首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Abstract Alcaligenes eutrophus can accumulate poly-3-hydroxybutyrate (PHB) or polyhydroxyalkanoate (PHA) containing only 3-hydroxybutyrate (HB) and 3-hydroxyvalerate (HV) units. Granule-associated PHB-synthase was active with d (−)-3-hydroxybutyryl-CoA and d (−)-3-hydroxyvaleryl-CoA of the range of d (−)- and l (+)-3-hydroxyacyl-CoA substrates tested (C4–C10). In carbon-limited cultures, PHB-synthase was predominantly soluble, becoming granule-associated on transition to nitrogen limitation. Granule-associated PHB-synthase increased in activity at least up to pH 10.0 and K m values of 0.68 mM and 1.63 mM were determined for the C4 and C5 substrates, respectively, at pH 8.5. The soluble PHB-synthase, which was unstable, showed equal activity in the range pH 8.0–10.0, had a K m value for d (−)-3-hydroxybutyryl-CoA of 0.72 mM and an M r of 160,000. PHB does not measurably turn over under steady-state polymer-accumulating conditions.  相似文献   

2.
Abstract Two constitutive acetyl-CoA acetyltransferases (3-ketothiolases A and B) were purified from Alcaligenes eutrophus . Enzyme A was active with only acetoacetyl-CoA and 3-ketopentanoyl-CoA, whereas enzyme B was active with all the 3-ketoacyl-CoAs (C4−C10) tested. Enzyme A appeared to be a tetramer ( M r 70 000) with identical subunits ( M r 44 000) and enzyme B had a similar M r of 168 000 (containing M r 46 000 subunits). Enzymes A and B had isoelectric points of 5.0 and 6.4, respectively. The stoichiometry of the reactions catalysed by each enzyme was confirmed. K m values of 44 μM and 394 μM for acetoacetyl-CoA, and 16 μM and 93 μM for CoA, were determined with enzymes A and B, respectively. Enzymes A and B gave K m values of 1.1 mM and 230 μM, respectively, for acetyl-CoA. The condensation reaction was potently inhibited by CoA in both cases.  相似文献   

3.
Two constitutive acetoacetyl-CoA (AcAc-CoA) reductases were purified from Methylobacterium rhodesianum MB 126, an NADPH-linked d(-)--hydroxybutyryl-CoA forming reductase (enzyme A) and an NADH-and NADPH-linked l(+)--hydroxybutyryl-CoA forming reductase (enzyme B). Enzyme A and B give apparent K m values of 15 M and 30 M for AcAc-CoA, 18 M for NADPH and 30 M for NADH, respectively. They are inhibited by AcAc-CoA at concentrations higher than 25 M and 50 M, respectively. The contribution of the two reductases to poly--hydroxybutyrate synthesis is discussed.  相似文献   

4.
Four ecotypes of Phragmites australis from different habitats in northwest China were examined to compare their photosynthetic characteristics. In a swamp ecotype, the Δ 13C value of leaf materials was −34.0‰, and bundle sheath cells contained a small amount of organelles and round-shaped chloroplasts, as being similar to typical C3 plants. In a dune ecotype, the Δ 13C value was −20.9‰ and bundle sheath cells contained oval-shaped chloroplasts with poorly-developed grana. In light and heavy salt meadow ecotypes, Δ 13C values were −30.6‰ and −35.6‰, respectively. The shape of bundle sheath chloroplasts in the light salt meadow ecotype was intermediate between those of the swamp and dune ecotypes. Abundance of bundle sheath organelles in the heavy salt meadow ecotype was intermediate. The swamp ecotype had photosynthetic enzyme activities typical of C3 type plants, whereas the dune ecotype had an increased activity of phosphoenolpyruvate carboxylase (PEPC), a key C4 enzyme, and a decreased ribulose 1,5-bisphosphate carboxylase (Rubisco) activity. The light salt meadow and heavy salt meadow ecotypes had substantial activities of PEPC, which indicates potential for C4 photosynthesis. These data suggest that this species evolved the C3-like ecotype in swamp environments and the C4-like C3-C4 intermediate in dune desert environments, and C3-like C3-C4 intermediates in salt environments.  相似文献   

5.
The rate of degradation of n -alkanes C12-C18, in petrol (Slovene diesel) in an aqueous system, by free and immobilized Pseudomonas fluorescens in shaking flasks was investigated. Cells were immobilized to a biosupport, Biofix, and a biosorbant, Drizit. Analysis of cellular growth of the free and immobilized bacteria over 8 d of incubation with diesel as the sole carbon source, showed a reduction in the lag phase in the immobilized cultures in comparison to the free system. The free system degraded 52·3% of C12 and 11·6% of C13, but C14-C18 were not degraded. In comparison to the free system and diesel which had not been exposed to experimental conditions (unexposed), the immobilized systems degraded significantly more of C13-C18. Biofix-immobilized cells degraded 14·8% of C12 and an average of 53·5% of C13-C18. Drizit-immobilized cells degraded 24·5% of C12, 52·4% of C13 and an average of 91·2% of C14-C18. This study shows the successful use of immobilized bacteria technology to enhance the degradation of diesel in an aqueous system.  相似文献   

6.
Coalified residues of the xylem and peripheral structure tissues (stereomc) from perminei alized (CaCO3) Lower Devonian Psilophyton dawsomi have been analysed by Hash pyrolysis-gas chromatography-mass spectrometry. Both yielded C1-C3 alkylphenols, C1-C3 alkylbenzenes, C1-C3 alkylnaphthalenes, although with varying relative abundances. The stereomc also generated a scries of n -alk-1-cries and H-alkanes (C3C24, maximum at C10) which is believed to be derived from the cuticle. The sources of the aromatic compounds are discussed, and while it is concluded that those in the xylem are derived from lignin, the macromolecule having been degraded by diagencsis and thermal maturation, the molecular sources of those from the stereomc may also include a wide range of substances including simple phenolic acids, flavonoids and non-lignin polyphenolics. Possible functions for the stereome are discussed.  相似文献   

7.
Nodulated faba-beans ( Vicia faba L. var. minor) exhibiting high rates of N2 fixation (133 μmol C2H4 g−1 dry weight h−1), were subjected to water restriction. A loss of C2H2 reduction due to water stress was always associated with a decline of the leghemoglobin content for each of the 4 decreasing values of Ψmod. Electron micrographs showed ultrastructural alterations of the fixing tissue, which affected both partners and increased with the severity of water stress. In the nodule cytosol, the alkaline proteolysis approximately doubled when Ψmod decreased from −0.55 MPa to −1.55 MPa. Concomitantly, an increase of the nodule intracellular pH from 6.3 to 7.0 was observed. Proteolysis was due to serine proteases, exhibiting a pH-optimum of 8 and which actively degraded purified leghemoglobin in vitro (Km=100 μ M ). The degradation of leghemoglobin during water stress may contribute to the loss of C2H2 reduction and may affect the pattern of recovery upon rewatering.  相似文献   

8.
NADPH-, NADH-, and KNO3-eluted fractions of nitrate reductase (NR) were isolated from roots of winter wheat ( Triticum aestivum L. cv. Mironovskaya 808) grown under low temperature or high salinity. All three fractions exerted activity with either NADPH or NADH as electron donor. The NADPH-eluted fraction showed the highest activity with NADPH, whereas the NADH- and KNO3-eluted fractions were most active with NADH. The NADH- and NADPH-dependent activities in the NADH- and KNO3-eluted fractions were the ones that changed the most in response to low temperature. The inhibitory effect of salt stress was the same for both activities in each of the NADH- and KNO3-eluted fractions. The NADPH-eluted NR was the one least affected by the growth conditions.  相似文献   

9.
Abstract A denitrifying Cytophaga was isolated from soil enriched by anaerobic incubation with glucose, sulfide (S2−), nitrous oxide (N2O), and acetylene (C2H2). Such soil enrichments and pure cultures of the isolated Cytophaga reduced N2O rapidly even in the presence of a normally inhibitory concentration of C2H2 (4 kPa) providing S2− was present (8 μmol/g soil or 0.4 μmol/ml culture). Since C2H2 inhibition of the reduction of N2O is used as a tool in the assay of denitrification, the presence in large numbers of such a Cytophaga may influence the effectiveness of this assay especially in sulfidic environments.  相似文献   

10.
Chloroplast glutathione reductase: Purification and properties   总被引:4,自引:0,他引:4  
Glutathione reductase was partially purified from isolated pea chloroplasts ( Pisum sativum L. cv. Progress #9). A 1600-fold purification was obtained and the purified enzyme had a specific activity of 26 μmol NADPH oxidized (mg protein)−1 min−1. The enzyme had a native molecular weight of approximately 156 kdalton and consisted of two each of two subunits of about 41 and 42 kdalton. The Km for oxidized glutathione was 11 μ M and the Km for NADPH was 1.7 μ M . Enzyme activity was affected by the ionic strength of the assay medium, and maximum activity was observed at an ionic strength of between 60 and 100 m M . The enzyme was inactivated by sulfhydryl modifying reagents and the presence of either oxidized glutathione or NADPH affected the extent of inactivation. Chloroplast glutathione reductase probably serves in the removal of photosynthetically derived H2O2 by reducing dehydroascorbate for ascorbate-linked reduction of H2O2. Intermediates of this reaction sequence, dehydroascorbate, ascorbate, reduced glutathione, and NADPH had no effect on enzymic activity.  相似文献   

11.
Sulphate reduction in oxic and sub-oxic North-East Atlantic sediments   总被引:3,自引:0,他引:3  
Abstract Oxic and sub-oxic N.-E. Atlantic sediments were examined for sulphate-reducing activity. Oxygen and/or nitrate reduction are probably the dominant mineralisation processes in the abyssal plain sediment studied. A low rate of sulphate reduction (0.1 nmol SO2−4/ml/day) was recorded in the surface 5 cm of the continental slope sediment, together with the presence of a range of sulphate-reducing bacteria (SRB). A higher activity of sulphate reduction (2.2 nmol SO2−4/ml/day) occurred in the continental shelf sediment which led to a small decrease in pore water sulphate and an increase in titration alkalinity. This sediment contained approx. 102–103 acetate, lactate and propionate oxidising SRB/ml. No low- M r organic acids were detected in these sediments. However, amendment with 75 μM acetate stimulated sulphate-reducing activity in the shelf sediment.  相似文献   

12.
Submitochondrial particles (SMP) were isolated from potato ( Solanum tuberosum L. cv. Bintje) tubers. The SMP were 91% inside-out and they were able to form a membrane potential, as monitored by oxonol VI, with succinate, NADH and NADPH. The pH dependence and kinetics of NADH and NADPH oxidation by these SMP was studied using three different electron acceptors – O2, duroquinone and ferricyanide. In addition, the SMP were solubilized, fractionated by non-denaturing polyacrylamide gel electrophoresis, and the gels were stained for NAD(P)H dehydrogenase activity and specificity at different pH using Nitro Blue Tetrazolium. From the results we conclude that there are at least two distinct NAD(P)H dehydrogenases on the inner surface of the inner membrane: (1) Complex 1 which oxidizes NADH and deamino-NADH in a rotenone-sensitive manner, (O2 as acceptor) with optimum activity at pH 8 and a very low Km(NADH) of 3 μ M . It also oxidizes NADPH and deamino-NADPH in a rotenone-sensitive manner, but with a pH optimum at pH 5.8 and a very high Km(NADPH) of more than 1 m M . This complex is found as a broad, diffuse band at the top of the gels. (2) A second dehydrogenase which oxidizes NADH in a rotenone-insensitive manner with optimum activity at pH 6.2 and a higher Km(NADH) of 14 μ M . It also oxidizes NADPH in a rotenone-insensitive manner with an activity optimum at pH 6.8 and low Km(NADPH) of 25 μ M . This dehydrogenase does not oxidize deamino-NAD(P)H. One of the sharp bands around the middle of the native gels may be caused by this dehydrogenase indicating that it has a relatively low molecular mass compared to Complex I. Several other NAD(P)H dehydrogenase bands were observed on the gels which we cannot yet assign.  相似文献   

13.
Abstract The methyl-CoM reductase from Methanothrix soehngenii was purified 18-fold to apparent homogeneity with 50% recovery in three steps. The native molecular mass of the enzyme estimated by gel-fitration was 280 kDa. SDS-polyacrylamide gel electrophoresis revealed three protein bands corresponding to M r 63 900, 41 700 and 30 400 Da. The methyl-coenzyme M reductase constitutes up to 10% of the soluble cell protein. The enzyme has K m apparent values of 23 μM and 2 mM for N -7-mercaptoheptanoylthreonine phosphate (HS- HTP = component B ) and methyl-coenzyme M (CH3CoM) respectively. At the optimum pH of 7.0 60 nmol of methane were formed per min per mg protein.  相似文献   

14.
The involvement of the internal rotenone-insensitive NADPH dehydrogenase on the inner surface of the inner mitochondrial membrane [NDin(NADPH)] in the oxidation of strictly NAD+-linked substrates by pea ( Pisum sativum L.) leaf mitochondria was measured. As estimated by the inhibition caused by 5 μ M diphenyleneiodonium (DPI) in the presence of rotenone to inhibit complex I, the activity of NDin(NADPH) during glycine oxidation (measured both as O2 uptake and as CO2 release) was 40–50 nmol mg−1 protein min−1. No significant activity of NDin(NADPH) could be detected during the oxidation of 2-oxoglutarate, another strictly NAD+-linked substrate; this was possibly due to its relatively low oxidation rate. Control experiments showed that, even at 125 μ M , DPI had no effect on the activity of glycine decarboxylase complex (GDC) and lipoamide dehydrogenase. The relative activity of complex I, NDin(NADPH), and NDin(NADH) during glycine oxidation, estimated using rotenone and DPI, differed depending on the pyridine nucleotide supply in the mitochondrial matrix. This was shown by loading the mitochondria with NAD+ and NADP+, both of which were taken up by the organelle. We conclude that the involvement of NADP turnover during glycine oxidation is not due to the direct production of NADPH by GDC but is an indirect result of this process. It probably occurs via the interconversion of NADH to NADPH by the two non-energy-linked transhydrogenase activities recently identified in plant mitochondria.  相似文献   

15.
Abstract: Human brain aldose reductase and hexonate dehydrogenase are inhibited by alrestatin (AY 22,284) and sorbinil (CP 45,634). Inhibition by alrestatin is noncompetitive for both enzymes, and slightly stronger for hexonate dehydrogenase ( K I values 52-250 μ M ) than for aldose reductase ( K I values 170-320 μ M ). Sorbinil inhibits hexonate dehydrogenase far more potently than aldose reductase, K I values being 5 μ M for hexonate dehydrogenase and 150 μ M for aldose reductase. The inhibition of hexonate dehydrogenase by sorbinil is noncompetitive with respect to both aldehyde and NADPH substrates, and is thus kinetically similar to the inhibition by alrestatin. However, sorbinil inhibition of aldose reductase is uncompetitive with respect to glyceraldehyde and noncompetitive with NADPH as the varied substrate. Inhibition of human brain aldose reductase by these two inhibitors is much less potent than that reported for the enzyme from other sources.  相似文献   

16.
Abstract. Electroantennograms (EAGs) were recorded from laboratory-reared male and female Stomoxys calcitrans (L.) in response to a range of synthetic chemicals known to be electrophysiologically-active for other biting flies. Of the eight compounds initially tested, only two - 1-octen-3-ol and 3-methylphenol - consistently elicited larger electroantennograms (EAGs) than did control treatments; 1-octen-3-ol was the most potent. EAG recovery time was inversely correlated with EAG amplitude. EAGs recorded with primary C2-C12 carbon chain-length primary aliphatic alcohols peaked at octan-1–ol with pentan-1-ol, hexan-1-ol and heptan-1-ol also eliciting EAG responses significantly larger than the controls. When different C8 carbon chain compounds and nonane were tested: 1-octen-3-ol elicited the largest EAGs followed by, in decreasing activity, octan-1-ol, 1-bromooctane, octan-3-ol, octanal, 2-octanone, octanoic acid and nonane. The EAG response of 1-octen-3-ol increased sigmoidally with dose, with the threshold at between 2 and 20 ng, and the peak response at 200 μg on filter paper. EAGs larger than control were also elicited by entrained ox odour and ox breath. The behavioural implications are discussed.  相似文献   

17.
Abstract Newly developed low capacity columns were used in suppressed ion chromatography for rapid and highly reproducible determination of SO42− in porewater samples from freshwater sediments without preconcentration of samples. With a 50 μl injection the detection limit for SO42− was ca. 50 pmol (= 1 μ M) with a precision of 1–3% at the 10–200 μM level and <1% at concentrations above 200 μM. SO42− could be measured in 4–5 min with the routinely used eluent (3.0 mM NaHCO3/0.8 mM Na2CO3). When the strength of the eluent was increased to 3.0 mM NaHCO3/2.0 mM Na2CO3, sulfate analysis was possible in less than 3 min, provided that samples were nitrate-free. Under these conditions S2O32− could also be sensitively determined in about 6 min. Examples of application of the method are given for measurements of sulfate reduction rates in freshwater sediment samples from Lake Constance.  相似文献   

18.
In this study, we investigate the effects of chronic administration of (−)nicotine on the function of the NMDA-mediated modulation of [3H]dopamine (DA) release in rat prefrontal cortex (PFC) and nucleus accumbens (NAc). In the PFC synaptosomes NMDA in a concentration-dependent manner evoked [3H]DA release in rats chronically treated with vehicle (14 days) with an EC50 of 13.1 ± 2.0 μM. The NMDA-evoked overflow of the [3H]DA in PFC nerve endings of rats treated with (−)nicotine was significantly lower (−43%) than in vehicle treated rats. The EC50 was 9.0 ± 1.4 μM. Exposure of NAc synaptosomes of rats treated with vehicle to NMDA produced an increase in [3H]DA overflow with an EC50 of 14.5 ± 5.5 μM. This effect was significantly enhanced in chronically treated animals. The EC50 was 10.5 ± 0.5 μM. The K+-evoked release of [3H]DA was not modified by the (−)nicotine administration. Both the changes of the NMDA-evoked [3H]DA overflow in the NAc and PFC disappeared after 14 days withdrawal. The results show that chronic (−)nicotine differentially affects the NMDA-mediated [3H]DA release in the PFC and NAc of the rat.  相似文献   

19.
Leaf extracts from seven monocotyledonous and dicotyledonous species contained considerable levels of NADPH-dependent glyoxylate- and hydroxypyruvate reductase activities. These activities ranged from 0.02 to 0.22 μmol (mg protein)−1 min−1. For all plants tested, the glyoxylate reductase (GR) activity, assayed with either NADPH or NADH, was sensitive to inhibition by acetohydroxamate, a glycine analogue. Hydroxypyruvate reductase (HPR) activities were unaffected by acetohydroxamate. Differential precipitation of soluble leaf proteins of spinach, pea and barley by ammonium sulfate (0–45% and 45–60% saturation) indicated the presence of at least three distinct reductases, which differed in their specificities for glyoxylate, hydroxypyruvate and NAD(P)H. For all species, the NADH-dependent HPR-activity was almost completely precipitated by low ammonium sulfate concentration (45%), while precipitation of the NADPH-GR, NADH-GR and, to some extent, NADPH-HPR activities required 60% ammonium sulfate. The NADPH-dependent GR and HPR activities had high affinity for glyoxylate and hydroxypyruvate, respectively, as indicated by low apparent Km values of 40–120 μ M . The occurrence of at least three distinct reductases utilizing hydroxypyruvate and/or glyoxylate as substrate was supported by antibody-precipitation studies using antibodies prepared against NADH(NADPH)-HPR, the well-known peroxisomal enzyme that also shows non-specific GR activity. These data are discussed with respect to recent reports on the purification and characterization of NADPH(NADH)-GR, and NADPH (NADH)-HPR, two cytosolic reductases, and the role is assessed for these enzymes in reducing hydroxypyruvate and glyoxylate that may be leaked from peroxisomes.  相似文献   

20.
lndole-3-acetaldehyde reductase (lAAld reductase EC 1.2.3.1) from Phycomyces blakesleeanus Bgff., a 38 kDa polypeptide as determined by gel filtration, is probably localized in the cytoplasm. The formation of indole-3-ethanol (lEt) is dependent on the presence of NAD(P)H. The enzymatic reduction of IAAId shows a pH optimum between 6 and 8 and a temperature optimum at 30°C. Enzyme activity follows Michaelis Menten kinetic (Km= 200 μ M for IAAId; Km= 24 μ M for NADPH). The isoelectric point of the IAAId reductase is at pH 5.4. Phenylacetaldehyde and benzaldehyde are competitive substrates. Hydroxymeihylindole promotes the reductive IEt formation, whereas NADP+ is a non-competitive inhibitor. Changes in lAAJd reductase activity correlate with certain developmental stages of the fungus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号