首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary We tested the Enemy Impact Hypothesis, which predicts that communities of one tropic level are organized by the tropic level above. In the case of gallforming insect communities, the hypothesis predicts that gall morphology will diverge, minimizing the number of parasitoids shared among species. We used the monophyletic group of gallforming cecidomyiids (Asphondylia spp.) on creosote bush (Larrea tridentata) to test this hypothesis, predicting that species with thicker gall walls should exclude species of parasitoids with shorter ovipositors and have lower levels of parasitism. Of 17 parasitoid species reared from Asphondylia galls on creosote bush, 9 accounted for over 98% of parasitism. Seven of these 9 species had ovipositors long enough to penetrate 10 of 13 gall morphs measured. There was no significant relationship between gall wall thickness and number of associated parasitoid species (r 2=0.01, P>0.05, n=13). There was no relationship between gall wall thickness and types of parasitoid species colonizing galls: parasitoids with the shortest ovipositors colonized all types of gall morphs and were dominant members of the parasitoid assemblages in galls with the thickest walls. Ultimately, there were no significant differences in percent parasitism among Asphondylia species, regardless of gall wall thickness. We found no difference in numbers of associated parasitoids or percent parasitism in galls with different textures (e.g. hairy versus smooth), different locations on the plant or different phenologies. Our results suggest that enemy impact has not influenced the diversity of this gall community. Gall wall thickness, phenology, location on the plant and surface structure do not appear to influence the distribution of parasitoid species. Other explanations are offered to account for diversity in gall morphology among these species.  相似文献   

3.
Interspecific competition between phytophagous insects using the same host plant occurs frequently and can strongly affect population densities of competing species. Competition between gallmakers and stemborers could be especially intense because both types of herbivore are unable to avoid competition by relocation during their immature stages. For apical meristem gallmakers the main result of competition is likely to be the interruption of resources to the gall by the stemborers' devouring of stem contents. The proximate effect of such competition could be to reduce gall size, thereby increasing the number of chambers per gall unit volume, and reducing the size and potential reproductive output of the gallformer. In addition, smaller galls may be more susceptible to attack from size‐limited parasitoids, resulting in a second indirect effect of competition. Using a community of galling and stemboring insects on the saltmarsh shrub Iva frutescens L. (Asteraceae), we measured for indirect effects of competition. We examined the primary indirect effect of competition on gall midge crowding and the secondary effects on parasitism rates and parasitoid guild composition. Results indicated that galls co‐occurring with stemborers were smaller, crowding of gall inhabitants was 22% greater, and the composition of the parasitoid guild was altered relative to galls on unbored stems. The overall parasitism rate was not different between galls on bored vs. unbored stems. These results show that competition resulting from the presence of stemborers has the potential to affect the gall midge Asphondylia borrichiae Rossi & Strong (Diptera: Cecidomyiidae) and secondarily to affect its guild of hymenopteran parasitoids.  相似文献   

4.
Stiling P  Moon DC 《Oecologia》2005,142(3):413-420
Resource quality (plant nitrogen) and resource quantity (plant density) have often been argued to be among the most important factors influencing herbivore densities. A difficulty inherent in the studies that manipulate resource quality, by changing nutrient levels, is that resource quantity can be influenced simultaneously, i.e. fertilized plants grow more. In this study we disentangled the potentially confounding effects of plant quality and quantity on herbivore trophic dynamics by separately manipulating nutrients and plant density, while simultaneously reducing pressure from natural enemies (parasitoids) in a fully factorial design. Plant quality of the sea oxeye daisy, Borrichia frutescens, a common coastal species in Florida, was manipulated by adding nitrogen fertilizer to increase and sugar to decrease available nitrogen. Plant density was manipulated by pulling by hand 25 or 50% of Borrichia stems on each plot. Because our main focal herbivore was a gall making fly, Asphondylia borrichiae, which attacks only the apical meristems of plants, manipulating plant nitrogen levels was a convenient and reliable way to change plant quality without impacting quantity because fertilizer and sugar altered plant nitrogen content but not plant density. Our other focal herbivore was a sap-sucker, Pissonotus quadripustulatus, which taps the main veins of leaves. Parasitism of both herbivores was reduced via yellow sticky traps that caught hymenopteran parasitoids. Plant quality significantly affected the per stem density of both herbivores, with fertilization increasing, and sugar decreasing the densities of the two species but stem density manipulations had no significant effects. Parasitoid removal significantly increased the densities of both herbivores. Top-down manipulations resulted in a trophic cascade, as the density of Borrichia stems decreased significantly on parasitoid removal plots. This is because reduced parasitism increases gall density and galls can kill plant stems. In this system, plant quality and natural enemies impact per stem herbivore population densities but plant density does not.  相似文献   

5.
6.
Abstract.  1. The strength or density dependence of pairwise species interactions can depend on the presence or absence of other species, especially potential mutualists.
2. The gall wasp Disholcaspis eldoradensis induces plant galls that secrete a sweet honeydew from their top surfaces while the wasp larvae are active. These galls are actively tended by Argentine ants, which collect the honeydew and drive off parasitoids attempting to attack the gall wasp.
3. When ants were excluded, the total rate of parasitism by seven species of parasitoids increased by 36%, and the rate of gall-wasp emergence decreased by 54%.
4. The total percentage parasitism was affected by gall density when ants were excluded but not when ants were unmanipulated, suggesting a change in parasitoid functional responses due to ant tending.
5. In addition, excluding ants significantly altered the proportions of different parasitoid species that emerged from galls; one parasitoid species increased from 1% to 34%, and another decreased from 46% to 19%.
6. The invasive Argentine ants studied are capable of maintaining the mutualism with the gall wasps that evolved in the presence of different ant species and also act as a selective filter for the local community of generalist parasitoids trying to attack this gall species.  相似文献   

7.
Abstract.
  • 1 Pissonotus quadripustulatus is a brachypterous planthopper that feeds on the clonal salt marsh plant, sea oxeye daisy, Borrichia frutescens. Asphondylia borrichiae is a macropterous gall fly that creates galls on the apical meristems. Most Borrichia occurs in isolated patches consisting of more than one genotype.
  • 2 Densities of Pissonotus and Asphondylia do not significantly differ within patches but they do differ between patches. I tried to find out why some patches of Borrichia support consistently higher densities of Pissonotus and Asphondylia than others.
  • 3 Reciprocal transplants of Borrichia between patches showed that for both Pissonotus and Asphondylia recipient site (local environment) had a strong effect on population densities. However, the best sites for Asphondylia were generally the worst sites for Pissonotus and vice versa.
  • 4 Donor site (local plant genotypes) was not significant for Pissonotus but was marginally significant for Asphondylia. However, for Asphondylia recipient site had a greater effect. Local plant genotype effects may be greater for gall-forming insects, which tend to be specialists, than for more generalist sapsucking insects.
  相似文献   

8.
The gall midge Obolodiplosis robiniae is a pest of black locust Robinia pseudoacacia. The species was recently introduced into Europe and it is nowadays a usual insect in Slovakia, where two-year field surveys were undertaken during 2007–2008. The main objective of this study was to determine the natural enemies attacking O. robiniae and estimate their influence on midge population, less than 3 years after its introduction. Eight parasitoids and bushcricket Tettigonia viridissima were responsible for midge regulation. The parasitoid complex was not typically that of an introduced species as it was predicted. Firstly, the midge was heavily influenced by a specialized parasitoid Platygaster robiniae, which was a predominant parasitoid and accounted for 98% of all specimens reared. Secondly, annual larval parasitism varied from 5.4 to 10.8%, though the late season average parasitism achieved 26.0% and often exceeded 40%. P. robiniae was also very efficient in exploiting galls and was capable of consistently regulating midge population. The surveys demonstrated that the average cumulative impact of natural enemies on the midge was substantial. Stably around 20% of attacked galls were recorded during the late summer. Bushcrickets were as efficient as parasitoids and played an important role at control, especially during lack of parasitoids. Greater impact of parasitoids was found in the larger settlements than it was in the countryside, when countertendency was valid for bushcrickets. There is an indication that O. robiniae parasitized by specialized parasitoid, and attacked by bushcrickets represents only a moderate risk for R. pseudoacacia or forest stands.  相似文献   

9.
Communities of insect herbivores and their natural enemies are rich and ecologically crucial components of terrestrial biodiversity. Understanding the processes that promote their origin and maintenance is thus of considerable interest. One major proposed mechanism is ecological speciation through host‐associated differentiation (HAD), the divergence of a polyphagous species first into ecological host races and eventually into more specialized daughter species. The rich chalcid parasitoid communities attacking cynipid oak gall wasp hosts are structured by multiple host traits, including food plant taxon, host gall phenology, and gall structure. Here, we ask whether the same traits structure genetic diversity within supposedly generalist parasitoid morphospecies. We use mitochondrial DNA sequences and microsatellite genotypes to quantify HAD for Megastigmus (Bootanomyia) dorsalis, a complex of two apparently generalist cryptic parasitoid species attacking oak galls. Ancient Balkan refugial populations showed phenological separation between the cryptic species, one primarily attacking spring galls, and the other mainly attacking autumn galls. The spring species also contained host races specializing on galls developing on different host‐plant lineages (sections Cerris vs. Quercus) within the oak genus Quercus. These results indicate more significant host‐associated structuring within oak gall parasitoid communities than previously thought and support ecological theory predicting the evolution of specialist lineages within generalist parasitoids. In contrast, UK populations of the autumn cryptic species associated with both native and recently invading oak gall wasps showed no evidence of population differentiation, implying rapid recruitment of native parasitoid populations onto invading hosts, and hence potential for natural biological control. This is of significance given recent rapid range expansion of the economically damaging chestnut gall wasp, Dryocosmus kuriphilus, in Europe.  相似文献   

10.
The interactions of plant clone and abiotic factors on a gall-making midge   总被引:2,自引:0,他引:2  
Anthony M. Rossi  P. Stiling 《Oecologia》1998,116(1-2):170-176
Within and around Tampa Bay, Florida, monoclonal populations of the sea daisy, Borrichia frutescens, can be found on small, isolated islands growing within the intertidal zone. Stem tips of Borrichia are attacked by the gall-making cecidomyiid, Asphondyliaborrichiae. We used reciprocal transplants of Borrichia clones between islands to assess the importance of plant genotype and local environmental conditions (shade and host-plant nitrogen) on gall abundance. In another experiment, we controlled for host genotype effects by inducing differences in local environmental conditions through the addition of NH4NO3 fertilizer and/or shade to field plots at the only monoclonal site with a large enough population of Borrichia to facilitate the experiment. We also examined the effect of these variables on attack levels of Asphondylia by parasitoids. In the reciprocal transplant, while some Borrichia clones always supported more galls than others, regardless of environmental conditions, all four clones developed more galls when they were placed in the shade, compared to those in the sun, at all four sites. In addition, some islands always supported more galls than others and we found a significant clone × site interaction. In the single-clone experiment, Borrichia in fertilized- and shaded-only plots developed more Asphondylia galls than those from nonmanipulated control plots, and plants that received both shading and fertilizer developed the most galls. Although shade and fertilization produced an additive increase in plant nitrogen content, their effects resulted in a synergistic decrease in C:N ratio. Neither shading nor host plant nitrogen content had a significant effect on levels of parasitism between experimental and control plants. Our results suggest that genetic differences in Borrichia's susceptibility to Asphondylia attack are important in shaping the distribution of galls, but environmental factors such as soil nitrogen and degree of shading are at least as important as genetic differences between host plants. Received: 12 June 1997 / Accepted: 6 April 1998  相似文献   

11.
Different gall inducers belonging to distinct insect orders are rarely known to induce similarly shaped galls on the same host plant organs. We report that Asphondylia tojoi Elsayed & Tokuda sp. nov. (Diptera: Cecidomyiidae) and Ceratoneura sp. (Hymenoptera: Eulophidae) induce galls on leaf buds of Schoepfia jasminodora Sieb. et Zucc. (Schoepfiaceae). We describe the gall midge species as new to science and report a phylogenetic analysis for known Japanese Asphondylia species. We also describe life histories of the two species, based on monthly surveys during 2015–2017: although both species are multivoltine, A. tojoi overwinters as first instars in galls, whereas Ceratoneura sp. possibly does so as adults outside the galls. In addition, the internal structure of galls differed between the two species. Galls containing A. tojoi consist of a single chamber with inner walls clearly covered with whitish fungal mycelia after the gall midges develop into second instars. Those containing the Ceratoneura sp. have multiple chambers with hard black inner walls. Although some eulophids are known to be inquilines of galls induced by Asphondylia species, we consider that the Ceratoneura sp. is probably a true gall inducer because of the different gall structure and absence of fungal mycelia in their galls. This is the first report detailing the annual life history of a Ceratoneura species. Asphondylia tojoi represents the first example of monophagous Asphondylia species with a multivoltine life history on a deciduous tree.  相似文献   

12.
Summary The parasitoids known to attack 191 phytophagous species of gall midges (Cecidomyiidae) were used to examine factors influencing parasitoid assemblage size. The number of parasitoid species a midge species supports was tested against nine variables describing geographical, biological and ecological attributes of hosts. The apparency of midge larvae was found to have the greatest influence on parasitoid assemblage size; highly visible species support more parasitoids than less visible ones. Pupation site and midge voltinism also significantly affect associated parasitoids, at least for highly apparent hosts. Biogeographic region, host-plant architecture and the plant parts infested were found to be of secondary importance. The surface texture of infested plant parts, the number of midge larvae occupying galls and the diversity of plant tissues infested have minimal apparent effects on parasitoid richness. Parasitoid assemblage size and total parasitism rates were also found to be positively correlated for 73 galling and nongalling midge species, and gallers typically suffer higher levels of parasitism than non-gallers. Using these data to test the enemy hypothesis, which proposes that the galling habit has evolved to escape attack from parasitoids, we conclude that parasitoid pressure cannot account for the presence of galls in the Cecidomyiidae.  相似文献   

13.
Abstract.
  • 1 Rapid and substantial changes have occurred in the parasitoid and inquiline community associated with the agamic galls of Andricus quercuscalicis since it invaded Britain in the late 1950s. The number of parasitoid and inquiline species has risen from one to thirteen over a 15-year period. Although the number of species has been relatively consistent over the last 8 years, the species composition has changed considerably and in a highly characteristic way during this period.
  • 2 The parasitoid complex can be divided into two broadly distinct sets of parasitoid species; one set attacks only the gall former whereas the other set concentrates on the inquilines living in the wall of the gall.
  • 3 The most dramatic change, however, is in the abundance of inquilines which were reported to be virtually absent in earlier studies on this community in Britain. Over a period of only 5 years, between 1988 and 1993, inquiline attack rose from less than 0.01 to an average of 0.26 inquilines per gall. The intensity of inquiline attack is geographically heterogenous, with high inquiline numbers restricted to south-east England. Because of the relatively high specificity of the parasitoids, high inquiline abundance is positively correlated with parasitoid species richness in knopper galls.
  • 4 Parasitism rates, particularly on the gall former, were generally low (<10%). Over the last 5 years, however, seven parasitoid species have been consistently recorded and the mortality caused by these species has increased continuously. The species composition of the community associated with this alien gall wasp in Britain has quickly converged to the community known from its native range in continental Europe. Parasitoid species known to attack the galls of A.quercuscalisis on the continent have been recorded from it in Britain for the first time mainly in areas where inquilines have recently become abundant.
  • 5 Since rates of parasitism of the gall former are still low, parasitoids are unlikely to play a major role in the population dynamics of this invading gall wasp at present, but the rapidly increasing inquiline and parasitoid attack could be a source of increased mortality for native cynipid species which are the alternative hosts of those parasitoid species.
  相似文献   

14.
Summary Under a restricted set of conditions, predator-prey or parasite-host systems may exhibit an escalating arms race over several generations that is not coevolutionary. Preconditions for such a process include high correlation between prey/host quality and defensive capability, and phenotypic plasticity in predator/parasite-counter defenses that responds to quality. We present simulation models based on the parasitoid waspEurytoma gigantea, which lays its egg in the goldenrod gall induced by the flyEurosta solidaginis. For the parasitoid to successfully lay an egg, the gall walls must be thinner than the parasitoid's ovipositor is long. Wall thickness is highly correlated with gall size, so probability of successful attack declines with gall size. However, since the parasitoid eats the gall tissue, individuals developing in small galls have little food and mature with shorter ovipositors than those which develop in large galls. The simulation showed that the population mean parasitoid size is set by mean gall size. Since small galls are more frequently parasitized, there is a selection pressure on the gallmaker to induce larger galls. But, an additional simulation showed that since parasitoid ovipositor length depends on gall size, an evolutionary increase in gall size will also result in a non-evolutionary increase in parasitoid body size and ovipositor length over several generations.  相似文献   

15.
Ecological data is crucial for determining the degree of reproductive isolation among closely related species, and in identifying the factors that have produced this divergence. We studied life history traits for three Asphondylia (Diptera: Cecidomyiidae) species that induce fruit galls either on Alpinia, Ligustrum or Aucuba, and we compared the traits with those published for three other closely related Japanese Asphondylia species. We found that the six species were significantly differentiated in important life history traits, such as host range, voltinism, lower developmental threshold temperature, thermal constant and diapausing season. The data indicate that divergence in the assessed life history traits evolves before morphological divergence, and such ecological divergence could strengthen isolating barriers among the taxa. We present scenarios on how host range expansion, host plant shift and host organ shift for galling initiate the early stages of speciation. We also highlight the importance of ecological data in identifying cryptic species. Specifically, we confirm that Alpinia intermedia (Zingiberaceae) is not an autumn–spring host of the soybean pod gall midge Asphondylia yushimai based on many differences in the life history traits between the Alpinia fruit gall midge Asphondylia sp. and A. yushimai.  相似文献   

16.
1. Some insects have a prolonged diapause – a dormancy that extends over more than 1 year. In most species prolonged diapause involves one or a few extra years, but in extreme cases diapause may surpass 10 years. Few cases of very long diapause have been described, and very little is known about the population consequences of the temporal refuge formed by the diapausing individuals. 2. The gall midge Contarinia vincetoxici Kieffer galls the flowers of a long‐lived herb Vincetoxicum hirundinaria Med. After completing development, larvae leave the galls for the ground where they enter diapause. Extending an earlier published inoculation experiment, we show that the diapause may last up to at least 13 years, with a median duration of at least 6 years. 3. The gall midge is attacked by two parasitoid species. Dissections of gall midge larvae for presence of parasitoids revealed that Omphale salicis Haliday had a maximum 2 year diapause and Synopeas acuminatus Kieffer a maximum 4 years. The very long diapause of the gall midge may thus provide a temporal refuge from these enemies. 4. In a 15‐year field experiment all galls were removed every year from six isolated habitat patches. Density changes in experimental populations were not statistically different from control populations for over a decade. After 14–15 years a modest decline could be observed. This slow response illustrates that prolonged diapause in C. vincetoxici provides a very strong population buffer against mortality during the galling stage.  相似文献   

17.
Many parasitic organisms have an ability to manipulate their hosts to increase their own fitness. In parasitoids, behavioral changes of mobile hosts to avoid or protect against predation and hyperparasitism have been intensively studied, but host manipulation by parasitoids associated with endophytic or immobile hosts has seldom been investigated. We examined the interactions between a gall inducer Masakimyia pustulae (Diptera: Cecidomyiidae) and its parasitoids. This gall midge induces dimorphic leaf galls, thick and thin types, on Euonymus japonicus (Celastraceae). Platygaster sp. was the most common primary parasitoid of M. pustulae. In galls attacked by Platygaster sp., whole gall thickness as well as thicknesses of upper and lower gall wall was significantly larger than unparasitized galls, regardless of the gall types, in many localities. In addition, localities and tree individuals significantly affected the thickness of gall. Galls attacked by Platygaster sp. were seldom hyperparasitized in the two gall types. These results strongly suggest that Platygaster sp. manipulates the host plant''s development to avoid hyperparasitism by thickening galls.  相似文献   

18.
Abstract. 1. Eurytoma gigantea Walsh is a specialist parasitoid of the tephritid gallmaker Eurosta solidaginis (Fitch).
2. In the natural environment the incidence of parasitism by Eurytoma is greater in small galls than in large ones.
3. Laboratory experiments demonstrated that small galls are not more frequently discovered; however, oviposition attempts on small galls were more likely to be successful.
4. Eurytoma spends much time probing galls too big to penetrate; this leads to a decrease in foraging efficiency when many large galls are present.
5. The chance of successfully penetrating a gall depends on the thickness of the gall wall and the length of the parasitoid's ovipositor.
6. A simulation model was constructed which shows that a gallmak-er's chance of being parasitized depends on gall size, the number of parasitoids that discover the gall, and their ovipositor lengths.  相似文献   

19.
20.
Abstract. 1. Atriplex canescens (Pursh) Nuttall and A.polycarpa (Torrey) Watson (Chenopodiaceae) support twelve morphologically distinct gall types in southern California. Thirty-seven common species of parasitoids, predators and inquilines are associated with these galls. 2. The galls incited by eight members of the Asphondylia atriplicis Cockerell (Diptera: Cecidomyiidae) species complex are linked into a single, interacting community through shared hymenopterous parasitoids and inquilines. 3. Cluster analysis (UPGMA) grouped the fifteen most common species of Chalcidoidea into three host guilds of five species each: (1) specialists in tumour stem and blister leaf galls on A.canescens, (2) specialists in woolly stem galls on A.poiycarpa, and (3) generalists that attack all galls. Guild 1 dominated the galls with which it was primarily associated, while guild 3 dominated the remainder. 4. The abundances of the parasitoids of the tumour stem and blister leaf galls were negatively correlated with the abundances of two organizer species, a gall-forming inquiline, Tetrastichus cecidobroter Gordh and Hawkins, and an internal, larval—pupal parasitoid, Tetrastichus sp. B. The abundances of nine of the twelve most common chalcidoids were not correlated with the abundances of all coaccurring species in six other galls. 5. Host seasonality partly determines parasitoid population dynamics and guild structure. Parasitoid dominance increased with gall duration, suggesting that parasitoid competition depends on resource stability. The two continuously available galls were dominated by their specialist guild, while all seasonal galls were dominated by generalists. The subdominant specialists of woolly stem galls may represent competitively inferior species that utilize those galls opportunistically, because of the gall's widespread distribution and 9–10 month yearly availability. 6. Sites in the Colorado Desert and chaparral that supported several gall types showed stable relative abundances of the major parasitoid species, whereas sites in the Mojave Desert that supported only woolly stem galls had unpredictable parasitoid species assemblages. 7. The competitive success of Atriplex gall parasitoids may depend primarily on voltinism (multivoltine species dominated univoltine species) and mode of feeding (phytophagous, mixed entomophagous—phytophagous and facultatively hyperparasitic species in general dominated strict primary parasitoids).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号