首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
SYNOPSIS. A method is described for the simultaneous treatment of 42 (or more) stocks of Paramecium, and their adaptation to growth in axenic culture. Samples of dense cultures of these ciliates growing with Enterobacter aerogenes are rendered bacteria-free by migration through 2 sets of tubes containing Adaptation Medium (Peters' salts solution, stigmasterol, vitamins, and autoclaved E. aerogenes). The 2nd set of tubes contains Adaptation Medium plus antibiotics. Bacteria-free samples containing ~ 100 animals are then transferred to test tubes containing Adaptation Medium without antibiotics. This medium also serves as a growth medium. It supports indefinite growth of all Paramecium stocks tested. After adaptation to this medium, the ciliates can be grown in the axenic medium developed by Soldo, Godoy & van Wagtendonk. On a single trial at least half of the stocks can be expected to produce axenic cultures within 5 to 10 days by these procedures. The method has been applied successfully to several of the species of the Paramecium aurelia complex, to all syngens of Paramecium multimicronucleatum, to several stocks of Paramecium jenningsi, and to 1 stock each of Paramecium caudatum and Paramecium calkinsi. A modification of the method also works for Didinium nasutum.  相似文献   

2.
Joint Australia–Indonesia scientific workshops on the fisheries of the Arafura Sea, held in 1992 and 1994, concluded that the two countries might share stocks of the red snappers Lutjanus malabaricus and L. erythropterus and the gold-band snapper Pristipomoides multidens. At that time, no information concerning stock structure, distribution and movements of these species was available. Moreover, data on the population biology and on commercial catches were inadequate. Such data are crucial for stock assessment and for managing the stocks. Clearly, if the stocks being fished were shared, joint management would be appropriate. In order to answer the questions related to managing shared stocks, a collaborative research project was initiated by Australia (CSIRO as the lead agency) and Indonesia in 1999. The objectives were firstly, to describe the population dynamics, stock structure and biology of snappers relevant to the management of stocks shared between Australian and Indonesian fisheries; secondly, to characterize the social and financial structures of the Indonesian fishery so they could be taken into account in the development of management strategies; and thirdly, to explore ways of developing complementary management for the long term sustainability of the snapper fisheries. This project finished in 2003 and in this paper we bring together the results of the biological, genetic, population dynamics and socioeconomic research in relation to managing shared stocks in the context of managed versus unmanaged fisheries, small scale and industrial fisheries, and in both developed and developing country regulatory environments. Severe data limitations necessitated an innovative approach making use of comparative analyses, often data-poor values, and the drawing together of fishery dependent and independent data to evaluate the status of the stocks.  相似文献   

3.
A method is described for the simultaneous treatment of 42 (or more) stocks of Paramecium, and their adaptation to growth in axenic culture. Samples of dense cultures of these ciliates growing with Enterobacter aerogenes are rendered bacteria-free by migration through 2 sets of tubes containing Adaptation Medium (Peters' salts solution, stigmaterol, vitamins, and autoclaved E. aerogenes). The 2nd set of tubes contains Adaptation Medium plus antibiotics. Bacteria-free samples containing approximately 100 animals are then transferred to test tubes containing Adaptation Medium without antibiotics. This medium also serves as a growth medium. It supports indefinite growth of all Paramecium stocks tested. After adaptation to this medium, the ciliattes can be grown in the axenic medium developed by Soldo, Godoy & van Wagtendonk. On a single trial at least half of the stocks can be expected to produce axenic cultures within 5 to 10 days by these procedures. The method has been applied successfully to several of the species of the Paramecium aurelia complex, to all syngens of Paramecium multimicronucleatum, to several stocks of Paramecium jenningsi, and to 1 stock of Paramecium caudatum and Paramecium calkinsi. A modification of the method also works for Didinium nasutum.  相似文献   

4.
One hundred eighty-eight stocks of Paramecium primaurelia, P. biaurelia, P. tetraurelia, and P. octaurelia were grown axenically and tested for five esterases, visualized by starch gel electrophoresis, in a search for variant stocks. The five esterases can be distinguished on the bases of their substrate specificity, sensitivity to an inhibitor, and response to different growth conditions. This paper addresses the nature of the electrophoretic change in mobility of the variant stocks in order that species relationships can be more accurately assessed. Crosses carried out in all four species show that single genes determine the differences in mobility between variant and common subtypes. Extracts of variant stocks that gave similar patterns were run against each other, tested for their sensitivity to the inhibitor, and the pattern was compared to that found in extracts of stocks with variant and common subtypes in other species. The majority of the variants in P. primaurelia, P. tetraurelia, and P. octaurelia show an electrophoretic mobility characteristic of a common subtype, or a variant, in another species. The same proportion of variant subtypes as common subtypes have mobilities similar to esterase subtypes found in other species. Of the four species examined in this paper, P. tetraurelia and P. octaurelia appear to be most closely related on the basis of shared esterase subtypes. In P. biaurelia the mobilities of most of the variants are unique, as are the common esterase subtypes in this species. P. biaurelia stands out as having the greatest number of esterase subtypes, with very few of them homologous to subtypes found in other species. This observation supports the idea of greater diversification of stocks within P. biaurelia than for the other three species.  相似文献   

5.
Selective and differential media were designed for each species of Pityrosporum; P. pachydermatis, P. ovale, and P. orbiculare in order to make feasible a quantitative cultivation. Medium for P. pachydermatis (medium A) was composed of 1% trypticase peptone (BBL), 0.5% yeast extract (BBL), 0.3% glucose, 0.2% NaCl, 1.2% KH2 PO4 (anhydrous), 1.5% agar, 0.01% ampicillin, and 0.025% cycloheximide with a pH of 5.5. Medium for P. ovale (medium B) was medium A supplemented with 0.05% sodium acetate (anhydrous), 0.2% Tween 80, and 0.025% (selective medium) or 0.075% (differential medium) sodium laurate. Medium for P. orbiculare was medium B (devoid of laurate) supplemented with 2% olive oil, 0.25% glycerol, 0.25% gall powder, 0.05% sodium palmitate, 0.05% sodium stearate, 0.05% sodium oleate and 8% (selective medium) or 10% (differential medium) sodium lactate and an increase in Tween to 1%. For isolation of Pityrosporum, specimens were suspended in 0.1% Tween 80 solution and inoculated onto agar plates of three selective media. The plates were incubated aerobically at 37 C for 8–10 days under conditions of prevention of water loss from the media. The plating efficiency of each selective medium, expressed as a ratio of cultural counts to microscopic counts was generally over 70%. Species of Pityrosporum could also be identified when we inoculated the cell suspension onto differential agar plates and incubated the preparations at 37 C for 7 days.  相似文献   

6.
Examination of 248 adult specimens of whitemouth croaker Micropogonias furnieri from five localities along the Brazilian coast revealed 8735 parasites belonging to 41 metazoan species. Samples from Ceará to Bahia and Rio de Janeiro to Santa Catarina showed a high level of correct assignation (92 and 87%, respectively) and cross assignation (i.e. almost all specimens misidentified in Ceará were assigned to Bahia and almost all specimens misidentified in Bahia were classified as Ceará), so samples were pooled in the northern and south‐eastern samples, and Rio Grande do Sul was considered a southern area. Eight parasite species were characteristic of the northern localities, five species were found just in the area associated with south‐eastern localities and two species were characteristic of the southern area providing first evidence of stock discreteness. The multivariate discriminant analysis successfully discriminated three groups of localities associated with three stocks of M. furnieri in Brazil: a northern stock associated with Ceará and Bahia, a south‐eastern stock related to Rio de Janeiro and Santa Catarina and a southern stock in the area of Rio Grande do Sul, which could be considered as the northern limit of the stock associated with the Common Fishing Zone of Uruguay and Argentina.  相似文献   

7.
The esterase isozymes were surveyed in axenic stocks of syngens 1, 2, 4, 5, 6, and 8 of Paramecium aurelia by starch gel electrophoresis. In paramecia there appear to be four types of esterases which are clearer in axenic than in bacterized stocks. Each type differs in its substrate specificity and/or its response to the inhibitor eserine sulfate. Minor variations in type D esterases sometimes occur in different extracts of the same stock and may result from changes in the temperature of growth of the cells or growth cycle differences. Differences in the mobility of the A, B, or C (cathodal) types of esterases may occur in different syngens. They also occur for the A and B types among stocks within a syngen, but the frequency is low, except in the case of syngen 2. Since each of the types of esterases varies independently, at least four and possibly more genes appear to specify the esterases in the species complex. Some pairs of syngens vary in their electrophoretic positions for all types of esterases. Other pairs have identical zymograms. This observation suggests that some syngens may differ from each other by as many as four esterase genes, while others may not differ at all. The difference between P. aurelia and Tetrahymena pyriformis in the degree of intrasyngenic variation observed for enzymes is discussed in relation to other types of characters, the organization of the genetic material in the macronucleus, the presence of symbionts, and their breeding systems. It is suggested that enzyme variation is achieved by the action of different selective forces in these two groups of ciliated protozoa.Supported by research grants from the National Institute of General Medical Sciences (GM-15879), U.S. Public Health Service, and from the British Medical Research Council.  相似文献   

8.
In western and central Japan, the expansion of exotic moso bamboo (Phyllostachys pubescens Mazel ex J. Houz.) populations into neighboring vegetation has become a serious problem. Although the effects of bamboo invasion on biodiversity have been well studied, shifts in nutrient stocks and cycling, which are fundamental for ecosystem functioning, are not fully understood. To explore the effects of P. pubescens invasion on ecosystem functions we examined above‐ and below‐ground dry matter and carbon (C) and nitrogen (N) stocks in a pure broad‐leaved tree stand, a pure bamboo stand, and two tree–bamboo mixed stands with different vegetation mix ratios in the secondary forest of Kyoto, western Japan. In the process of invasion, bamboo shoots offset broad‐leaved tree deaths; thus, no clear trend was apparent in total above‐ or below‐ground biomass or in plant C and N stocks during invasion. However, the ratio of above‐ground to below‐ground biomass (T/R ratio at the stand level) decreased with increasing bamboo dominance, especially in the early stages of invasion. This shift indicates that rapid bamboo rhizomatous growth is a main driver of substantial changes in stand structure. We also detected rises in the C/N ratio of forest‐floor organic matter during bamboo invasion. Thus major impacts of P. pubescens invasion into broad‐leaved forests include not only early shifts in biomass allocation, but also changes in the distribution pattern of C and N stored in plants and soil.  相似文献   

9.
Diapause in fully grown larvae of Ephestia elutella and Plodia inferpunctella was induced by low temperature and short photoperiods. Light intensities below 1 lx affected the induction of diapause in both species. At 20 and 25d?C, the critical photo-period for E.elutella was c. 14 h, and for P.interpunctella c. 13 h. The sensitive phase in both species occurred at about the time of the fourth larval moult. In E.elutella about seven short photoperiods were required for larvae to enter diapause. In P.interpunctella high population density during larval development increased the proportion of larvae entering diapause. The conditions inducing diapause in laboratory stocks, and in stocks collected from the field, were different. Laboratory stocks of both species did not enter diapause at 25d?C and required short photoperiods for diapause at 20d?C. Some larvae of the field stock of E.elutella entered diapause in constant darkness at 30d?C, the number being increased at low R.H., and almost all did in short photoperiods at 25°C. At 20T, most larvae of this stock entered diapause regardless of photoperiod, and at 15°C all did. In P.interpunctella up to one-third of larvae of the field stock entered diapause in short photoperiods at 25d?C, and all did if transferred to short photoperiods at 20d?C. In unheated premises, falling temperatures normally induce diapause in E.elutella each autumn, photoperiod only being important if temperatures are high. In P.interpunctella, photoperiod is a more important factor because it can override the effect of falling temperature to a greater extent than in E.elutella. In both species, however, different field populations may respond in different ways.  相似文献   

10.
Whether plant invasion increases ecosystem carbon (C) stocks is controversial largely due to the lack of knowledge about differences in ecophysiological properties between invasive and native species. We conducted a field experiment in which we measured ecophysiological properties to explore the response of the ecosystem C stocks to the invasion of Spartina alterniflora (Spartina) in wetlands dominated by native Scirpus mariqueter (Scirpus) and Phragmites australis (Phragmites) in the Yangtze Estuary, China. We measured growing season length, leaf area index (LAI), net photosynthetic rate (Pn), root biomass, net primary production (NPP), litter quality and litter decomposition, plant and soil C and nitrogen (N) stocks in ecosystems dominated by the three species. Our results showed that Spartina had a longer growing season, higher LAI, higher Pn, and greater root biomass than Scirpus and Phragmites. Net primary production (NPP) was 2.16 kg C m−2 y−1 in Spartina ecosystems, which was, on average, 1.44 and 0.47 kg C m−2 y−1 greater than that in Scirpus and Phragmites ecosystems, respectively. The litter decomposition rate, particularly the belowground decomposition rate, was lower for Spartina than Scirpus and Phragmites due to the lower litter quality of Spartina. The ecosystem C stock (20.94 kg m−2) for Spartina was greater than that for Scirpus (17.07 kg m−2), Phragmites (19.51 kg m−2) and the mudflats (15.12 kg m−2). Additionally, Spartina ecosystems had a significantly greater N stock (698.8 g m−2) than Scirpus (597.1 g m−2), Phragmites ecosystems (578.2 g m−2) and the mudflats (375.1 g m−2). Our results suggest that Spartina invasion altered ecophysiological processes, resulted in changes in NPP and litter decomposition, and ultimately led to enhanced ecosystem C and N stocks in the invaded ecosystems in comparison to the ecosystems with native species.  相似文献   

11.
SYNOPSIS. Several strains of particle-bearing and particle-free Paramecium aurelia have been cultivated in an axenic medium composed of proteose peptone, trypticase, yeast nucleic acid, MgSO4.7H2O, TEM-4T (diacetyl tartaric acid esters of tallow monoglycerides), stigmasterol and a mixture of vitamins. The “yeast fraction,” an indispensable component of previous media used for the cultivation of these ciliates has been replaced by a mixture of trypticase, yeast nucleic acid and TEM-4T. Particle-bearing animals of stock 299 lambda, 138 mu, and 139 pi maintain their particles when cultivated in the medium, whereas particle-bearing animals of stock 51 kappa, 225 kappa and 114 signia do not. With the exception of stock 92 (syngen 3) the medium appears to be selective in its ability to support the growth of animals of the even- but not odd-numbered syngens of P. aurelia. Maintenance of the particles was dependent only to a small degree upon environmental conditions brought about by changes in pH and temperature. Division of the particles was found to be comparable with the division of the protozoan. Methods for the growth, maintenance and mass cultivation of particle-bearing P. aurelia are given in detail.  相似文献   

12.
Mesic–dry tundras are widespread in the Arctic but detailed assessments of net primary production (NPP) and ecosystem carbon (C) stocks are lacking. We addressed this lack of knowledge by determining the seasonal dynamics of aboveground vascular NPP, annual NPP, and whole-ecosystem C stocks in five mesic–dry tundras in Northern Sweden with contrasting microtopography, altitude, and dominant species. Those measurements were paralleled by the stock assessments of nitrogen (N), the limiting nutrient. The vascular production was determined by harvest or in situ growing units, whereas the nonvascular production was obtained from average species growth rates, previously assessed at the sites. Results showed that aboveground vascular NPP (15–270 g m−2), annual NPP (214–282 g m−2 or 102–137 g C m−2) and vegetation biomass (330–2450 g m−2) varied greatly among communities. Vegetation dominated by Empetrum hermaphroditum is more productive than Cassiope tetragona vegetation. Although the large majority of the apical NPP occurred in early-mid season (85%), production of stems and evergreen leaves proceeded until about 2 weeks before senescence. Most of the vascular vegetation was belowground (80%), whereas most of the vegetation production occurred aboveground (85%). Ecosystem C and N stocks were 2100–8200 g C m−2 and 80–330 g N m−2, respectively, stored mainly in the soil turf and in the fine organic soil. Such stocks are comparable to the C and N stocks of moister tundra types, such as tussock tundra. Author Contributions  Matteo Campioli, Anders Michelsen, Roeland Samson, Raoul Lemeur—conceived and designed study, Matteo Campioli, Anders Michelsen, Andreas Demey, Annemie Vermeulen—performed research, Matteo Campioli—analyzed data, and Matteo Campioli—wrote the paper.  相似文献   

13.
以福建长乐滨海沙地上3种人工林(尾巨桉、纹荚相思、木麻黄)土壤为研究对象,设置去除凋落物、去除根系和对照3种处理,观测1年后分析改变地上、地下有机质输入对沙地土壤碳氮储量、可溶性有机碳(DOC)氮(DON)和微生物量碳(MBC)氮(MBN)的影响。结果表明:不同树种人工林间土壤碳氮储量无显著差异;不同树种人工林间土壤活性碳氮组分差异显著,木麻黄土壤DOC含量显著高于纹荚相思,纹荚相思土壤DON显著高于木麻黄和尾巨桉,尾巨桉土壤MBN显著高于木麻黄和纹荚相思。改变地上地下有机质输入对滨海沙地土壤碳氮库有显著影响且这种影响随树种而异。去除凋落物后纹荚相思、木麻黄土壤碳储量分别下降38.0%、25.1%,氮储量分别下降12.9%、12.5%;去除凋落物后尾巨桉、纹荚相思、木麻黄土壤DOC分别下降37.5%、30.6%、52.9%,MBC分别下降31.0%、56.9%、29.7%,MBN分别下降50.7%、34.9%、42.2%;去除根系后尾巨桉、纹荚相思土壤MBC分别下降57.7%、15.4%。回归分析显示,滨海沙地土壤DOC、MBC与土壤碳储量呈显著正相关,土壤DOC和MBC分别能够解释土壤碳储量变化的47.7%和57.7%。研究表明:树种通过调控地上、地下输入影响可溶性有机碳氮和微生物量碳氮,进而影响土壤碳氮库。  相似文献   

14.
Savannas are widespread in sub‐Saharan Africa (SSA) and play a major role in the global carbon balance. Extensive quantification of savanna carbon stocks in SSA will therefore contribute to better accounting of the global carbon budget in the era of climate change. In this study, we investigated the spatial distribution of carbon stocks of different soil fractions and aboveground biomass within three forest reserves in the Guinea savanna zone of Ghana. Soil carbon stocks (SCSs) ranged from 4.80 to 12.61 Mg C/ha in surface soils (0–10 cm depth). Higher SCSs were associated with the silt +clay fraction than microaggregates and small macroaggregates in all three reserves. Relative to the dominant tree species (Vitellaria paradoxa), the highest SCSs were recorded under the sub‐canopy (SC), drip line (DL), and interspace (2 * SC + DL) zones for the Klupene, Sinsablegbinni, and Kenikeni forest reserves, respectively. The highest tree carbon stock was 60.01 Mg C/ha in Kenikeni. Sinsablegbinni had an average stock of 26.74 Mg C/ha and had the highest tree density. Average carbon capture by a single tree ranged from 0.04 to 0.34 Mg C. Aboveground grass carbon stock ranged from 0.08 to 0.47 Mg C/ha, while the belowground carbon stock ranged from 0.03 to 0.44 Mg C/ha. Accumulation of carbon in the aboveground grass biomass was greater at Klupene with low forest cover.  相似文献   

15.
We estimated carbon and nitrogen stocks in aboveground biomass (AGB) and belowground biomass (BGB) along an elevation range in forest sites located on the steep slopes of the Serra do Mar on the north coast of the State of São Paulo, southeast Brazil. In elevations of 100 m (lowland), 400 m (submontane), and 1000 m (montane) four 1-ha plots were established, and above- (live and dead) and belowground (live and dead) biomass were determined. Carbon and nitrogen concentrations in each compartment were determined and used to convert biomass into carbon and nitrogen stocks. The carbon aboveground stock (CAGB) varied along the elevation range from approximately 110 to 150 Mg·ha−1, and nitrogen aboveground stock (NAGB), varied from approximately 1.0 to 1.9 Mg·ha−1. The carbon belowground stock (CBGB) and the nitrogen belowground stock (NBGB) were significantly higher than the AGB and varied along the elevation range from approximately 200–300 Mg·ha−1, and from 14 to 20 Mg·ha−1, respectively. Finally, the total carbon stock (CTOTAL) varied from approximately 320 to 460 Mg·ha−1, and the nitrogen total stock (NTOTAL) from approximately 15 to 22 Mg·ha−1. Most of the carbon and nitrogen stocks were found belowground and not aboveground as normally found in lowland tropical forests. The above- and belowground stocks, and consequently, the total stocks of carbon and nitrogen increased significantly with elevation. As the soil and air temperature also decreased significantly with elevation, we found a significantly inverse relationship between carbon and nitrogen stocks and temperature. Using this inverse relationship, we made a first approach estimate that an increase of 1°C in soil temperature would decrease the carbon and nitrogen stocks in approximately 17 Mg·ha−1 and 1 Mg·ha−1 of carbon and nitrogen, respectively.  相似文献   

16.
Attempts were made to quantify the carbon and nitrogen pools in a monospecific and pioneer mangrove stand of Kandelia obovata Sheue, Liu & Yong, Okinawa Island, Japan. The leaf C and N concentrations on a leaf area basis decreased with increasing PPFD (Photosysthetic Photon Flux Density). The total C and N stocks in foliage were estimated as 3.55 Mg ha–1 and 0.105 Mg ha–1, respectively. The bark (45.6–48.6% for C and 0.564–0.842% for N) contained significantly higher amount of C (P < 0.05) and N (P < 0.01) than wood (46.2–47.8% for C and 0.347–0.914% N). The total C stock of stem was 23.2 Mg ha–1 in wood and 8.33 Mg ha–1 in bark, and the total N stock was 0.222 Mg ha–1 in wood and 0.116 Mg ha–1 in bark. The root wood (37.1–45.0%) contained significantly higher amount of C than root bark (35.4–40.7%) (P < 0.01). The total C stock of root was 14.2 Mg ha–1 in wood and 12.6 Mg ha–1 in bark, and the total N stock of root was 0.157 Mg ha–1 in wood and 0.155 Mg ha–1 in bark. The soil organic C and total N stocks within 1 m soil depth were estimated as 57.3 Mg ha–1 and 2.73 Mg ha–1, respectively. The C pool in aboveground biomass (35.1 Mg ha–1) was 1.3 times as large as that in belowground biomass (26.9 Mg ha–1). However, the soil organic C pool (57.3 Mg ha–1) was similar to the total C pool (62.0 Mg ha–1) of vegetation, indicating that the mangrove stored a large part of production in the soil. About 50% of the C was in the soil. The N pool in aboveground biomass (0.442 Mg ha–1) was 1.4 times as large as that in belowground biomass (0.312 Mg ha–1). The soil N stock was 3.3 times as large as the biomass N stock (0.754 Mg ha–1).  相似文献   

17.
Selective herbivory of palatable plant species provides a competitive advantage for unpalatable plant species, which often have slow growth rates and produce slowly decomposable litter. We hypothesized that through a shift in the vegetation community from palatable, deciduous dwarf shrubs to unpalatable, evergreen dwarf shrubs, selective herbivory may counteract the increased shrub abundance that is otherwise found in tundra ecosystems, in turn interacting with the responses of ecosystem carbon (C) stocks and CO2 balance to climatic warming. We tested this hypothesis in a 19‐year field experiment with factorial treatments of warming and simulated herbivory on the dominant deciduous dwarf shrub Vaccinium myrtillus. Warming was associated with a significantly increased vegetation abundance, with the strongest effect on deciduous dwarf shrubs, resulting in greater rates of both gross ecosystem production (GEP) and ecosystem respiration (ER) as well as increased C stocks. Simulated herbivory increased the abundance of evergreen dwarf shrubs, most importantly Empetrum nigrum ssp. hermaphroditum, which led to a recent shift in the dominant vegetation from deciduous to evergreen dwarf shrubs. Simulated herbivory caused no effect on GEP and ER or the total ecosystem C stocks, indicating that the vegetation shift counteracted the herbivore‐induced C loss from the system. A larger proportion of the total ecosystem C stock was found aboveground, rather than belowground, in plots treated with simulated herbivory. We conclude that by providing a competitive advantage to unpalatable plant species with slow growth rates and long life spans, selective herbivory may promote aboveground C stocks in a warming tundra ecosystem and, through this mechanism, counteract C losses that result from plant biomass consumption.  相似文献   

18.
Tropical mountain forests provide an exceptional opportunity to evaluate the patterns of variation in carbon stocks along elevational gradients that correspond to well‐defined temperature gradients. We predicted that carbon stored in live aboveground biomass, aboveground necromass, and soil components of forests on the eastern flank of the Colombian Andes would change with elevation along this gradient extending from 750 to 2,800 m above sea level. The rationale was that the corresponding change in temperature (14–26°C) would influence tree growth and decomposition of organic matter. To address this hypothesis, we examined the carbon stored in these three components using data from 20 0.25‐ha plots located along this elevational gradient. The mean total carbon stock found in the study region was 241.3 ± 37.5 Mg C/ha. Aboveground carbon stocks decreased with elevation (p = 0.001), as did necromass carbon stocks (p = 0.016). Although soil organic carbon stocks did not differ significantly along the gradient (p = 0.153), they contributed proportionately more at higher than at lower elevations, counterbalancing the opposite trends in aboveground carbon and necromass carbon stocks. As such, total carbon stocks did not vary significantly along the elevational gradient (p = 0.576).  相似文献   

19.
A macromolecule-free semi-synthetic medium (F-81) was devised to culture Trypanosoma cruzi serially at room temperature. F-81 contains only one undefined substance, trypticase, which consists primarily of short-chain polypeptides. In F-81 medium T. cruzi will grow to a density of 35 to 43 × 106 organisms/ml, a density comparable to that obtainable in a serum-containing medium such as F-69. High concentrations of water-soluble vitamins appear to have a serum-replacing effect in the F-81 medium. A completely synthetic medium (F-84) was prepared by replacing trypticase in F-81 with Trager's amino acid mixture. T. cruzi epimastigotes could be serially cultured in F-84, with a maximum yield of 9.2 × 106 organisms/ml of medium after 3 to 4 weeks of incubation at 27 C.  相似文献   

20.
The mechanisms most likely to determine the distribution of the two major herring Clupea harengus stocks in their common early summer feeding ground in the eastern North Sea, Skagerrak and Kattegat were investigated through analysis of acoustic survey data from six consecutive years. No change was detected in biomass of North Sea autumn spawning C. harengus (NSAS) over time, whereas the biomass of western Baltic spring spawning C. harengus (WBSS) declined severely. Analyses of centre of abundance by stock showed no change in NSAS distribution, whereas the WBSS changed to a more western distribution over time. Contrary to previous perception of the juvenile migration, NSAS were found to leave the study area at the age between 1 and 2 years and WBSS 1 year olds were encountered in the Skagerrak. The estimated parameters of von Bertalanffy growth equations showed marked differences between areas with fish in the eastern part of the area having the lowest size at age at all ages. Further, their growth conditions appeared to deteriorate progressively over the period studied. Both NSAS and WBSS showed the highest condition in the North Sea and Skagerrak while condition was substantially lower in age Kattegat. The westward movement of spring spawners over time suggests that growth rate and possibly density of conspecifics influence the migration pattern and distribution of C. harengus in the area. In contrast, there was no evidence to suggest that distribution was constant over time within stocks or that distribution reflected size‐dependent limitations on migration distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号