首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of ischemia in vitro for 0-60 min at 37 degrees C on glycogen phosphorylase activity in rat liver have been studied under different feeding conditions. Glycogen phosphorylase activity was demonstrated with a recently developed quantitative histochemical method using a semipermeable membrane and the PAS-reaction. The cytophotometrically measured glycogen phosphorylase activity in livers from 24 h-fasted rats was approximately five times the activity in livers from normally fed rats. The activity in periportal areas was about 1.5 times higher than the activity in pericentral areas in livers from starved rats, but more or less evenly distributed in livers from fed rats. Enzyme activity in pericentral areas of livers from 24 h-fasted rats started to decrease after 20 min of ischemia. After 50-60 min of ischemia, the activity was decreased to approximately 25% of the control activity. Livers from normally fed rats showed unchanged activity in periportal and pericentral areas after 10-60 min of ischemia. It has been assumed that the activation of the enzyme was disturbed by ischemia, possibly as a consequence of plasma membrane damage.  相似文献   

2.
The diurnal variations of the glycogen content and of glycogen phosphorylase activity in periportal and pericentral areas of rat liver parenchyma have been analyzed in periodic acid Schiff (PAS)-stained cryostat sections using quantitative microdensitometry. Glycogen content and phosphorylase activity were always higher in periportal areas than in pericentral areas throughout the daily cycle. The glycogen content was highest at the end of the active period during darkness and lowest at the end of the resting period. Phosphorylase activity appeared to be inversely correlated with the glycogen content in both areas. It is concluded that the glycogen content is regulated by phosphorylase activity, which may be due to local cAMP concentration.  相似文献   

3.
Summary d-Amino acid oxidase activity was demonstrated in peroxisomes of rat liver using unfixed cryostat sections and a histochemical technique using cerium ions as capture reagent for hydrogen peroxide and diaminobenzidine, cobalt ions and exogenous hydrogen peroxide to visualize the final reaction product for light microscopical analysis. Cytophotometric analysis of liver sections revealed similar zero-order reaction velocities of d-amino acid oxidase with activity twice as high in periportal areas as in pericentral areas of liver lobuli when using either d-proline or d,l-thiazolidine-2-carboxylic acid as substrates. On the other hand, a 4–5 times higher K M value was found for d-proline than for d,l-thiazolidine-2-carboxylic acid. The K M values in periportal and pericentral areas were similar for each substrate. These findings support the suggestion that the physiological substrate for d-amino acid oxidase may be d,l-thiazolidine-2-carboxylic acid, the adduct of cysteamine and glyoxylic acid. d-Amino acid oxidase may play a role in vivo in the production of oxalate which may participate in metabolic control processes as an intracellular messenger molecule.  相似文献   

4.
Summary Glycogen phosphorylase activity has been demonstrated at the ultrastructural level in liver and heart tissue of fasted rats. Unfixed cryostat sections were incubated by mounting them on a semipermeable membrane stretched over a gelled incubation medium. The medium contained a high concentration of glucose 1-phosphate which enables indirect detection of glycogen phosphorylase activity on the basis of the synthesis of glycogen. Tissue fixation, dehydration and embedding for electron microscopical study were performed after the incubation had been completed. The ultrastructure of both liver and heart tissue was rather well preserved. Glycogen granules resulting from glycogen phosphorylase activity were found in the cytoplasmic matrix of both hepatocytes and cardiomyocytes; no relationship with membranous structures could be detected. It is concluded that the semipermeable membrane method is well suited for localizing cytosolic enzyme activities at the ultrastructural level without prior tissue fixation; this opens further perspectives for correlations between histochemical and biochemical data.  相似文献   

5.
 Glucose-6-phosphatase (G6Pase) activity has been determined in periportal and pericentral areas of the liver of normal male rats. Measurements were performed on unfixed cryostat sections mounted on semipermeable membranes. In the present study, the oxidized primary reaction product of a cerium-based histochemical method [Ce(IV)perhydroxyphosphate] instead of the final reaction product after a second-step incubation was measured. For quantification of the amount of Ce(IV)perhydroxyphosphate formed the digital image analyzing system Quantimet 500+ was used. Estimated values of optical densities of Ce(IV)perhydroxyphosphate over test areas were employed for calculation of kinetic parameters of (G6Pase). Highest activities of G6Pase (higher K m and V max levels) were found in periportal areas of the rat liver, indicating a higher amount of active enzyme molecules and a lower affinity for the substrate. Differences in values for both K m and V max between periportal and pericentral zones were highly significant and closely comparable to those for male fed rats. Correlations between K m and V max were significant for periportal as well for pericentral liver areas. The results of the present study thus allow the same biological implications as histochemical methods employing a final reaction for quantification of enzyme activities. The present method avoids the drawbacks of enhancement reactions and demonstrates the feasibility of in situ analysis of enzyme kinetic parameters by quantification of oxidized primary cerium reaction products. Accepted: 8 January 1996  相似文献   

6.
Summary In the present study a technique was developed to demonstrate 5′-nucleotidase activity in unfixed cryostat sections of rat liver at the light- and electron-microscope level using a semipermeable membrane. In order to retain the ultrastructure of the unfixed material as much as possible, incubations were also performed at 4°C rather than at 37°C. The optimized incubation medium contained 300 mm Tris-maleate buffer, pH 7.2, 5 mm adenosine monophosphate as substrate, 30 mm cerium chloride as capturing agent for liberated phosphate, 10 mm magnesium chloride as activator and 1.5% agar. At the light-microscope level, similar localizations of 5′-nucleotidase activity were obtained when incubations were performed at 37°C and 4°C. Enzyme activity was present mainly at bile canalicular membranes and at sinusoidal membranes of hepatocytes; total activity was higher in pericentral than in periportal areas. Cytophotometric analyses revealed that specific formation of final reaction product (FRP) (test minus control reaction) at 37°C followed a hyperbolic curve with time. A linear relationship was found between specific amounts of FRP and section thickness up to 8μm. 5′-Nucleotidase activity was about three-fold higher after incubation for 30 min at 37°C than at 4°C. At the electron-microscope level, it was demonstrated that the ultrastructure of rat liver was rather well-preserved after incubating unfixed cryostat sections attached to a semipermeable membrane and electron-dense FRP was found at bile canalicular and sinusoidal plasma membrane of hepatocytes. The most distinct changes in ultrastructure after incubation at 37°C, in comparison with that at 4°C, were the appearance of multi-lamellar structures at bile canaliculi at 37°C. We conclude that the present method is valid for the demonstration of 5′-nucleotidase activity in unfixed cryostat sections of rat liver at both the light- and electron-microscope levels and that hypothermic incubations improve ultrastructural morphology substantially.  相似文献   

7.
The histochemical method for the demonstration of D-amino acid oxidase activity in rat liver, based on the use of cerium ions and the diaminobenzidine-cobalt-hydrogen peroxide procedure, was improved by the application of unfixed cryostat sections and a semipermeable membrane interposed between section and gelled incubation medium. The amount of final reaction product precipitated in a granular form was about four times higher with this technique in comparison with conventional procedures using fixed sections and aqueous incubation media. The specificity of the reaction was proven by the 70% reduction of the amount of final reaction product when incubating in the presence of substrate and D,L-beta-hydroxybutyrate, a specific inhibitor of D-amino acid oxidase activity. Cytophotometric analysis of liver sections revealed that the specific test minus control reaction was linear with incubation time and section thickness. The Km value of the enzyme of 10.3 +/- 2.7 mM, as determined in periportal areas, is about five times the value found with biochemical methods in liver cell homogenates. The enzyme activity in periportal areas is about five times the activity in pericentral areas. Fasting (24 and 48 hr) induced a significant decrease in D-amino acid activity in periportal and pericentral areas. The possible physiological role of the enzyme in liver is discussed.  相似文献   

8.
Summary A quantitative histochemical procedure was developed for the demonstration of purine nucleoside phosphorylase in rat liver using unfixed cryostat sections and the auxiliary enzyme xanthine oxidase. The optimum incubation medium contained 18% (w/v) poly(vinyl alcohol), 100 mM phosphate buffer, pH 8.0, 0.5 mm inosine, 0.47 mm methoxyphenazine methosulphate and 1 mm Tetranitro BT. An enzyme film consisting of xanthine oxidase was brought onto the object slides before the section was allowed to adhere. The specificity of the reaction was proven by the low amount of final reaction product generated when incubating in the absence of inosine. Moreover, 1 mm p-chloromercuribenzoic acid, a non-specific inhibitor of purine nucleoside phosphorylase, inhibited the specific reaction by 90%. The specific reaction defined as the test reaction, in the presence of substrate, minus the control reaction, in the absence of substrate was linear with incubation time at least up to 30 min as measured cytophotometrically. A high activity was observed in endothelial cells and Kupffer cells of rat liver and a lower activity in liver parenchymal cells. Pericentral hepatocytes showed an activity higher than that of periportal hepatocytes. In human liver, purine nucleoside phosphorylase activity was also high in endothelial cells and Kupffer cells, but the activity in liver parenchymal cells was only slightly lower than it was in non-parenchymal cells. The localization of the enzyme is in agreement with earlier ultrastructural findings using fixed liver tissue and the lead salt procedure.  相似文献   

9.
Glycogen synthesis by rat hepatocytes.   总被引:8,自引:0,他引:8       下载免费PDF全文
J Katz  S Golden    P A Wals 《The Biochemical journal》1979,180(2):389-402
1. Hepatocytes from starved rats or fed rats whose glycogen content was previously depleted by phlorrhizin or by glucagon injections, form glycogen at rapid rates when incubated with 10mM-glucose, gluconeogenic precursors (lactate, glycerol, fructose etc.) and glutamine. There is a net synthesis of glucose and glycogen. 14C from all three types of substrate is incorporated into glycogen, but the incorporation from glucose represents exchange of carbon atoms, rather than net incorporation. 14C incorporation does not serve to measure net glycogen synthesis from any one substrate. 2. With glucose as sole substrate net glucose uptake and glycogen deposition commences at concentrations of about 12--15mM. Glycogen synthesis increases with glucose concentrations attaining maximal values at 50--60mM, when it is similar to that obtained in the presence of 10mM glucose and lactate plus glutamine. 3. The activities of the active (a) and total (a+b) forms of glycogen synthase and phosphorylase were monitored concomitant with glycogen synthesis. Total synthase was not constant during a 1 h incubation period. Total and active synthase activity increased in parallel with glycogen synthesis. 4. Glycogen phosphorylase was assayed in two directions, by conversion of glycose 1-phosphate into glycogen and by the phosphorylation of glycogen. Total phosphorylase was assyed in the presence of AMP or after conversion into the phosphorylated form by phosphorylase kinase. Results obtained by the various methods were compared. Although the rates measured by the procedures differ, the pattern of change during incubation was much the same. Total phosphorylase was not constant. 5. The amounts of active and total phosphorylase were highest in the washed cell pellet. Incubation in an oxygenated medium, with or without substrates, caused a prompt and pronounced decline in the assayed amounts of active and total enzyme. There was no correlation between phosphorylase activity and glycogen synthesis from gluconeogenic substrates. With fructose, active and total phosphorylase activities increased during glycogen syntheses. 6. In glycogen synthesis from glucose as sole substrate there was a decline in phosphorylase activities with increased glucose concentration and increased rates of glycogen deposition. The decrease was marked in cells from fed rats. 7. To determine whether phosphorolysis and glycogen synthesis occur concurrently, glycogen was prelabelled with [2-3H,1-14C]-galactose. During subsequent glycogen deposition there was no loss of activity from glycogen in spite of high amounts of assayable active phosphorylase.  相似文献   

10.
Summary The incubation of intact mouse diaphragms with insulin caused a dose and time dependent increase in the independent activity of glycogen synthase in tissue extracts. 2-deoxyglucose (2–10 mm) alone markedly stimulated the conversion of glycogen synthase to the independent activity under conditions in which tissue ATP concentrations were not affected. The incubation of diaphragms with both insulin and 2-deoxyglucose resulted in a greater than additive effect. Insulin stimulated the uptake of 2-deoxyglucose into mouse diaphragms, accumulating as 2-deoxyglucose-6-phosphate. The accumulation of 2-deoxyglucose-6-phosphate correlated well with the increase in the independent activity of glycogen synthase and with the activation of glycogen synthase phosphatase in tissue extracts. The uptake of 3-0-methyl glucose was also markedly stimulated by insulin, without affecting the activity of glycogen synthase. Both glucose-6-phosphate and 2-deoxyglucose-6-phosphate stimulated the activation of endogenous glycogen synthase phosphatase activity in muscle homogenates. We conclude that insulin, in addition to its effects in the absence of exogenous sugars, increases the independent activity of glycogen synthase through increased sugar transport resulting in increased concentrations of sugar-phosphates which promote the activity of glycogen synthase phosphatase.Abbreviations GS Glycogen synthase - GS-I Glycogen synthase activity independent of G6P - GS-D Glycogen synthase activity dependent on G6P - G6P Glucose-6-phosphate - ATP Adenosine triphosphate - EDTA Ethylene diamine tetracetic acid - Mops Morpholinopropane sulfonic acid - 2DG 2-Deoxy glucose - 3-0-MG 3-0-Methyl glucose - tricine N-tris(Hydroxymethyl)methyl glycine Enzymes: Glycogen Synthase — UDPGlucose — Glycogen Glucosyl — Transferase (EC 2.4.1.11) J. Larner is an established investigator of the American Diabetes Association.  相似文献   

11.
Fibroblast cultures were used to study the effect of crude venom and six venom protein fractions (F2–F7) fromWalterinnesia aegyptia) on their metabolic activity. This was done by incubation of six fibroblast cultures with 10 g of crude venom for 3 h at 37°C. The activities of phosphofructokinase, lactate dehydrogenase, and citrate synthase were significantly lowered upon incubation with all fractions except F2. Glycogen phosphorylase activity was significantly increased, leading to a significant concurrent drop of glycogen content. This effect was only seen for fractions F3 and F5. Creatine kinase activity and cellular ATP levels rose significantly upon incubation with all venom proteins except fractions F2 and F7. Increases were seen for aspartate and alanine amino-transferases by all venom proteins except fractions F2 and F4. Incubation of cell sonicates with all the venom proteins did not significantly alter activities of any of the parameters. Thus, fibroblasts in culture under such conditions appear to mobilize glycogen, phosphocreatine, and protein for ATP production to compensate for decreased glucose.Abbreviations ALT alanine aminotransferase - AST aspartate aminotransferase - ATP adenosine 5-triphosphate - CS citrate synthhase - GP glycogen phosphorylase - LDH lactate dehydrogenase - PFK phosphofructokinase  相似文献   

12.
Glycogen phosphorylase in Tetrahymena pyriformis was activated by a Mg2+ ATP-dependent process and this activation was further increased by the addition of cyclic AMP. When the enzyme activity in subcellular fractions was measured, it was largely associated with the glycogen fraction but was no longer activated by ATP and cyclic AMP. Mixing the glycogen fraction and cytosol fraction together restored the effects of ATP and cyclic AMP on phosphorylase activity. These findings suggest that glycogen phosphorylase associated with Tetrahymena glycogen granules may be regulated by cytosolic factor(s) with cyclic AMP.  相似文献   

13.
Extrahepatic cholestasis induced by ligation and transsection of the common bile duct caused a change in the parenchyma/stroma relationship in rat liver. Two weeks after ligation, the periportal zones of the parenchyma were progressively invaded by expanding bile ductules with surrounding connective tissue diverging from the portal areas. Parenchymal disarray developed and small clumps of hepatocytes or isolated hepatocytes were scattered within the expanded portal areas. These cells showed normal activity of lactate, succinate and glutamate dehydrogenase and may, therefore, be considered to be functionally active. After cholestasis the remainder of the liver parenchyma showed adaptational changes with respect to glucose homeostasis, as demonstrated by histochemical means. Glycogen stores disappeared completely whereas glycogen phosphorylase activity increased about ten fold. The increased glycogen phosphorylase activity and glycogen depletion indicate a greater glycogenolytic capacity in liver parenchyma after bile duct ligation to maintain as far as possible a normal plasma glucose concentration. The parenchymal distribution pattern of glucose-6-phosphatase activity did not change significantly after bile duct ligation. The isolated hepatocytes within the expanded portal tracts showed a high activity of this enzyme whereas the pericentral parenchyma was only moderately active. The distribution patterns of glucose-6-phosphate dehydrogenase and lactate dehydrogenase activity in the liver parenchyma were also largely unchanged after bile duct ligation, but the histochemical reaction for glucose-6-phosphate dehydrogenase activity demonstrated infiltration of the remainder of the parenchyma by non-parenchymal cells, possibly Küpffer cells and leucocytes as part of an inflammatory reaction. Under normal conditions the mitochondrial enzymes succinate and glutamate dehydrogenase show an opposite heterogenous distribution pattern in liver parenchyma. Following cholestasis both enzymes became uniformly distributed. The underlying regulatory mechanism for these different changes in distribution patterns of enzyme activities is not yet understood.  相似文献   

14.
The reaction velocity of glucose-6-phosphate dehydrogenase (G6PDH) and phosphogluconate dehydrogenase (PGDH) was quantified with a cytophotometer by continuous monitoring of the reaction product as it was formed in liver cryostat sections from normal, young mature female rats at 37 degrees C. Control incubations were performed in media lacking both substrate and coenzyme for G6PDH activity and lacking substrate for PGDH activity. All reaction rates were non-linear but test minus control reactions showed linearity with incubation time up to 5 min using Nitro BT as final electron acceptor. End point measurements after incubation for 5 min at 37 degrees C revealed that the highest specific activity of G6PDH was present in the intermediate area (Vmax = 7.79 +/- 1.76 mumol H2 cm-3 min-1) and of PGDH in the pericentral and intermediate areas (Vmax = 17.19 +/- 1.73 mumol H2 cm-3 min-1). In periportal and pericentral areas, Vmax values for G6PDH activity were 4.48 +/- 1.03 mumol H2 cm-3 min-1) and 3.47 +/- 0.78 mumol H2 cm-3 min-1), respectively. PGDH activity in periportal areas showed a Vmax of 10.84 +/- 0.33 mumol H2 cm3 min-1. Variation of the substrate concentration for G6PDH activity yielded similar KM values of 0.17 +/- 0.07 mM, 0.15 +/- 0.13 mM and 0.22 +/- 0.11 mM in periportal, pericentral and intermediate areas, respectively. KM values of 0.87 +/- 0.12 mM in periportal and of 1.36 +/- 0.10 mM in pericentral and intermediate areas were found for PGDH activity. The significant difference between KM values for PGDH in areas within the acinus support the hypothesis that PGDH is present in the cytoplasmic matrix and in the microsomes. A discrepancy existed between KM and Vmax values determined in cytochemical assays using cryostat sections and values calculated from biochemical assays using diluted homogenates. In cytochemical assays, the natural microenvironment for enzymes is kept for the demonstration of their activity and thus may give more accurate information on enzyme reactions as they take place in vivo.  相似文献   

15.
Summary 5-Nucleotidase (EC 3.1.3.5) activity was demonstrated in cryostat sections of rat liver using the Wachstein—Meisel medium and polyvinyl alcohol as tissue stabilizer. Optimum activity was obtained using an incubation medium containing 5mm AMP, 10mm magnesium chloride, 7.2mm lead nitrate, 0.1m Tris—maleate buffer, pH 7.2, and 17% (w/v) polyvinyl alcohol (Sigma, type III). The activity was localized at the bile canalicular and sinusoidal side of the plasma membranes of liver parenchymal cells as well as in the plasma membranes of endothelial cells of central veins and in fibroblasts surrounding portal tracts. The reaction was specific for 5-nucleotidase because it was inhibited by ADP. Alkaline phosphatase did not interfere in the reaction. Cytophotometric analysis revealed a linear relationship between the formation of the final reaction product and incubation times up to 20 min and section thicknesses up to 8m. The activity in pericentral zones was 1.35 times the activity in periportal zones. The Michaelis constant for AMP was 1.4mm in pericentral zones and 0.8mm in periportal zones, suggesting that the bile canalicular and sinusoidal enzymes differ in their kinetic characteristics.  相似文献   

16.
Glycogen serves as major energy storage in most living organisms. GlgX, with its gene in the glycogen degradation operon, functions in glycogen catabolism by selectively catalyzing the debranching of polysaccharide outer chains in bacterial glycosynthesis. GlgX hydrolyzes α‐1,6‐glycosidic linkages of phosphorylase‐limit dextrin containing only three or four glucose subunits produced by glycogen phosphorylase. To understand its mechanism and unique substrate specificity toward short branched α‐polyglucans, we determined the structure of GlgX from Escherichia Coli K12 at 2.25 Å resolution. The structure reveals a monomer consisting of three major domains with high structural similarity to the subunit of TreX, the oligomeric bifunctional glycogen debranching enzyme (GDE) from Sulfolobus. In the overlapping substrate binding groove, conserved residues Leu270, Asp271, and Pro208 block the cleft, yielding a shorter narrow GlgX cleft compared to that of TreX. Residues 207–213 form a unique helical conformation that is observed in both GlgX and TreX, possibly distinguishing GDEs from isoamylases and pullulanases. The structural feature observed at the substrate binding groove provides a molecular explanation for the unique substrate specificity of GlgX for G4 phosphorylase‐limit dextrin and the discriminative activity of TreX and GlgX toward substrates of varying lengths. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
A model to study glycogen supercompensation (the significant increase in glycogen content above basal level) in primary rat skeletal muscle culture was established. Glycogen was completely depleted in differentiated myotubes by 2 h of electrical stimulation or exposure to hypoxia during incubation in medium devoid of glucose. Thereafter, cells were incubated in medium containing glucose, and glycogen supercompensation was clearly observed in treated myotubes after 72 h. Peak glycogen levels were obtained after 120 h, averaging 2.5 and 4 fold above control values in the stimulated- and hypoxia-treated cells, respectively. Glycogen synthase activity increased and phosphorylase activity decreased continuously during 120 h of recovery in the treated cells. Rates of 2-deoxyglucose uptake were significantly elevated in the treated cells at 96 and 120 h, averaging 1.4–2 fold above control values. Glycogenin content increased slightly in the treated cells after 48 h (1.2 fold vs. control) and then increased considerably, achieving peak values after 120 h (2 fold vs. control). The results demonstrate two phases of glycogen supercompensation: the first phase depends primarily on activation of glycogen synthase and inactivation of phosphorylase; the second phase includes increases in glucose uptake and glycogenin level.  相似文献   

18.
The glycogen content of muscle was correlated with the activity of glycogen synthase and glycogen phosphorylase from the parasitic roundworm Ascaris suum maintained in vitro. Adult female worms were maintained in the laboratory in a perfusion system during periods of starvation and feeding. During starvation, the levels of glucogen decreased at a rate of 0.1 to 0.2 mumoles/min/g wet weight of muscle-cuticle. During this time, 95% of the glycogen synthase (E.C. 2.4.1.11) was in the active D-form, and 48% of the phosphorylase (E.C. 2.4.1.1) was in the active a-form. Upon feeding, the rate of incorporation of glycosyl residues into glycogen proceeded at a rate of 0.75 to 1.0 mumoles/min/g muscle-cuticle. Glycogen synthase was 22% in the active I-form and phosphorylase a-levels remained virtually unchanged at 41% as compared with the starved worm. Total levels of both enzymes remained constant over the starvation-feeding period with 3.9 units/g phosphorylase and 0.4 units/g glycogen synthase. The apparent Km value for the substrate UDPG for glycogen synthase was 0.22 +/- 0.02 mM. For glycogen phosphorylase the Km value for G-1-P was 1.76 +/- 0.38 mM.  相似文献   

19.
The active a and inactive b forms of glycogen phosphorylase from cold-hardy larvae of the gall moth, Epiblema scudderiana, were purified using DEAE+ ion exchange and 3-5-AMP-agarose affinity chromatography. Maximum activities for glycogen phosphorylases a and b were 6.3±0.74 and 2.7±0.87 mol glucose-1-P·min-1·g wet weight-1, respectively, in -4°C-acclimated larvae. Final specific activities of the purified enzymes were 396 and 82 units·mg protein-1, respectively. Both enzymes were dimers with native molecular weights of 215000±18000 for glycogen phosphorylase a and 209000±15000 for glycogen phosphorylase b; the subunit molecular weight of both forms was 87000±2000. Both enzymes showed pH optima of 7.5 at 22°C and a break in the Arrhenius relationship with a two- to four-fold increase in activation energy below 10°C. Michaelis constant values for glycogen at 22°C were 0.12±0.004 mg·ml-1 for glycogen phosphorylase a and 0.87±0.034 mg·ml-1 for glycogen phosphorylase b; the Michaelis constant for inorganic phosphate was 6.5±0.07 mmol·l-1 for glycogen phosphorylase a and 23.6 mmol·l-1 for glycogen phosphorylase b. Glycogen phosphorylase b was activated by adenosine monophosphate with a K a of 0.176±0.004 mmol·l-1. Michaelis constant and K a values decreased by two- to fivefold at 5°C compared with 22°C. Glycerol had a positive effect on the Michaelis constant for glycogen for glycogen phosphorylase a at intermediate concentrations (0.5 mol·l-1) but was inhibitory to both enzyme forms at high concentrations (2 mol·l-1). Glycerol production as a cryoprotectant in E. scudderiana larvae is facilitated by the low temperature-simulated glycogen phosphorylase b to glycogen phosphorylase a conversion and by positive effects of low temperature on the kinetic properties of glycogen phosphorylase a. Enzyme shut-down when polyol synthesis is complete appears to be aided by strong inhibitory effects of glycerol and KCl on glycogen phosphorylase b.Abbreviations E a activation energy - GPa glycogen phosphorylase a - GPb glycogen phosphorylase b - h Hill coefficient - I 50 concentration of inhibitor that reduces enzymes velocity by 50% - K a concentration of activator that produces half-maximal activation of enzyme activity - K m Michaelis-Menten substrate affinity constant - MW molecular weight - PEG polyethylene glycol - Pi morganic phosphate - SDS PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - V max enzyme maximal velocity  相似文献   

20.
The influence of starvation on carbohydrate metabolism in fifth instar larvae of Manduca sexta was studied. The percentage of active fat body glycogen phosphorylase increased from 10% to approximately 50% within 3 h of starvation; afterward the enzyme was slowly inactivated. The increase of phosphorylase activity might have been caused by a peptide(s) from the CC. The amount of fat body glycogen in starved animals decreased over 24 h by approximately 20 mg. The released glucose molecules seem to be converted mainly to trehalose because the hemolymph trehalose concentration in starved animals was always slightly higher than in the fed controls, and the glucose concentration decreased even when phosphorylase was activated. The chitosan content in starved larvae increased during the first 9 h of treatment to the same extent as in fed controls. It is suggested that fat body glycogen phosphorylase was activated during starvation to provide substrates for chitin synthesis and energy metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号