首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a relatively simple and reproducible method for the isolation and culture of both differentiated and undifferentiated type II cells from fetal rat lung. The technique involves an initial period of explant culture in serum and hormone free medium, followed by enzymatic dissociation of the explants, differential adhesion to remove fibroblasts, incubation of the cell pellet to promote aggregation of the type II cells and monolayer culture of the type II cells. The type II cells form clusters which are surrounded by scattered fibroblasts. When the technique was performed with three differential adhesion steps, cultures contained 86.0 +/- 1.4% type II cells. To obtain a higher degree of purity and greater yield, two differential adhesions followed by gentle trypsinization of the cultures which selectively removes the isolated fibroblasts was performed. This resulted in cultures with 89.4 +/- 1.7% type II cells. The differentiated fetal type II cell cultures were prepared from 19-day fetal rat lungs which were initially maintained in explant culture for 48 h. These differentiated cells demonstrated the characteristic morphologic features of type II cells including lamellar bodies and microvilli. Undifferentiated fetal cells were prepared in a similar manner from 18-day fetal rat lung maintained in explant culture for 24 h. These cells did not contain intracellular osmiophilic granules; the appearance of these granules could, however, be induced by hormones. For this reason they are considered to be pre-type II cells. The viability of the cultured cells was 97%. Both the differentiated and undifferentiated fetal type II cells specifically bound the Maclura pomifera lectin, a type II cell surface marker. The phospholipid profile of the fetal cells was similar to that of adult rat type II cells; the differentiated fetal cells, however, synthesized less phosphatidylcholine than the adult cells did, but more than the undifferentiated fetal cells. The differentiated fetal cells secreted phosphatidylcholine at a basal rate of 0.6% +/- 0.1% during a 90-min incubation. There was dose-dependent stimulation of phosphatidylcholine secretion after exposure to terbutaline. Maximum stimulation (76%) was observed at a concentration of 10 microM. This culture system provides a valuable model for studies of the maturation of the undifferentiated fetal type II cell and surfactant metabolism and secretion in the differentiated fetal type II cell.  相似文献   

2.
Alveolar type II epithelial cells rapidly lose characteristics of differentiated function when cultured on plastic dishes. We have attempted to circumvent this problem by culturing type II cells under conditions that might better reproduce their environment in vivo. Cell-matrix interactions were studied by culturing isolated adult rat type II cells on Engelbreth-Holm-Swarm (EHS) tumor basement membrane. Aggregates of type II cells formed on the surface of the matrix during 4 days in culture. Microscopic examination of these aggregates revealed cuboidal cells that retained more characteristics of differentiated type II cells than did cells cultured on plastic. Type II cells cultured on EHS matrix incorporated a higher percentage of acetate into phosphatidylcholine (PC) than did cells on plastic, and a higher percentage of this PC was saturated. Phosphatidylglycerol (PG) synthesis by these cells was no different from that seen in cells on plastic. The effects of cell-cell interactions and cell shape were evaluated by culturing type II cells on feeder layers that in turn were grown on collagen gels. The feeder layer cells included fetal rat lung fibroblasts, adult rat lung fibroblasts, fetal rat skin fibroblasts, bovine aortic endothelial cells, and rat mammary tumor epithelial cells. One-half of the gels remained attached to the culture dish and one-half of the gels were detached after 24 h and allowed to float free in the medium. Type II cells grown in association with any of the attached feeder layers became flattened and lost their differentiated phenotype. These cells incorporated no greater percentage of acetate into PC than did cells on plastic. Saturated PC synthesis was modestly increased. PG synthesis declined in parallel with that seen in cells cultured on plastic. Type II cells cultured on feeder layers that were detached assumed their native cuboidal shape and also exhibited many morphological characteristics of differentiated function. These cells incorporated a significantly greater percentage of acetate into PC compared to cells on either plastic or attached feeder layers. Saturated PC synthesis also increased markedly. These cells, however, incorporated no greater percentage of acetate into PG than did cells on plastic or attached feeder layers. These data suggest an important role for cell shape and cell-matrix interactions and maintenance of type II cell differentiation. The effects of cell-cell interactions, while beneficial, appear to be non-specific.  相似文献   

3.
We have examined the effect of explant culture and hormones on the major surfactant associated protein of Mr 28,000-36,000 (SP 28-36) in human fetal lung. Explants of 16- to 23-week gestation lung were maintained for up to 5 days in culture. Polyclonal antibodies raised to SP 28-36 purified from alveolar proteinosis lung lavage were used in immunofluorescence experiments (n = 11). There was no specific fluorescence seen in frozen sections of preculture tissue. In explants cultured without serum or hormones, fluorescence was seen in most epithelial cells lining potential airspaces. In cultures treated with 10 nM dexamethasone and 2 nM T3 much brighter fluorescence was seen in virtually all epithelial cells. Immunofluorescence studies on cell monolayers prepared from explants confirmed that SP 28-36 is found in the cytoplasm of type II cells but not in fibroblasts. The pattern of fluorescence was consistent with the presence of SP 28-36 on rough endoplasmic reticulum. SP 28-36 mRNA was measured in isolated cell populations using a 32P-labeled cDNA probe. mRNA levels were manyfold higher in type II cell preparations (purity 78-92%) than in fibroblasts (purity 81-97%). A competitive enzyme linked assay was developed to quantify SP 28-36. The SP 28-36 content of five lungs before culture (17-23 weeks) was less than 0.02 microgram/mg DNA. During explant culture without hormones the SP 28-36 content increased exponentially. Exposure to dexamethasone accelerated the increase in SP 28-36 content. T3, alone or in the presence of dexamethasone, did not influence SP 28-36 content. We conclude that SP 28-36 content is very low in human fetal lung before 24 weeks gestation. Explant culture and treatment with dexamethasone synchronize development of type II cells from epithelial precursors, and induce synthesis of SP 28-36 in type II cells. These findings provide evidence of concomitant regulation by glucocorticoids of the phospholipid synthetic enzymes and the major protein of pulmonary surfactant.  相似文献   

4.
We examined the effect of monolayer culture on surfactant phospholipids and proteins of type II cells isolated from human adult and fetal lung. Type II cells were prepared from cultured explants of fetal lung (16-24 weeks gestation) and from adult surgical specimens. Cells were maintained for up to 6 days on plastic tissue culture dishes. Although incorporation of [methyl-3H]choline into phosphatidylcholine (PC) by fetal cells was similar on day 1 and day 5 of culture, saturation of PC fell from 35 to 26%. In addition, there was decreased distribution of labeled acetate into PC, whereas distribution into other phospholipids increased or did not change. The decrease in saturation of newly synthesized PC was not altered by triiodothyronine (T3) and dexamethasone treatment or by culture as mixed type II cell/fibroblast monolayers. The content of surfactant protein SP-A (28-36 kDa) in fetal cells, as measured by ELISA and immunofluorescence microscopy, rose during the first day and then fell to undetectable levels by the fifth. Synthesis of SP-A, as measured by [35S]methionine labeling and immunoprecipitation, was detectable on day 1 but not thereafter. Levels of mRNAs for SP-A and for the two lipophilic surfactant proteins SP-B (18 kDa) and SP-C (5 kDa) fell with half-times of maximally 24 h. In contrast, total protein synthesis measured by [35S]methionine incorporation increased and then plateaued. In adult cells, the content of SP-A and its mRNA decreased during culture, with time-courses similar to those for fetal cells. We conclude that in monolayer culture on plastic culture dishes, human type II cells lose their ability to synthesize both phospholipids and proteins of surfactant. The control of type II cell differentiation under these conditions appears to be at a pretranslational level.  相似文献   

5.
We have examined the effect of hydrocortisone and cyclic AMP on the maintenance of lipid synthesis in primary cultures of adult rat alveolar type II cells. These hormones were tested in the presence of either 1% or 5% charcoal-stripped rat serum (CS-rat serum). The effect of substratum on responsiveness to these hormones was evaluated by comparing cells cultured for 4 days on tissue culture plastic, on floating type I collagen gels, on rat lung fibroblast feeder layers on floating collagen gels (floating feeder layers), and on Engelbreth-Holm-Swarm (EHS) tumor basement membrane gels. Type II cells cultured on floating feeder layers in medium containing 1% CS-rat serum and 10(-5) M hydrocortisone plus 0.5 mM dibutyryl cyclic AMP exhibited significantly increased incorporation of [14C]acetate into total lipids (238% of control). The hormone combination also increased the relative percentage of acetate incorporated into phosphatidylglycerol (PG; 7.3% versus 1.9%) and saturated phosphatidylcholine (PC; 43.6% versus 37.6%). The percentage of acetate incorporated into neutral lipids was significantly decreased by the addition of hormones (28.6% versus 70.0%). The addition of hydrocortisone and cyclic AMP to medium containing 5% CS-rat serum resulted in an increase in the relative incorporation of acetate into saturated PC (51.2% versus 46.4%), but had no effect on the relative incorporation of acetate into PG or on the incorporation of acetate into total lipids. Type II cells cultured on EHS gels in medium containing 1% CS-rat serum plus hydrocortisone and cyclic AMP showed increased acetate incorporation into total lipids (204% of control) and a relative decrease in the percentage of acetate incorporated into neutral lipids (16.9% versus 47.0%). The hormone combination also increased the relative incorporation of acetate into PG (4.4% versus 2.5%) and saturated PC (49.9% versus 42.1%). Hydrocortisone and cyclic AMP added to medium containing 5% CS-rat serum concentration increased the relative incorporation of acetate into saturated PC by type II cells on EHS gels, but these additions had no effect on acetate incorporation into PG. No responses to these soluble factors were seen when type II cells were cultured on floating type I collagen gels without feeder layers or on tissue culture plastic. These data indicate that there are positive interactions between substratum, soluble factors and serum in the maintenance of differentiated function of adult rat alveolar type II cells in vitro.  相似文献   

6.
Type II alveolar epithelial cells were isolated from fetal rat lung by differential adherence in monolayer culture. The preparation had a high degree of purity, as assessed by phase contrast microscopy and immunocytochemistry. Purity, based on reactivity with specific anti-adult lung serum (SAALS), which recognizes only type II cells, was 91% for cells isolated from 19-day fetal lungs and 79% for cells isolated from 21-day fetal lungs. The lower purity of type II cells in cultures derived from 1-day postnatal rat lungs (51% cells reactive with SAALS) is probably due to a lower tendency of the type II cells from neonatal rats to adhere to culture dishes than of type II cells from fetal rats. Type II cells isolated from 21-day fetal lungs contained a higher percentage phosphatidylglycerol and incorporated [Me-3H]choline faster into phosphatidylcholine (PC) than type II cells isolated from 19-day fetal lungs. Moreover, in cell preparations derived from lungs at fetal day 21, a higher percentage of epithelial cells contained lamellar bodies than in preparations derived from lungs at fetal day 19. The observation of these differences in the stage of maturation indicates that these differences, which are typical features of the original material, are not obliterated by differentiation during the culture. Type II cells isolated according to the present procedure were capable of synthesizing PC with a high percentage of the disaturated species. This method for the isolation of fetal type II cells may be a useful tool in studies concerning surfactant synthesis and its regulation in the fetal lung.  相似文献   

7.
Kumar VH  Christian C  Kresch MJ 《Life sciences》2000,66(17):1639-1646
Beta-adrenergic agents enhance secretion of phosphatidylcholine (PC) by adult and fetal type II cells. We have previously shown that terbutaline stimulates secretion of PC by fetal type II cells, but the response wanes after 30 minutes. We studied the effects of salmeterol, a highly selective, long-acting beta2-adrenergic agonist that does not cause receptor desensitization, on PC secretion by adult type II alveolar cells in primary culture. Release of lactate-dehydrogenase was < 4% and did not vary with the concentration of salmeterol. Salmeterol stimulated PC secretion in a concentration-dependent manner. The maximum effective-concentration tested was 50 nM and the EC50 was 11.40 +/- 1.14 nM. Propranolol inhibited the effect of salmeterol on release of PC, confirming that the effects of salmeterol are mediated by beta-receptors. OT50, the time for onset of action, was 32.0 +/- 1.6 minutes. RT50, the time to achieve 50% recovery from maximal stimulation was, 393.0 +/- 20.2 minutes. We conclude that salmeterol stimulates PC secretion by type II cells through activation of beta-adrenergic receptors and has a longer duration of action (>6 hours) compared to other beta2-agonists. Salmeterol may be a useful drug with which to study the role of receptor desensitization in the developmental changes in PC secretion.  相似文献   

8.
The role in cell multiplication and maturation of several factors present in the late fetal lung was explored on isolated fetal rat pulmonary fibroblasts and alveolar epithelial type II cells cultivated in serum-free medium. The low degree of reciprocal contamination of each cell population was assessed by immunocytochemistry. Epidermal Growth Factor (EGF) stimulated thymidine incorporation and DNA accumulation in both cell types. In type II cells, it increased labeled-choline incorporation into surfactant phosphatidylcholine (PC), consistently with previous data obtained with lung explant cultures, but not into non-surfactant PC. Insulin-like growth factor (IGF)-I slightly stimulated DNA accumulation in fibroblasts although it did not significantly stimulate thymidine incorporation, contrary to IGF-II which presented a dose-dependent stimulating activity of thymidine incorporation. Neither IGF-I nor IGF-II stimulated type II cell growth. IGFs thus appear to primarily control the growth of lung mesenchyme. In type II cells, they stimulated the most non-surfactant PC biosynthesis. Gastrin releasing peptide (GRP) which was recently reported to promote fetal lung growth in vivo and to stimulate surfactant biosynthesis in lung organ culture revealed as a growth factor for type II cells only, at concentrations below 10(-9) M. At concentration 10(-8) M, although it did not affect DNA synthesis, GRP tended to increase surfactant and non-surfactant-PC biosynthesis. Retinoic acid inhibited thymidine incorporation into type II cells on a dose-dependent manner but nevertheless enhanced surfactant-PC biosynthesis to a similar extent as EGF. It is suggested that retinoic acid may represent a differentiation or maturation factor for the alveolar epithelium.  相似文献   

9.
The role of glucocorticoids in the regulation of vitamin K-dependent carboxylase activity was investigated in fetal and adult lung. Glucocorticoid deficiency induced by adrenalectomy (ADX) stimulated adult lung growth and reduced carboxylation in a tissue-specific manner. Type II epithelial cells were enriched in carboxylase activity, where ADX-induced downregulation was retained in freshly isolated cells. Carboxylase activity in fetal type II cells was one-half that found in fetal fibroblasts isolated from the same lungs, and both populations increased activity with time in culture. Both carboxylase activity and formation of gamma-carboxyglutamate (Gla)-containing proteins were stimulated by dexamethasone (Dex) in fetal type II cells. Matrix Gla protein (MGP), a vitamin K-dependent protein known to be synthesized in type II cells, was also found in fetal fibroblasts, where its expression was stimulated by Dex. These combined results suggested an important role for glucocorticoids and MGP in the developing lung, where both epithelial and mesenchymal cells coordinate precise control of branching morphogenesis. We investigated MGP expression and its regulation by Dex in the fetal lung explant model. MGP mRNA and protein were increased in parallel with the formation of highly branched lungs, and this increase was stimulated twofold by Dex at each day of culture. Dex-treated explants were characterized by large, dilated, conducting airways and a peripheral rim of highly branched saccules compared with uniformly branched controls. We propose that glucocorticoids are important regulators of vitamin K function in the developing and adult lung.  相似文献   

10.
Maturation of fetal alveolar type II epithelial cells in utero is characterized by specific changes to lung surfactant phospholipids. Here, we quantified the effects of hormonal differentiation in vitro on the molecular specificity of cellular and secreted phospholipids from human fetal type II epithelial cells using electrospray ionization mass spectrometry. Differentiation, assessed by morphology and changes in gene expression, was accompanied by restricted and specific modifications to cell phospholipids, principally enrichments of shorter chain species of phosphatidylcholine (PC) and phosphatidylinositol, that were not observed in fetal lung fibroblasts. Treatment of differentiated epithelial cells with secretagogues stimulated the secretion of functional surfactant-containing surfactant proteins B and C (SP-B and SP-C). Secreted material was further enriched in this same set of phospholipid species but was characterized by increased contents of short-chain monounsaturated and disaturated species other than dipalmitoyl PC (PC16:0/16:0), principally palmitoylmyristoyl PC (PC16:0/14:0) and palmitoylpalmitoleoyl PC (PC16:0/16:1). Mixtures of these PC molecular species, phosphatidylglycerol, and SP-B and SP-C were functionally active and rapidly generated low surface tension on compression in a pulsating bubble surfactometer. These results suggest that hormonally differentiated human fetal type II cells do not select the molecular composition of surfactant phospholipid on the basis of saturation but, more likely, on the basis of acyl chain length.  相似文献   

11.
Although differentiated fetal and adult type II pneumocytes are ultrastructurally similar, it is not known whether there are metabolic differences between them. We measured the activities of selected enzymes of phospholipid and fatty acid synthesis in fetal and adult rat type II cells, in late gestation fetal rat lung explants and in intact lung from rat fetuses of comparable gestational age. The activity of 1-acylglycerophosphocholine acyltransferase was significantly greater in adult type II cells than in fetal type II cells, fetal explants or intact fetal lung. The activity of CDP diacylglycerol:glycerol-3-phosphate 3-phosphatidyltransferase was similar in fetal and adult type II cells, but significantly lower in explants and intact fetal lung. There was a significant positive correlation between the percentage of alveolar epithelial cells in the cultures and tissue studied and CDP diacylglycerol:glycerol-3-phosphate 3-phosphatidyltransferase activity. This suggests that the previously reported correlation between phosphatidylglycerol synthesis and the percentage of alveolar epithelial cells in various lung culture systems may be related to the activity of this enzyme. Phosphatidylglycerol synthesis and CDP diacylglycerol:glycerol-3-phosphate 3-phosphatidyltransferase activity may be metabolic markers of type II cells, whereas the acyltransferase activity may be an indicator of type II cell maturation.  相似文献   

12.
The role in cell multiplication and maturation of several factors present in the late fetal lung was explored on isolated fetal rat pulmonary fibroblasts and alveolar epithelial type II cells cultivated in serum-free medium. The low degree of reciprocal contamination of each cell population was assessed by immunocytochemistry. Epidermal Growth Factor (EGF) stimulated thymidine incorporation and DNA accumulation in both cell types. In type II cells, it increased labeled-choline incorporation into surfactant phosphatidylcholine (PC), consistently with previous data obtained with lung explant cultures, but not into non-surfactant PC. Insulin-like growth factor (IGF)-I slightly stimulated DNA accumulation in fibroblasts although it did not significantly stimulate thymidine incorporation, contrary to IGF-II which presented a dose-dependent stimulating activity of thymidine incorporation. Neither IGF-I nor IGF-II stimulated type II cell growth. IGFs thus appear to primarily control the growth of lung mesenchyme. In type II cells, they stimulated the most non-surfactant PC biosynthesis. Gastrin releasing peptide (GRP) which was recently reported to promote fetal lung growth in vivo and to stimulate surfactant biosynthesis in lung organ culture revealed as a growth factor for type II cells only, at concentrations below 10 −9 M. At concentration 10 −8 M, although it did not affect DNA synthesis, GRP tended to increase surfactant and non-surfactant-PC biosynthesis. Retinoic acid inhibited thymidine incorporation into type II cells on a dose-dependent manner but nevertheless enhanced surfactant-PC biosynthesis to a similar extent as EGF. It is suggested that retinoic acid may represent a differentiation or maturation factor for the alveolar epithelium.  相似文献   

13.
14.
15.
Developing rat lung lipofibroblasts express leptin beginning on embryonic day (E) 17, increasing 7- to 10-fold by E20. Leptin and its receptor are expressed mutually exclusively by fetal lung fibroblasts and type II cells, suggesting a paracrine signaling "loop." This hypothesized mechanism is supported by the following experimental data: 1) leptin stimulates the de novo synthesis of surfactant phospholipid by both fetal rat type II cells (400% x 100 ng(-1) x ml(-1) x 24 h(-1)) and adult human airway epithelial cells (85% x 100 ng(-1) x 24 h(-1)); 2) leptin is secreted by lipofibroblasts in amounts that stimulate type II cell surfactant phospholipid synthesis in vitro; 3) epithelial cell secretions such as parathyroid hormone-related protein (PTHrP), PGE(2), and dexamethasone stimulate leptin expression by fetal rat lung fibroblasts; 4) PTHrP or leptin stimulate the de novo synthesis of surfactant phospholipid (2- to 2.5-fold/24 h) and the expression of surfactant protein B (SP-B; >25-fold/24 h) by fetal rat lung explants, an effect that is blocked by a leptin antibody; and 5) a PTHrP receptor antagonist inhibits the expression of leptin mRNA by explants but does not inhibit leptin stimulation of surfactant phospholipid or SP-B expression, indicating that PTHrP paracrine stimulation of type II cell maturation requires leptin expression by lipofibroblasts. This is the first demonstration of a paracrine loop that functionally cooperates to induce alveolar acinar lung development.  相似文献   

16.
Mitochondrial membrane potentials (MMP) reflect the functional status of mitochondria within cells. Our recently published method provides a semiquantitative estimate of the MMP of populations of mitochondrial-like particles within living cells at 37 degrees C using a combination of conventional fluorescence microscopy and three-dimensional deconvolution by exhaustive photon reassignment. The current studies demonstrate variations in the mean MMP among six different cell types (i.e., human skin fibroblasts, naive and differentiated PC12 cells, SH-SY5Y cells, dopaminergic cells, and primary cultured neurons) and MMP in different parts of the same cells (i.e., growth cones vs. cell bodies). The largest MMP was in nontransformed fibroblasts (mean MMP was -112 +/- 2 mV), while the lowest was in transformed neuroblastoma SH-SY5Y cells (-87 +/- 2 mV). This method revealed large variations in mean MMP among cells of the same type within a single culture dish. The percent area of the cell occupied by mitochondrial-like particles differed among different cell types, and ranged from 4% in SH-SY5Y to 24% in differentiated PC12 cells. The data can also be analyzed by calculating the sum potential of all of the pixels in a cell. The sum MMP per cell revealed a large range between cell types from -2238 +/- 355 mV/microm2 in SH-Y5Y to -15445 +/- 1039 mV/microm2 in PC12 cells. Although biological implications of heterogeneity of MMP are not clear, this approach provides a tool to address this question.  相似文献   

17.
Type I and type II alveolar epithelial cells (AECs) are derived from the same progenitor cell, but little is known about the factors that regulate their differentiation into separate phenotypes. An alteration in lung expansion alters the proportion type II AECs in the fetal lung, indicating that this may be a regulatory factor. Our aim was to quantify the changes in the proportion of type I and type II AECs caused by increased fetal lung expansion and to provide evidence for transdifferentiation of type II into type I cells. Lung tissue samples were collected from ovine fetuses exposed to increased lung expansion induced by 2, 4, or 10 days of tracheal obstruction (TO). The identities and proportions of AEC types were determined with electron microscopy. The proportion of type II cells was reduced from 28.5 +/- 2.2% in control fetuses to 9.4 +/- 2.3% at 2 days of TO and then to 1.9 +/- 0.8% at 10 days. The proportion of type I AECs was not altered at 2 days of TO (63.1 +/- 2.3%) compared with that of control cells (64.8 +/- 0.5%) but was markedly elevated (to 89.4 +/- 0.9%) at 10 days of TO. The proportion of an intermediate AEC type, which displayed characteristics of both type I and type II cells, increased from 5.7 +/- 1.3% in control fetuses to 23.8 +/- 5.1% by 2 days of TO and was similar to control values at 10 days of TO (7.7 +/- 0.9%). Our data show that increases in fetal lung expansion cause time-dependent changes in the proportion of AEC types, including a transient increase in an intermediate cell type. These data provide the first evidence to support the hypothesis that increases in fetal lung expansion induce differentiation of type II into type I AECs via an intermediate cell type.  相似文献   

18.
To determine whether small hydrophobic surfactant peptides (SP-B and SP-C) participate in recycling of pulmonary surfactant phospholipid, we determined the effect of these peptides on transfer of 3H- or 14C-labelled phosphatidylcholine from liposomes to isolated rat alveolar Type II cells and Chinese hamster lung fibroblasts. Both natural and synthetic SP-B and SP-C markedly stimulated phosphatidylcholine transfer to alveolar Type II cells and Chinese hamster lung fibroblasts in a dose- and time-dependent fashion. Effects of the peptides on phospholipid uptake were dose-dependent, but not saturable and occurred at both 4 and 37 degrees C. Uptake of labelled phospholipid into a lamellar body fraction prepared from Type II cells was augmented in the presence of SP-B. Neither SP-B nor SP-C augmented exchange of labelled plasma membrane phosphatidylcholine from isolated Type II cells or enhanced the release of surfactant phospholipid when compared to liposomes without SP-B or SP-C. Addition of native bovine SP-B and SP-C to the phospholipid vesicles perturbed the size and structure of the vesicles as determined by electron microscopy. To determine the structural elements responsible for the effect of the peptides on phospholipid uptake, fragments of SP-B were synthesized by solid-phase protein synthesis and their effects on phospholipid uptake assessed in Type II epithelial cells. SP-B (1-60) stimulated phospholipid uptake 7-fold. A smaller fragment of SP-B (15-60) was less active and the SP-B peptide (40-60) failed to augment phospholipid uptake significantly. Like SP-B and SP-C, surfactant-associated protein (SP-A) enhanced phospholipid uptake by Type II cells. However, SP-A failed to significantly stimulate phosphatidylcholine uptake by Chinese hamster lung fibroblasts. These studies demonstrate the independent activity of surfactant proteins SP-B and SP-C on the uptake of phospholipid by Type II epithelial cells and Chinese hamster lung fibroblasts in vitro.  相似文献   

19.
Type II alveolar epithelia produce, store and secrete pulmonary surfactant, a phospholipid and protein mixture which stabilizes alveoli at low lung volumes and, thereby, prevents alveolar collapse. We determined the developmental changes in the uptake, metabolism and reutilization of surfactant-related phospholipid in primary cultures of type II cells derived from fetal rat lung. Primary cultures of fetal and neonatal type II cells were incubated in media containing labelled liposomes. After the incubation phospholipids were extracted from the cells and uptake of label was analyzed. Re-uptake of radiolabelled dipalmitoyl phosphatidylcholine (DPPC) was concentration-dependent in undifferentiated fetal cells, differentiated fetal cells and neonatal cells. Re-uptake of DPPC by undifferentiated fetal cells was lower than re-uptake by both differentiated fetal and neonatal cells at 15 and 75 μM PC. Binding of DPPC to the cell surface involved a protein interaction, since trypsin was able to dissociate this trypsin-releasable fraction from internalized label. Undifferentiated fetal, differentiated fetal and neonatal cells all exhibited approx. 50% metabolic degradation of internalized phospholipid. Degraded lipids were reutilized in the synthesis of phosphatidylglycerol, but neonatal cells resynthesized twice as much phosphatidylglycerol as did undifferentiated fetal cells. These are the first studies which show that morphologically undifferentiated fetal type II cells are capable of the uptake of surfactant phospholipid as well as the degradation and reutilization of internalized phospholipid. Re-uptake, degradation and reutilization of internalized phospholipid appear to be under developmental control.  相似文献   

20.
Summary Human lung epithelial cells have been isolated and maintained in pure culture and characterized during their time in culture. Any residual fibroblasts were removed by selective trypsinization within the first 48 h in culture and the residual epithelial cells from the primary culture grew to confluent density. The epithelial cells at Passage 2 or greater were serially subpassaged when cultures reached ca. 80% confluency. This procedure permitted us to conduct biochemical and structural studies of starting materials and subsequent population doublings. Electron microscope evaluation of both initial monolayers and cell suspensions showed cultures to be composed of a single cell type. These cells had microvilli on their free or apical surface. Subsequent population doubling level 1 up to 5 exhibited the same structures. They contained lamellar inclusions, which are typical of Type II alveolar epithelial cells. Fetal lung (age 18 to 20 wk) cell suspensions processed for electron microscopy before culturing showed cells to be undifferentiated, epithelial-like with small microvilli along cell borders, and with desmosomes at cell junctions. Lamellar inclusions were not observed in these cells. Ultrastructural studies of the cultured epithelial cells demonstrated that the lamellar inclusions had a slightly positive reaction when tested for acid phosphatase. Phospholipid analysis of these lung epithelial cells showed a phospholipid composition consistent with that found in surfactant-containing Type II cells. Cultured epithelial cells stained with phosphine 3-R demonstrated a green fluorescent cytoplasm and nucleus with brightly fluorescent yellow-orange perinuclear particles. The preceding characterization of these cells leads us to conclude that they exhibit structural and biochemical features commensurate with Type II epithelial cells from human lung. Moreover, these selection techniques applied to the isolation of human lung Type II cells from the tissue permit us to study the differentiative function of these cells routinely under conditions of growth in vitro. This work was supported in part by grants from EPA, R 806638-01 and 131-640-1599A1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号