首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Regulation of the CTL response by macrophage migration inhibitory factor   总被引:16,自引:0,他引:16  
Macrophage migration inhibitory factor (MIF) has been shown to be a pivotal cytokine that mediates host inflammatory and immune responses. Recently, immunoneutralization of MIF has been found to inhibit tumor growth in mice; however, the contributing mechanisms underlying this effect have not been well defined. We investigated whether MIF plays a regulatory role in the expression of CTL activity. In a mouse model of the CTL response using the OVA-transfected tumor cell line EL4 (EG.7), we found that cultures of splenocytes obtained from EG.7-primed mice secrete high levels of MIF following Ag stimulation in vitro. Notably, parallel splenocyte cultures treated with neutralizing anti-MIF mAb showed a significant increase in the CTL response directed against EG.7 cells compared with control mAb-treated cultures. This effect was accompanied by elevated expression of IFN-gamma. Histological examination of the EG. 7 tumors from anti-MIF-treated animals showed a prominent increase in both CD4(+) and CD8(+) T cells as well as apoptotic tumor cells, consistent with the observed augmentation of CTL activity in vivo by anti-MIF. This increased CTL activity was associated with enhanced expression of the common gamma(c)-chain of the IL-2R that mediates CD8(+) T cell survival. Finally, CD8(+) T lymphocytes obtained from the spleens of anti-MIF-treated EG.7 tumor-bearing mice, when transferred into recipient tumor-bearing mice, showed increased accumulation in the tumor tissue. These data provide the first evidence of an important role for MIF in the regulation and trafficking of anti-tumor T lymphocytes in vivo.  相似文献   

3.
The molecular signals that allow primed CD8 T cells to persist and be effective are particularly important during cancer growth. With response to tumor-expressed Ag following adoptive T cell transfer, we show that CD8 effector cells deficient in OX40, a TNFR family member, could not mediate short-term tumor suppression. OX40 was required at two critical stages. The first was during CD8 priming in vitro, in which APC-transmitted OX40 signals endowed the ability to survive when adoptively transferred in vivo before tumor Ag encounter. The second was during the in vivo recall response of primed CD8 T cells, the stage in which OX40 contributed to the further survival and accumulation of T cells at the tumor site. The lack of OX40 costimulation was associated with reduced levels of Bcl-x(L), and retroviral expression of Bcl-x(L) in tumor-reactive CD8 T cells conferred greatly enhanced tumor protection following adoptive transfer. These data demonstrate that OX40 and Bcl-x(L) can control survival of primed CD8 T cells and provide new insights into both regulation of CD8 immunity and control of tumors.  相似文献   

4.
T cell expression of inhibitory proteins can be a critical component for the regulation of immunopathology owing to self-reactivity or potentially exuberant responses to pathogens, but it may also limit T cell responses to some malignancies, particularly if the tumor Ag being targeted is a self-protein. We found that the abrogation of Src homology region 2 domain-containing phosphatase-1 (SHP-1) in tumor-reactive CD8(+) T cells improves the therapeutic outcome of adoptive immunotherapy in a mouse model of disseminated leukemia, with benefit observed in therapy employing transfer of CD8(+) T cells alone or in the context of also providing supplemental IL-2. SHP-1(-/-) and SHP-1(+/+) effector T cells were expanded in vitro for immunotherapy. Following transfer in vivo, the SHP-1(-/-) effector T cells exhibited enhanced short-term accumulation, followed by greater contraction, and they ultimately formed similar numbers of long-lived, functional memory cells. The increased therapeutic effectiveness of SHP-1(-/-) effector cells was also observed in recipients that expressed the tumor Ag as a self-antigen in the liver, without evidence of inducing autoimmune toxicity. SHP-1(-/-) effector CD8(+) T cells expressed higher levels of eomesodermin, which correlated with enhanced lysis of tumor cells. Furthermore, reduction of SHP-1 expression in tumor-reactive effector T cells by retroviral transduction with vectors that express SHP-1-specific small interfering RNA, a translatable strategy, also exhibited enhanced antitumor activity in vivo. These studies suggest that abrogating SHP-1 in effector T cells may improve the efficacy of tumor elimination by T cell therapy without affecting the ability of the effector cells to persist and provide a long-term response.  相似文献   

5.
6.
It has been suggested that antitumor T cells specifically traffic to the tumor site, where they effect tumor destruction. To test whether tumor-reactive CD8(+) T cells specifically home to tumor, we assessed the trafficking of gp100-specific pmel-1 cells to large, vascularized tumors that express or do not express the target Ag. Activation of tumor-specific CD8(+) pmel-1 T cells with IL-2 and vaccination with an altered peptide ligand caused regression of gp100-positive tumors (B16), but not gp100-negative tumors (methylcholanthrene 205), implanted on opposing flanks of the same mouse. Surprisingly, we found approximately equal and very large numbers of pmel-1 T cells (>25% of all lymphocytes) infiltrating both Ag-positive and Ag-negative tumors. We also found evidence of massive infiltration and proliferation of activated antitumor pmel-1 cells in a variety of peripheral tissues, including lymph nodes, liver, spleen, and lungs, but not peripheral blood. Most importantly, evidence for T cell function, as measured by production of IFN-gamma, release of perforin, and activation of caspase-3 in target cells, was confined to Ag-expressing tumor. We thus conclude that CD8(+) T cell-mediated destruction of tumor is the result of specific T cell triggering at the tumor site. The ability to induce ubiquitous homing and specific tumor destruction may be important in the case of noninflammatory metastatic tumor foci.  相似文献   

7.
Neutralization of macrophage migration inhibitory factor (MIF) increases anti-tumor cytotoxic T cell responses in vivo and IFN-γ responses in vitro, suggesting a plausible regulatory role for MIF in T cell activation. Considering that IFN-γ production by CD4(+) T cells is pivotal to resolve murine malaria and that secretion of MIF is induced by Plasmodium chabaudi adami parasites, we investigated the effect of MIF deficiency on the infection with this pathogen. Infections with P. c. adami 556 KA parasites were more efficiently controlled in MIF-neutralized and MIF-deficient (knockout [KO]) BALB/c mice. The reduction in parasitemia was associated with reduced production of IL-4 by non-T/non-B cells throughout patent infection. At day 4 postinfection, higher numbers of activated CD4(+) cells were measured in MIF KO mice, which secreted more IFN-γ, less IL-4, and less IL-10 than did CD4(+) T cells from wild-type mice. Enhanced IFN-γ and decreased IL-4 responses also were measured in MIF KO CD4(+) T cells stimulated with or without IL-12 and anti-IL-4 blocking Ab to induce Th1 polarization. However, MIF KO CD4(+) T cells efficiently acquired a Th2 phenotype when stimulated in the presence of IL-4 and anti-IL-12 Ab, indicating normal responsiveness to IL-4/STAT6 signaling. These results suggest that by promoting IL-4 responses in cells other than T/B cells during early P. c. adami infection, MIF decreases IFN-γ secretion in CD4(+) T cells and, additionally, has the intrinsic ability to render CD4(+) T cells less capable of acquiring a robust Th1 phenotype when stimulated in the presence of IL-12.  相似文献   

8.
Type 2 CD8 T cells (Tc2) secrete IL-4 and IL-5 and display perforin-dependent cytolysis in vitro. Using an OVA-transfected B16-melanoma model, we show that tumor-reactive Tc2 effector cells accumulated at the tumor site and induced tumor regression that enhanced survival in mice with pulmonary tumors. Transfer of perforin-deficient Tc2 cells generated from perforin gene knockout mice showed no differences in therapeutic efficiency when compared with wild-type Tc2 cells. In contrast, Tc2 cells derived from select cytokine gene-deficient mice showed that therapeutic effects were dependent on effector cell-derived IL-4 and IL-5 that led to a local elevation in lung-derived chemoattractants and accumulation of activated host-derived CD8/CD44(high), CD4/CD44(high), and OVA-specific tetramer-positive CD8 cells in vivo. Host-derived T and non-T immune cells increased in the lung over time and correlated with an elevated production of type 1-related chemokines. Conversely, donor Tc2 cell numbers markedly diminished at later times, suggesting that prolonged therapeutic responses were due to host-derived mechanisms. Moreover, type 1 host responses were detectable with increased levels of IFN-gamma production by lung-derived CD4 and CD8 T cells from surviving Tc2-treated mice. Transfer of Tc2 cells into IFN-gamma-deficient tumor-bearing mice was markedly less effective then into wild-type mice, suggesting that host-derived IFN-gamma-dependent mechanisms play a role in Tc2-mediated antitumor responses.  相似文献   

9.
We have recently shown that effective cytokine gene therapy of solid tumors in HLA-A2 transgenic (HHD) mice lacking murine MHC class I molecule expression results in the generation of HLA-A2-restricted CD8(+) T effector cells selectively recognizing tumor blood vessel-associated pericytes and/or vascular endothelial cells. Using an HHD model in which HLA-A2(neg) tumor (MC38 colon carcinoma or B16 melanoma) cells are not recognized by the CD8(+) T cell repertoire, we now show that vaccines on the basis of tumor-associated blood vessel Ags (TBVA) elicit protective Tc1-dependent immunity capable of mediating tumor regression or extending overall survival. Vaccine efficacy was not observed if (HLA-A2(neg)) wild-type C57BL/6 mice were instead used as recipient animals. In the HHD model, effective vaccination resulted in profound infiltration of tumor lesions by CD8(+) (but not CD4(+)) T cells, in a coordinate reduction of CD31(+) blood vessels in the tumor microenvironment, and in the "spreading" of CD8(+) T cell responses to alternate TBVA that were not intrinsic to the vaccine. Protective Tc1-mediated immunity was durable and directly recognized pericytes and/or vascular endothelial cells flow-sorted from tumor tissue but not from tumor-uninvolved normal kidneys harvested from these same animals. Strikingly, the depletion of CD8(+), but not CD4(+), T cells at late time points after effective therapy frequently resulted in the recurrence of disease at the site of the regressed primary lesion. This suggests that the vaccine-induced anti-TBVA T cell repertoire can mediate the clinically preferred outcomes of either effectively eradicating tumors or policing a state of (occult) tumor dormancy.  相似文献   

10.
Therapeutic treatment of large established tumors using immunotherapy has yielded few promising results. We investigated whether adoptive transfer of tumor-specific CD8(+) T cells, together with tumor-specific CD4(+) T cells, would mediate regression of large established B16BL6-D5 melanomas in lymphopenic Rag1(-/-) recipients devoid of regulatory T cells. The combined adoptive transfer of subtherapeutic doses of both TRP1-specific TCR transgenic Rag1(-/-) CD4(+) T cells and gp100-specific TCR transgenic Rag1(-/-) CD8(+) T cells into lymphopenic recipients, who received vaccination, led to regression of large (100-400 mm(2)) melanomas. The same treatment strategy was ineffective in lymphoreplete wild-type mice. Twenty-five percent of mice (15/59) had tumors recur (15-180 d postregression). Recurrent tumors were depigmented and had decreased expression of gp100, the epitope targeted by the CD8(+) T cells. Mice with recurrent melanoma had increased CD4(+)Foxp3(+) TRP1-specific T cells compared with mice that did not show evidence of disease. Importantly, splenocytes from mice with recurrent tumor were able to suppress the in vivo therapeutic efficacy of splenocytes from tumor-free mice. These data demonstrate that large established tumors can be treated by a combination of tumor-specific CD8(+) and CD4(+) T cells. Additionally, recurrent tumors exhibited decreased Ag expression, which was accompanied by conversion of the therapeutic tumor-specific CD4(+) T cell population to a Foxp3(+)CD4(+) regulatory T cell population.  相似文献   

11.
Administration of anti-CD25 mAb before an aggressive murine breast tumor inoculation provoked effective antitumor immunity. Compared with CD4(+) T cells purified from anti-CD25 mAb-pretreated mice that did not reject tumor, CD4(+) T cells purified from anti-CD25 mAb-pretreated mice that rejected tumor stimulated by dendritic cells (DCs) produced more IFN-gamma and IL-2, and less IL-17 in vitro, and ignited protective antitumor immunity in vivo in an adoptive transfer model. Tumor Ag-loaded DCs activated naive CD8(+) T cells in the presence of these CD4(+) T cells in vitro. Tumor Ag and adoptively transferred CD4(+) T cells were both required for inducing a long-term tumor-specific IFN-gamma-producing cellular response and potent protective antitumor activity. Although adoptively transferred CD4(+) T cells ignited effective tumor-specific antitumor immunity in wild-type mice, they failed to do so in endogenous NK cell-depleted, Gr-1(+) cell-depleted, CD40(-/-), CD11c(+) DC-depleted, B cell(-/-), CD8(+) T cell-depleted, or IFN-gamma(-/-) mice. Collectively, the data suggest that adoptively transferred CD4(+) T cells orchestrate both endogenous innate and adaptive immunity to generate effective tumor-specific long-term protective antitumor immunity. The data also demonstrate the pivotal role of endogenous DCs in the tumor-specific protection ignited by adoptively transferred CD4(+) T cells. Thus, these findings highlight the importance of adoptively transferred CD4(+) T cells, as well as host immune components, in generating effective tumor-specific long-term antitumor activity.  相似文献   

12.
Whether IFN-gamma contributes to the per-cell protective capacity of memory CD8(+) T cells against Listeria monocytogenes (LM) has not been formally tested. In this study, we generated LM Ag-specific memory CD8(+) T cells via immunization of wild-type (WT) and IFN-gamma-deficient (gamma knockout (GKO)) mice with LM peptide-coated dendritic cells and compared them phenotypically and functionally. Immunization of WT and GKO mice resulted in memory CD8(+) T cells that were similar in number, functional avidity, TCR repertoire use, and memory phenotype. The protective capacity of memory CD8(+) T cells from immunized WT and GKO mice was evaluated after adoptive transfer of equal numbers of WT or GKO cells into naive BALB/c mice followed by LM challenge. The adoptively transferred CD8(+) T cells from GKO donors exhibited a decreased ability to reduce bacterial numbers in the organs of recipient mice when compared with an equivalent number of Ag-matched WT CD8(+) T cells. This deficiency was most evident early (day 3) after infection if a relatively low infectious dose was used; however, transferring fewer memory CD8(+) T cells or increasing the LM challenge dose revealed a more pronounced defect in protective immunity mediated by the CD8(+) T cells from GKO mice. Our studies identified a decrease in Ag-specific target cell lysis in vivo by CD8(+) T cells from GKO mice as the mechanism for the decreased protective immunity after LM challenge. Further studies suggest that the lack of IFN-gamma production by the Ag-specific CD8 T cells themselves diminishes target cell sensitivity to cytolysis, thereby reducing the lytic potency of IFN-gamma-deficient LM-specific memory CD8(+) T cells.  相似文献   

13.
Therapeutic use of IL-2 can generate antitumor immunity; however, a variety of different mechanisms have been reported. We injected IL-2 intratumorally (i.t.) at different stages of growth, using our unique murine model of mesothelioma (AE17; and AE17 transfected with secretory OVA (AE17-sOVA)), and systematically analyzed real-time events as they occurred in vivo. The majority of mice with small tumors when treatment commenced displayed complete tumor regression, remained tumor free for >2 mo, and survived rechallenge with AE17 tumor cells. However, mice with large tumors at the start of treatment failed to respond. Timing experiments showed that IL-2-mediated responses were dependent upon tumor size, not on the duration of disease. Although i.t. IL-2 did not alter tumor Ag presentation in draining lymph nodes, it did enhance a previously primed, endogenous, tumor-specific in vivo CTL response that coincided with regressing tumors. Both CD4(+) and CD8(+) cells were required for IL-2-mediated tumor eradication, because IL-2 therapy failed in CD4(+)-depleted, CD8(+)-depleted, and both CD4(+)- and CD8(+)-depleted C57BL/6J animals. Tumor-infiltrating CD8(+) T cells, but not CD4(+) T cells, increased in association with a marked reduction in tumor-associated vascularity. Destruction of blood vessels required CD8(+) T cells, because this did not occur in nude mice or in CD8(+)-depleted C57BL/6J mice. These results show that repeated doses of i.t. (but not systemic) IL-2 mediates tumor regression via an enhanced endogenous tumor-specific CTL response concomitant with reduced vasculature, thereby demonstrating a novel mechanism for IL-2 activity.  相似文献   

14.
Tumors evade immune surveillance despite the frequent expression of tumor-associated Ags (TAA). Tumor cells escape recognition by CD8(+) T cells through several mechanisms, including down-regulation of MHC class I molecules and associated Ag-processing machinery. However, although it is well accepted that optimal anti-tumor immune responses require tumor-reactive CD4(+) T cells, few studies have addressed how tumor cells evade CD4(+) T cell recognition. In this study, we show that a common TAA, GA733-2, and its murine orthologue, mouse epithelial glycoprotein (mEGP), function in blocking MHC class II-restricted Ag presentation by dendritic cells. GA733-2 is a common TAA that is expressed normally at low levels by some epithelial tissues and a subset of dendritic cells, but at high levels on colon, breast, lung, and some nonepithelial tumors. We show that ectopic expression of mEGP or GA733-2, respectively, in dendritic cells derived from murine bone marrow or human monocytes results in a dose-dependent inability to stimulate proliferation of Ag-specific or alloreactive CD4(+) T cells. Dendritic cells exposed to cell debris from tumors expressing mEGP are similarly compromised. Furthermore, mice immunized with dendritic cells expressing mEGP from a recombinant adenovirus vector exhibited a muted anti-adenovirus immune response. The inhibitory effect of mEGP was not due to down-regulation of functional MHC class II molecules or active suppression of T cells, and did not extend to T cell responses to superantigen. These results demonstrate a novel mechanism by which tumors may evade CD4(+) T cell-dependent immune responses through expression of a TAA.  相似文献   

15.
Schell TD 《Journal of virology》2004,78(4):1751-1762
Mice that express the viral oncoprotein simian virus 40 (SV40) large T antigen (T-Ag) as a transgene provide useful models for the assessment of the state of the host immune response in the face of spontaneous tumor progression. Line SV11 (H2(b)) mice develop rapidly progressing choroid plexus tumors due to expression of full-length T-Ag from the SV40 promoter. In addition, T-Ag expression in the thymus of SV11 mice results in the deletion of CD8(+) T cells specific for the three H2(b)-restricted immunodominant epitopes of T-Ag. Whether CD8(+) T cells specific for the immunorecessive H2-D(b)-restricted epitope V of T-Ag survive negative selection in SV11 mice has not been determined. Immunization of SV11 mice with rVV-ES-V, a recombinant vaccinia virus expressing epitope V as a minigene, resulted in the induction of weak, but reproducible, epitope V-specific cytotoxic T-lymphocyte (CTL) responses. This weak lytic response corresponded with a decreased frequency of epitope V-specific CTL that could be recruited in SV11 mice. In addition, CTL lines derived from rVV-ES-V-immunized SV11 mice had reduced avidities compared to that seen with CTL derived from healthy mice. Despite this initial weak response, significant numbers of epitope V-specific CD8(+) T cells were detected in SV11 mice ex vivo following a priming-boosting approach and these cells demonstrated high avidity for epitope V. The results suggest that low numbers of tumor-reactive CD8(+) T cells with high avidity for epitope V survive negative selection in SV11 mice but can be expanded by specific boosting approaches in the tumor bearing host.  相似文献   

16.
Recent evidence suggests that suppression of the cellular immune response is often attributable to populations of functionally distinct T cells that act to down-regulate Ag-specific effector T cells. Using flow cytometry, we evaluated tumor-infiltrating lymphocytes (TIL) from patients undergoing neurosurgical resection of glioblastoma multiforme (GBM), metastatic lung carcinoma, and meningioma for markers known to be expressed on immunoregulatory T cells. Ex vivo phenotypic characteristics, cellular proliferation, and cytokine expression patterns were compared between T cell subsets found in the PBMC and within TIL from fresh tumor samples. Interestingly, nearly half of all T cells infiltrating GBM specimens were CD56(+) T cells, while much smaller percentages of similar cells were identified within metastatic lung tumors and meningiomas. CD56(+) T cells identified within GBM were not canonical, or "invariant," NKT cells, as they demonstrated diverse TCR expression, a primarily CD4 single-positive phenotype, and lack of CD1d reactivity. The percentage of CD56(+) T cells exhibiting evidence of proliferation within GBM was 3- to 4-fold higher than the proportion of proliferating CD56(-) T cells from these lesions. In addition, direct ex vivo analysis of cytokine expression by TIL from GBM demonstrated significant numbers of IL-4/IL-13 positive cells, cytokines that are integral in the cell-mediated repression of tumor immunity in experimental models. We propose that GBM has a unique capacity to recruit and activate CD4(+)CD56(+) T cells, a population that has not been previously described within human tumors.  相似文献   

17.
The goal of the current study is to determine the effects of blocking phosphatidylserine (PS) on the growth of neuroblastoma in mice. PS, an anionic phospholipid restricted to the cytoplasmic surface of plasma membranes in most cells, is externalized to the surface of apoptotic cells. PS has been shown to induce immune tolerance to self-antigens. PS can also be found on the surface of live cells and in particular tumor cells. Annexin-V (AnV) is a protein that specifically binds and blocks PS. To determine the effects of blocking PS with AnV on tumor growth and immunogenicity, mice were inoculated with AGN2a, a poorly immunogenic murine neuroblastoma that expresses high level of PS on the cell surface. Survival and anti-tumor T cell response were determined. AGN2a were engineered to secrete AnV. Secreted protein effectively blocked tumor PS. 40?% of mice inoculated with AnV-expressing AGN2a cells survived free of tumor, whereas none of the mice inoculated with control cells survived (p?=?0.0062). The benefits of AnV were lost when mice were depleted of T cells. The findings suggest that AnV could protect mice from tumor challenge through an immune mediated mechanism. Mice were then immunized with irradiated AnV-secreting or control cells, and challenged with wild-type AGN2a cells. AnV-secreting cell vaccine protected 80?% of mice from AGN2a challenge, while control cell vaccine prevented tumor growth in only 30?% of animals (p?=?0.012). ELISPOT analysis demonstrated that AnV-secreting cell vaccine induced a greater frequency of interferon-gamma producing splenic T cells. T cells isolated from mice immunized with AnV-secreting but not control vaccine lysed AGN2a. In summary, AnV blocked PS, enhanced T cell mediated tumor immunity, and inhibited tumor growth.  相似文献   

18.
Several studies have suggested a positive correlation between heat shock protein (hsp) expression and tumor immunogenicity. Independently, many studies have shown that hsp purified from tumors can be used as a tumor-specific vaccine. In this study, we have explored the connection between hsp expression and anti-tumor immunity by transducing murine CT26 colon carcinoma cells with the cDNA of a major hsp, i.e. hsp110. We have shown that over-expression of hsp110 has no effect on CT26 tumor cell growth in vitro, and does not inhibit their anchorage-independent growth capacity. However, in situ, hsp110 over-expressing CT26 tumor (CT26-hsp110) grew at a significantly reduced rate as compared to the wild-type CT26 tumor in immunocompetent mice. Moreover, immunization of mice with inactivated CT26-hsp110 cells significantly inhibited the growth of wild-type CT26 tumor. This immunity was associated with an increased frequency of tumor-specific T cells after vaccination. An in vivo antibody depletion assay demonstrated that inactivated CT26-hsp110 cells elicited anti-tumor responses involving CD8(+) T cells and natural killer (NK) cells, but not CD4(+) T cells. Lastly, the effect of the addition of granulocyte-macrophage colony stimulating factor (GM-CSF) to these vaccine formulations was determined. Mice immunized with irradiated CT26-hsp110 cells combined with GM-CSF-producing bystander cells revealed a complete inhibition of CT26 tumor growth, indicating a synergy between inactivated CT26-hsp110 vaccine activity and GM-CSF. These observations demonstrate that manipulation of hsp110 expression in tumors, specifically when combined with GM-CSF, represents a potentially powerful approach to cancer vaccine formulation.  相似文献   

19.
The ubiquitin ligase Cbl-b is an established regulator of T cell immune response thresholds. We recently showed that adoptive cell transfer (ACT) of cblb(-/-) CD8(+) T cells enhances dendritic cell (DC) immunization-mediated anti-tumor effects in immune-competent recipients. However, translation of cblb targeting to clinically applicable concepts requires that inhibition of cblb activity be transient and reversible. Here we provide experimental evidence that inhibition of cblb using chemically synthesized siRNA has such potential. Silencing cblb expression by ex vivo siRNA transfection of polyclonal CD8(+) T cells prior to ACT increased T cell tumor infiltration, significantly delayed tumor outgrowth, and increased survival rates of tumor-bearing mice. As shown by ex vivo recall assays, cblb silencing resulted in significant augmentation of intratumoral T cell cytokine response. ACT of cblb-silenced polyclonal CD8(+) T cells combined with DC-based tumor vaccines predominantly mediated anti-tumor immune responses, whereas no signs of autoimmunity could be detected. Importantly, CBLB silencing in human CD8(+) T cells mirrored the effects observed for cblb-silenced and cblb-deficient murine T cells. Our data validate the concept of enhanced anti-tumor immunity by repetitive ACT of ex vivo cblb siRNA-silenced hyper-reactive CD8(+) T cells as add-on adjuvant therapy to augment the efficacy of existing cancer immunotherapy regimens in clinical practice.  相似文献   

20.
In this report, we address whether a growing tumor provides sufficient inflammatory signals to promote activation, clonal expansion, and acquisition of effector functions by naive tumor-specific CD8(+) T lymphocytes. CD8(+) T lymphocytes obtained from hemagglutinin (HA)-specific clone 4 TCR-transgenic mice were injected into recipient mice that spontaneously develop pancreatic tumors expressing HA as a tumor-associated Ag (RIP-Tag2-HA mice). When 3 x 10(6) clone 4 CD8(+) T cells were transferred into tumor-bearing mice, the cells became activated in the pancreatic lymph nodes where they proliferated and acquired effector functions such as cytolytic activity and IFN-gamma production. Surprisingly, reducing the number of adoptively transferred CD8(+) T cells led to a parallel reduction in the proportion of the activated cells that exhibited effector functions, suggesting that CTL differentiation was induced by the large numbers of activated CD8(+) T cells and not the tumor environment. Provision of tumor-specific CD4(+) helper cells provided the signals required to promote both the development of CTL effector functions and increased clonal expansion, resulting in tumor eradication. Considering that only small numbers of tumor-specific CD8(+) T cells would be present in a conventional T cell repertoire, these data suggest that tumor growth alone may not provide the inflammatory signals necessary to support the development of CD8(+) T cell effector functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号