-histidine tag is introduced. However, other proteins may also bind to IMAC columns. We describe the use of a washing buffer with a low concentration of EDTA (0.5 mM) for the removal of proteins without histidine tag from IMAC columns. Four histidine-tagged recombinant proteins/protein complexes were purified to homogeneity from cell culture medium of insect cells by using an EDTA washing buffer. The presence of a low concentration of EDTA in washing buffers during IMAC may have a general application in the purification of histidine-tagged proteins.  相似文献   

15.
Aprotinin, a bovine protease inhibitor currently also produced in recombinant bacteria, yeast, and corn, has valuable applications as a human therapeutic and in tissue culture. The objective of this work was to develop the basis of a large-scale aprotinin purification process centered on immobilized metal ion affinity chromatography (IMAC). This technique uses ligands—metal ions—of a lower cost and higher stability than those traditionally used in affinity chromatography. Since aprotinin does not interact with IMAC ligands, collection is from the nonretained fractions (negative chromatography). Stirred-tank batch IMAC adsorption experiments indicated that one-step aprotinin purification could not be successful. Immobilized chymotrypsin chromatography was then used as a prepurification step, yielding a suitable feed for IMAC (with purification factors as high as 476). IMAC column fed with these prepurified materials produced purified aprotinin in the nonretained fractions with purification factors as high as 952.  相似文献   

16.
Enzymatic methods have been used to cleave the C- or N-terminus polyhistidine tags from histidine tagged proteins following expanded bed purification using immobilized metal affinity chromatography (IMAC). This study assesses the use of Factor Xa and a genetically engineered exopeptidase dipeptidyl aminopeptidase-1 (DAPase-1) for the removal of C-terminus and N-terminus polyhistidine tags, respectively. Model proteins consisting of maltose binding protein (MBP) having a C- or N-terminal polyhistidine tag were used. Digestion of the hexahistidine tag of MBP-His(6) by Factor Xa and HT15-MBP by DAPase-1 was successful. The time taken to complete the conversion of MBP-His(6) to MBP was 16 h, as judged by SDS-PAGE and Western blots against anti-His antibody. When the detagged protein was purified using subtractive IMAC, the yield was moderate at 71% although the overall recovery was high at 95%. Likewise, a yield of 79% and a recovery of 97% was obtained when digestion was performed with using "on-column" tag digestion. On-column tag digestion involves cleavage of histidine tag from polyhistidine tagged proteins that are still bound to the IMAC column. Digestion of an N-terminal polyhistidine tag from HT15-MBP (1 mg/mL) by the DAPase-I system was superior to the results obtained with Factor Xa with a higher yield and recovery of 99% and 95%, respectively. The digestion by DAPase-I system was faster and was complete at 5 h as opposed to 16 h for Factor Xa. The detagged MBP proteins were isolated from the digestion mixtures using a simple subtractive IMAC column procedure with the detagged protein appearing in the flowthrough and washing fractions while residual dipeptides and DAPase-I (which was engineered to exhibit a poly-His tail) were adsorbed to the column. FPLC analysis using a MonoS cation exchanger was performed to understand and monitor the progress and time course of DAPase-I digestion of HT15-MBP to MBP. Optimization of process variables such as temperature, protein concentration, and enzyme activity was developed for the DAPase-I digesting system on HT15-MBP to MBP. In short, this study proved that the use of either Factor Xa or DAPase-I for the digestion of polyhistidine tags is simple and efficient and can be carried out under mild reaction conditions.  相似文献   

17.
Biologically active recombinant human Flt3 ligand was expressed and isolated from transgenic barley seeds. Its expression is controlled by a tissue specific promoter that confines accumulation of the recombinant protein to the endosperm tissue of the seed. The recombinant Flt3 ligand variant expressed in the seeds contains an HQ-tag for affinity purification on immobilized metal ion affinity chromatography (IMAC) resin. The tagged protein was purified from seed extracts to near homogeneity using sequential chromatography on IMAC affinity resin and cation exchange resin. We also show that the recombinant Flt3 ligand protein undergoes posttranslational modifications: it is a glycoprotein containing α-1,3-fucose and α-1,2-xylose. The HQ-tagged Flt3 ligand variant exhibits comparable biological activity to commercial Flt3 ligand. This is the first report showing expression and accumulation of recombinant human growth factor in barley seeds with a yield of active protein similar to a bacterial expression system. The present results demonstrate that plant molecular farming is a viable approach for the bioproduction of human-derived growth factors.  相似文献   

18.
重组人Fab金属螯合层析法纯化条件的研究   总被引:2,自引:0,他引:2  
在重组人Fab(rh Fab)表达载体的羧基端插入六个组氨酸, 使其对金属螯合层析介质产生特异性吸附, 可用金属螯合亲和层析法进行分离纯化. 采用自制金属(铜、锌金属离子)螯合层析介质, 以pH和咪唑两种洗脱方法,对rh Fab段的纯化效果进行了探讨. 结果显示: 铜离子螯合层析介质比锌离子螯合层析介质对rh Fab的亲和能力更强; pH洗脱方法的重复性优于咪唑法; 金属铜离子螯合层析法对rh Fab进行一步纯化可得到纯度大于95%的rh Fab产品.  相似文献   

19.
A rapid and universal tandem-purification strategy for recombinant proteins   总被引:1,自引:0,他引:1  
A major goal in the production of therapeutic proteins, subunit vaccines, as well as recombinant proteins needed for structure determination and structural proteomics is their recovery in a pure and functional state using the simplest purification procedures. Here, we report the design and use of a novel tandem (His)(6)-calmodulin (HiCaM) fusion tag that combines two distinct purification strategies, namely, immobilized metal affinity (IMAC) and hydrophobic interaction chromatography (HIC), in a simple two-step procedure. Two model constructs were generated by fusing the HiCaM purification tag to the N terminus of either the enhanced green fluorescent protein (eGFP) or the human tumor suppressor protein p53. These fusion constructs were abundantly expressed in Escherichia coli and rapidly purified from cleared lysates by tandem IMAC/HIC to near homogeneity under native conditions. Cleavage at a thrombin recognition site between the HiCaM-tag and the constructs readily produced untagged, functional versions of eGFP and human p53 that were >97% pure. The HiCaM purification strategy is rapid, makes use of widely available, high-capacity, and inexpensive matrices, and therefore represents an excellent approach for large-scale purification of recombinant proteins as well as small-scale protein array designs.  相似文献   

20.
For the production and purification of a single chain human insulin precursor four types of fusion peptides β-galactosidase (LacZ), maltose binding protein (MBP), glutathione-S-transferase (GST), and (His)6-tagged sequence (HTS) were investigated. RecombinantE. coli harboring hybrid genes was cultivated at 37°C for 1 h, and gene induction occurred when 0.2 mM of isopropyl-D-thiogalactoside (IPTG) was added to the culture broth, except forE. coli BL21 (DE3) pLysS harboring a pET-BA cultivation with 1.0 mM IPTG, followed by a longer than 4 h batch fermentation respectively. DEAE-Sphacel and Sephadex G-200 gel filtration chromatography, amylose affinity chromatography, glutathione-sepharose 4B affinity chromatography, and a nickel chelating affinity chromatography system as a kind of immobilized metal ion affinity chromatography (IMAC) were all employed for the purification of a single chain human insulin precursor. The recovery yields of the HTS-fused, GST-fused, MBP-fused, and LacZ-fused single chain human insulin precursors resulted in 47%, 20%, 20%, and 18% as the total protein amounts respectively. These results show that a higher recovery yield of the finally purified recombinant peptides was achieved when affinity column chromatography was employed and when the fused peptide had a smaller molecular weight. In addition the pET expression system gave the highest productivity of a fused insulin precursor due to a two-step regulation of the gene expression, and the HTS-fused system provided the highest recovery of a fused insulin precursor based on a simple and specific separation using the IMAC technique  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号