首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light and electron microscopy, nuclear-encoded LSU rDNA sequences, and pigment analyses were performed on five geographically separate isolates of Gymnodinium mikimotoi. The morphological variation between the isolates equals that found within the isolates. The nuclear-encoded LSU rDNA sequences were nearly identical in all isolates, and molecular analyses using maximum likelihood, parsimony, and neighbor joining showed the geographical isolates as an unresolved clade. Based on the available data it is concluded that the European isolates, formerly identified as Gyrodinium aureolum , Gyrodinium cf. aureolum , or Gymnodinium cf. nagasakiense , are conspecific with the Japanese Gymnodinium mikimotoi. An isolate from the Pettaquamscutt River, USA, is suggested to represent what Hulburt (1957) described as Gyrodinium aureolum. The LSU rDNA sequence data and ultrastructural characters in this isolate closely resemble those of Gymnodinium fuscum , the type species of Gymnodinium , and Gyrodinium aureolum Hulburt is therefore renamed Gymnodinium aureolum (Hulburt) G. Hansen, comb. nov.  相似文献   

2.
Examination of the ultrastucture of the unarmored dinoflagellate Gymnodinium aureolum (Hulburt) G. Hansen (syn: Gyrodinium aureolum Hulburt) revealed the presence of nuclear chambers, which are specialized differentiations of the nuclear envelope, similar to those described in the type species of Gymnodinium , G. fuscum (Ehrenberg) Stein and certain other Gymnodinium species. The nuclear pores were restricted to these chambers. In the flagellar apparatus a nuclear fibrous connective linked the longitudinal microtubular root and the nucleus. This structure had so far been observed only in Gymnodinium spp. and in the heterotrophic species Actiniscus pentasterias (Ehrenberg) Ehrenberg, Nematodinium armatum (Dogiel) Kofoid et Swezy and Polykrikos kofoidii Chatton. Another unusual feature of G. aureolum was the presence of a striated fiber in the longitudinal flagellum, a feature previously only found in Ceratium furca (Ehrenberg) Claparède et Lachmann and C. tripos (O.F. Müller) Nitzsch. Gymnodinium aureolum also possessed a prominent ventral protrusion associated with the peduncle and containing electron opaque material. It is concluded that G. aureolum belongs to the Gymnodinium sensu stricto group. This may be a temporary classification, however, because G. aureolum and its allies differ from the type species G. fuscum by the presence of a transverse striated root, striated collars, trichocysts, and a peduncle.  相似文献   

3.
4.
The three anomalously pigmented dinoflagellates Gymnodinium galatheanum, Gyrodinium aureolum, and Gymnodinium breve have plastids possessing 19'-hexanoyloxy-fucoxanthin as the major carotenoid rather than peridinin, which is characteristic of the majority of the dinoflagellates. Analyses of SSU rDNA from the plastid and the nuclear genome of these dinoflagellate species indicate that they have acquired their plastids via endosymbiosis of a haptophyte. The dinoflagellate plastid sequences appear to have undergone rapid sequence evolution, and there is considerable divergence between the three species. However, distance, parsimony, and maximum-likelihood phylogenetic analyses of plastid SSU rRNA gene sequences place the three species within the haptophyte clade. Pavlova gyrans is the most basal branching haptophyte and is the outgroup to a clade comprising the dinoflagellate sequences and those of other haptophytes. The haptophytes themselves are thought to have plastids of a secondary origin; hence, these dinoflagellates appear to have tertiary plastids. Both molecular and morphological data divide the plastids into two groups, where G. aureolum and G. breve have similar plastid morphology and G. galatheanum has plastids with distinctive features.  相似文献   

5.
The heterotrophic dinoflagellate Gyrodiniellum shiwhaense n. gen., n. sp. is described from live cells and from cells prepared for light, scanning electron, and transmission electron microscopy. Also, sequences of the small subunit (SSU) and large subunit (LSU) of rDNA have been analyzed. The episome is conical, while the hyposome is ellipsoid. Cells are covered with polygonal amphiesmal vesicles arranged in 16 horizontal rows. Unlike other Gyrodinium-like dinoflagellates, the apical end of the cell shows a loop-shaped row of five elongate amphiesmal vesicles. The cingulum is displaced by 0.3-0.5 × cell length. Cells that were feeding on the dinoflagellate Amphidinium carterae Hulburt were 9.1-21.6 μm long and 6.6-15.7 μm wide. Cells of G. shiwhaense contain nematocysts, trichocysts, a peduncle, and pusule systems, but they lack chloroplasts. The SSU rDNA sequence is >3% different from that of the six most closely related species: Warnowia sp. (FJ947040), Lepidodinium viride Watanabe, Suda, Inouye, Sawaguchi & Chihara, Gymnodinium aureolum (Hulburt) Hansen, Gymnodinium catenatum Graham, Nematodinium sp. (FJ947039), and Gymnodinium sp. MUCC284 (AF022196), while the LSU rDNA is 11-12% different from that of Warnowia sp., G. aureolum, and Nematodinium sp. (FJ947041). The phylogenetic trees show that the species belongs in the Gymnodinium sensu stricto clade. However, in contrast to Gymnodinium spp., cells lack nuclear envelope chambers and a nuclear fibrous connective. Unlike Polykrikos spp., cells of which possess a taeniocyst-nematocyst complex, G. shiwhaense has nematocysts but lacks taeniocysts. It differs from Paragymnodinium shiwhaense Kang, Jeong, Moestrup & Shin by possessing nematocysts with stylets and filaments. Gyrodiniellum shiwhaense n. gen., n. sp. furthermore lacks ocelloids, in contrast to Warnowia spp., Nematodinium spp., and Proterythropsis spp. Based on morphological and molecular data, we suggest that the taxon represents a new species within a new genus.  相似文献   

6.
A naked dinoflagellate with a unique arrangement of chloroplasts in the center of the cell was isolated from the northern Baltic proper during a spring dinoflagellate bloom (March 2005). Morphological, ultrastructural, and molecular analyses revealed this dinoflagellate to be undescribed and belonging to the genus Gymnodinium F. Stein. Gymnodinium corollarium A. M. Sundström, Kremp et Daugbjerg sp. nov. possesses features typical of Gymnodinium sensu stricto, such as nuclear chambers and an apical groove running in a counterclockwise direction around the apex. Phylogenetic analyses based on partial nuclear‐encoded LSU rDNA sequences place the species in close proximity to G. aureolum, but significant genetic distance, together with distinct morphological features, such as the position of chloroplasts, clearly justifies separation from this species. Temperature and salinity experiments revealed a preference of G. corollarium for low salinities and temperatures, confirming it to be a cold‐water species well adapted to the brackish water conditions in the Baltic Sea. At nitrogen‐deplete conditions, G. corollarium cultures produced small, slightly oval cysts resembling a previously unidentified cyst type commonly found in sediment trap samples collected from the northern and central open Baltic Sea. Based on LSU rDNA comparison, these cysts were assigned to G. corollarium. The cysts have been observed in many parts of the Baltic Sea, indicating the ecologic versatility of the species and its importance for the Baltic ecosystem.  相似文献   

7.
The green dinoflagellate Gymnodinium chlorophorum (BAH ME 100, the type culture) was reexamined with emphasis on the structure of the flagellar apparatus and nuclear envelope. Like other Gymnodinium species, G. chlorophorum possessed a nuclear fibrous connective linking the flagellar apparatus and the nucleus, albeit in a very reduced and unique form. Microtubules nucleated from the R3 flagellar root associated with the nuclear fibrous connective and terminated at the nucleus, a novel arrangement not known in any other dinoflagellate. Although overlooked by previous researchers, nuclear chambers were present in G. chlorophorum similar to those reported in Gymnodinium aureolum and Gymnodinium nolleri. In contrast to the type species of Gymnodinium, Gymnodinium fuscum, only one nuclear pore was present per chamber. The presence of a feeding tube (peduncle) suggests that G. chlorophorum is mixotrophic. Although the fine structure of G. chlorophorum revealed its affiliation to the Gymnodinium group the above discrepancies set it apart, indicating that it might belong in a different genus.  相似文献   

8.
Fish and invertebrate kills were reported from September to October 1996 in the Indian River, Florida, coincident with blooms of the dinoflagellate Gymnodinium pulchellum Larsen 1994. This is the first report of a bloom of this species in the Americas. Fish and invertebrate species affected were common snook ( Centropomus undecimalis ), striped mullet ( Mugil cephalus ), hardhead catfish ( Arius felis ), red drum ( Sciaenops ocellatus ), sheepshead ( Archosargus probatocephalus ), black drum ( Pogonias cromis ), blue crab ( Callinectes sapidus ), and shrimp ( Penaeus spp.). However, Gymnodinium pulchellum has previously caused fish kills in Japan and Australia. Examination of archived phytoplankton samples from a fish kill reported in the same area of the Indian River in August 1990 confirmed the presence of high concentrations of G. pulchellum. Fish kills associated with Alexandrium monilatum and potentially Pfiesteria -like species in the Indian River also are discussed. Scanning electron microscopy provided additional morphological detail on this distinct but little-known dinoflagellate.  相似文献   

9.
Interactions between bacteria and species of harmful and/or toxic algae are potentially important factors affecting both the population dynamics and the toxicity of these algae. Recent reports of bacteria lethal to certain harmful algal bloom (HAB) species, coupled with a rapidly evolving interest in attempting to minimize the adverse effects of HABs through various prevention, control, and mitigation strategies, have focused attention on defining the role of algicidal bacteria in bloom termination. The aim of the present study was to determine whether algicidal bacteria active against Gymnodinium breve Davis, a dinoflagellate responsible for frequent and protracted red tides in the Gulf of Mexico, are present in the waters of the west Florida shelf. To date, we have isolated two bacterial strains from this region lethal to G. breve and have begun to characterize the algicidal activity of one of these strains, 41-DBG2. This bacterium, a yellow-pigmented, gram-negative rod, was isolated from waters containing no detectable G. breve cells, suggesting that such bacteria are part of the ambient microbial community and are not restricted to areas of high G. breve abundance. Strain 41-DBG2 produced a dissolved algicidal compound(s) that was released into the growth medium, and the algicide was effective against the four Gulf of Mexico G. breve isolates tested as well as a closely related HAB species that also occurs in this region, Gymnodinium mikimotoi Miyake et Kominami ex Oda. Nonetheless, data showing that a nontoxic isolate of Gymnodinium sanguineum Hirasaka from Florida Bay was not affected indicate that the algicidal activity of this bacterium does exhibit a degree of taxonomic specificity. Our efforts are currently being directed at resolving several critical issues, including the identity of the algicide(s), the mechanisms regulating its production and ability to discriminate between target algal species, and how the growth rate of 41-DBG2 is affected by the presence of G. breve cells. We have also proposed a conceptual model for interactions between algicidal bacteria and their target species to serve as a testable framework for ensuing field studies.  相似文献   

10.
The toxic dinoflagellate Gymnodinium catenatum Graham has formed recurrent toxic blooms in southeastern Tasmanian waters since its discovery in the area in 1986. Current evidence suggests that this species might have been introduced to Tasmania prior to 1973, possibly in cargo vessel ballast water carried from populations in Japan or Spain, followed by recent dispersal to mainland Australia. To examine this hypothesis, cultured strains from G. catenatum populations in Australia, Spain, Portugal, and Japan were examined using allozymes and randomly amplified polymorphic DNA (RAPD). Allozyme screening detected very limited polymorphism and was not useful for population comparisons; however, Australian, Spanish, Portuguese, and Japanese strains showed considerable RAPD diversity, and all strains examined represented unique genotypes. Multidimensional scaling analysis (MDS) of RAPD genetic distances between strains showed clear separation of strains into three nonoverlapping regional clusters: Australia, Japan, and Spain/Portugal. Analysis of genetic distances between strains from the three regional populations indicated that Australian strains were almost equally related to both the Spanish/Portuguese population and the Japanese population. Analysis of molecular variance (AMOVA) found that genetic variation was partitioned mainly within populations (87%) compared to the variation between the regions (8%) and between populations within regions (5%). The potential source population for Tasmania’s introduced G. catenatum remains equivocal; however, strains from the recently discovered mainland Australian population (Port Lincoln, South Australia, 1996) clustered with Tasmanian strains, supporting the notion of a secondary relocation of Tasmanian G. catenatum populations to the mainland via a shipping vector. Geographic and temporal clustering of strains was evident among the Tasmanian strains, indicating that genetic exchange between neighboring estuaries is limited and that Tasmanian G. catenatum blooms are composed of localized, estuary-bound subpopulations.  相似文献   

11.
Gymnodinium catenatum is a bloom forming dinoflagellate that has been known to cause paralytic shellfish poisoning (PSP) in humans. It is being reported with increased frequency around the world, with ballast water transport implicated as a primary vector that may have contributed to its global spread. Major limitations to monitoring and management of its spread are the inability for early, rapid, and accurate detection of G. catenatum in plankton samples. This study explored the feasibility of developing a PCR-based method for specific detection of G. catenatumin cultures and heterogeneous ballast water and environmental samples. Sequence comparison of the large sub unit (LSU) ribosomal DNA locus of several strains and species of dinoflagellates allowed the design of G. catenatum specific PCR primers that are flanked by conserved regions. Assay specificity was validated through screening a range of dinoflagellate cultures, including the morphologically similar and taxonomically closely related species G. nolleri. Amplification of the diagnostic PCR product from all the strains of G. catenatum but not from other species of dinoflagellates tested imply the species specificity of the assay. Sensitivity of the assay to detect cysts in ballast water samples was established by simulated spiked experiments. The assay could detect G. catenatum in all ‘blank’ plankton samples that were spiked with five or more cysts. The assay was used to test environmental samples collected from the Derwent river estuary, Tasmania. Based on the results we conclude that the assay may be utilized in large scale screening of environmental and ballast water samples.  相似文献   

12.
Gymnodinium acidotum Nygaard, a blue-green dinoflagellate previously shown to contain cryptophycean chloroplasts and other organelles, was observed from water and soil samples and in culture. The dinoflagellate excysts from soil samples as a mononucleated colorless cell that is positively phototactic. Colorless cells in unialgal culture remain colorless and can only be maintained less than one week whereas pigmented cells cultured unialgally grow for 10 days but then decline rapidly. Colorless cells cultured with Chroomonas spp. regain chloroplasts and have been maintained in mixed cultures for nine months. Fifty-seven percent of the dinoflagellates from mixed cultures are bi-nucleated, and three cells have been observed possibly ingesting cryptophytes. We suggest that cryptophycean chloroplasts are retained and possibly utilized by G. acidotum for at least ten days and then digested.  相似文献   

13.
Interactions with the bacterial community are increasingly considered to have a significant influence on marine phytoplankton populations. Here we used a simplified dinoflagellate‐bacterium experimental culture model to conclusively demonstrate that the toxic dinoflagellate Gymnodinium catenatum H. W. Graham requires growth‐stimulatory marine bacteria for postgermination survival and growth, from the point of resting cyst germination through to vegetative growth at bloom concentrations (103 cells · mL?1). Cysts of G. catenatum were germinated and grown in unibacterial coculture with antibiotic‐resistant or antibiotic‐sensitive Marinobacter sp. DG879 or Brachybacterium sp., and with mixtures of these two bacteria. Addition of antibiotics to cultures grown with antibiotic‐sensitive strains of bacteria resulted in death of the dinoflagellate culture, whereas cultures grown with antibiotic‐resistant bacteria survived antibiotic addition and continued to grow beyond the 21 d experiment. Removal of either bacterial type from mixed‐bacterial dinoflagellate cultures (using an antibiotic) resulted in cessation of dinoflagellate growth until bacterial concentration recovered to preaddition concentrations, suggesting that the bacterial growth factors are used for dinoflagellate growth or are labile. Examination of published reports of axenic dinoflagellate culture indicate that a requirement for bacteria is not universal among dinoflagellates, but rather that species may vary in their relative reliance on, and relationship with, the bacterial community. The experimental model approach described here solves a number of inherent and logical problems plaguing studies of algal‐bacterium interactions and provides a flexible and tractable tool that can be extended to examine bacterial interactions with other phytoplankton species.  相似文献   

14.
ABSTRACT. The mixotrophic dinoflagellate Paragymnodinium shiwhaense n. gen., n. sp. is described from living cells and from cells prepared by light, scanning electron, and transmission electron microscopy. In addition, sequences of the small subunit (SSU) and large subunit (LSU) rDNA and photosynthetic pigments are reported. The episome is conical, while the hyposome is hemispherical. Cells are covered with polygonal amphiesmal vesicles arranged in 16 rows and containing a very thin plate‐like component. There is neither an apical groove nor apical line of narrow plates. Instead, there is a sulcal extension‐like furrow. The cingulum is as wide as 0.2–0.3 × cell length and displaced by 0.2–0.3 × cell length. Cell length and width of live cells fed Amphidinium carterae were 8.4–19.3 and 6.1–16.0 μm, respectively. Paragymnodinium shiwhaense does not have a nuclear envelope chamber nor a nuclear fibrous connective (NFC). Cells contain chloroplasts, nematocysts, trichocysts, and peduncle, though eyespots, pyrenoids, and pusules are absent. The main accessory pigment is peridinin. The sequence of the SSU rDNA of this dinoflagellate (GenBank AM408889) is 4% different from that of Gymnodinium aureolum, Lepidodinium viride, and Gymnodinium catenatum, the three closest species, while the LSU rDNA was 17–18% different from that of G. catenatum, Lepidodinium chlorophorum, and Gymnodinium nolleri. The phylogenetic trees show that this dinoflagellate belongs within the Gymnodinium sensu stricto clade. However, in contrast to Gymnodinium spp., cells lack nuclear envelope chambers, NFC, and an apical groove. Unlike Polykrikos spp., which have a taeniocyst–nematocyst complex, P. shiwhaense has nematocysts without taeniocysts. In addition, P. shiwhaense does not have ocelloids in contrast to Warnowia spp. and Nematodinium spp. Therefore, based on morphological and molecular analyses, we suggest that this taxon is a new species, also within a new genus.  相似文献   

15.
Polymerase chain reaction (PCR) primers were constructed for the detection of two toxic dinoflagellate species, Gymnodinium mikimotoi and Alexandrium minutum. The primers amplified a product of expected size from cultured cells of G. mikimotoi and A. minutum. The species-specific primers targeting G. mikimotoi did not yield any product with a wide range of other cultured algae used as negative controls. Primers designed for A. minutum were species-group-specific since it PCR yielded a product from the closely related species A. ostenfeldii and A. andersonii, but not from other species of this genus tested. The confirmation of PCR products was performed by digestion of the products with restriction enzymes. Sensitivity analyses of the primers on DNA template from cultured cells was positive by PCR at a DNA template concentration of 1.5 × 10−4 ng/μl (0.3 cells/L) for A. minutum, and at a DNA concentration of 2.5 × 10−2 ng/μl (697 cells/L) for G. mikimotoi. The PCR method for detection of G. mikimotoi and A. minutum was applied on field samples collected with a plankton net. Gymnodinium mikimotoi could be detected in 11 field samples by microscopy, and all these field samples were positive by PCR. The cell counts of G. mikimotoi in simultaneously collected water samples ranged from 306 to 2077/L. Alexandrium minutum could be detected by microscopy in 3 different field samples. The cell counts in water samples collected at the same time as the net samples ranged from 115 to 1115 cells/L. Alexandrium minutum was detected by PCR in these field samples, with the exception of the sample displaying the lowest cell count (115 cells/L). Plankton samples that were negative by microscopy for any of the two target species were also negative by PCR. All the PCR products from field samples were confirmed by restriction enzyme digestion. The application of PCR-based detection of harmful algal bloom species for aquaculture and monitoring purposes in natural field samples is discussed. Received April 4, 2000; accepted September 25, 2000.  相似文献   

16.
The non-photosynthetic, phagotrophic dinoflagellate, Gymnodinium fungiforme Anissimova is attracted to a variety of amino acids and other organic compounds. Glycine, taurine and serine attracted the dinoflagellates at a threshold detection level of 10?8 M fallowed by dextrose (10?7 M) and alanine, proline and threonine (10?6 M). Glycine, taurine and alanine are three of the most abundant free amino acids found in invertebrates and protozoa which are major food sources of this dinoflagellate. Three additional species of cultured heterotrophic dinoflagellates were exposed to the water soluble fraction of a shrimp extract known to attract G. fungiforme. All three species responded to the extract, but one species, Oxyrrhis marina, did so only after changing its food source. It is suggested that chemosensory behavior may be suppressed or expressed depending on culture conditions.  相似文献   

17.
Toxic and nontoxic species of marine dinoflagellates were characterized using fluorescent lectins. Lectin binding was detected by epifluorescence as well as spectrofluorometry. The binding assay of fluorescent lectins readily differentiated between morphologically similar species (i.e the toxic dinoflagellate Gymnodinium catenatum and the nontoxic Gymnodinium sp.). Lectins appear to be a useful tool to distinguish among different clones of the same species and, thus, possibly as a tool in dinoflagellate identification. Moreover, the lectins used show that thecate species have more binding sites and diversity in glycan moieties than athecate species.  相似文献   

18.
Gymnodinium acidotum Nygaard is a freshwater dinoflagellate that is known to harbor a cryptomonad endosymbiont whose chloroplasls give the organism an overall blue-green color. The ultrastructure of G. acidotum was examined with particular attention being given to the three dimensional nature of the flagellar apparatus. The fiagellar apparatus is composed of two functional basal bodies that are slightly offset and lie at an angle of approximately 90° to one another. As in other dinoflagellates the transverse basal body is associated with a striated, fibrous root that extends from the proximal end of the basal body to the transverse flagellar opening. At least one microtubular root extends from the proximal end of the transverse basal body, and a multi-membered longitudinal microtubular root is associated with the longitudinal basal body. The most striking feature of the flagellar apparatus of G. acidotum is the large fibrous connective that extends from the region of the proximal ends of the basal bodies to the cingulum on the dorsal side of the cell. A similar structure has been reported from only one other dinoflagellate, Amphidinium cryophilum Wedemayer, Wilcox, and Graham. The presence of this structure as well as similarities in external morphology suggest thai these two species may be more closely related to each other than either is to other gymnodinioid taxa. The taxonomic importance of dinoflagellate flagellar apparatus components is discussed.  相似文献   

19.
A small dinoflagellate, ~13 μm in cell length, was isolated from Jinhae Bay, Korea. Light microscopy showed that it was similar to the kleptoplastidic dinoflagellate Gymnodinium gracilentum nom. inval. rDNA sequences were obtained and its anatomy and morphology described using light and scanning and transmission electron microscopy. Phylogenetic analyses indicated that it belonged to the family Kareniaceae. However, its large subunit (LSU) rDNA sequences were 5.2–9.5% different from those of the other five genera in the family, and its clade was clearly divergent from that of each genus. Its overall morphology was different from those of the other five genera in the family and from Gymnodinium. Unlike Gymnodinium, this dinoflagellate did not have a horseshoe‐shaped apical groove, nuclear envelope chambers, or a nuclear fibrous connective (NFC). It had an apical line of narrow amphiesmal vesicles and an elongated apical furrow crossing the apex. Cells were covered with polygonal amphiesmal vesicles arranged in 16 rows. Starved cells did not contain their own plastids, eyespots, pyrenoids, peridinin, or fucoxanthin. However, they could survive without added prey for approximately one month using chloroplasts from the cryptophyte prey Teleaulax amphioxeia, indicating kleptoplastidy. Because this taxon is genetically distinct at the generic rank from the other genera in Kareniaceae, it is placed in Shimiella gen. nov., and because G. gracilentum was invalid, the new bionomial S. gracilenta sp. nov. is proposed.  相似文献   

20.
The distribution, abundance and morphology of microreticulatedinoflagellate cysts were examined from samples collected fromthe coastal waters of Australia, the Baltic Sea, Italy, HongKong and Uruguay. On the basis of a combination of size range,variation in microreticulate pattern, and cyst wall colour,the three microreticulate species Gymnodinium catenatum (36–62µm diameter), Gymnodinium nolleri (25–40 µm)and Gymnodinium microreticulatum (17–29 µm) couldbe distinguished. Only G. catenatum and G. microreticulatumwere found at Australian sites. Gymnodinium microreticulatumwas rare but widespread in sediments from Tasmania and temperateand tropical sites on mainland Australia, whereas G. catenatumwas restricted to the eastern coast of Tasmania, southern Victoria,Port Lincoln [South Australia (SA)] and the Hawkesbury Estuary[New South Wales (NSW)]. Significant variation in G. catenatummean cyst size was observed between sites, with mean diametersvarying from 40.1 µm (Hawkesbury River, NSW) to 52.3 µm(Port Lincoln, SA). Laboratory experiments suggest that cystsize may be predominantly a genetically determined, population-specificcharacter, rather than being influenced by environmental parameters.Using the species criteria refined from the dataset, existingreports of microreticulate cysts are re-examined, and the globaldistribution of microreticulate cyst species and the biogeographyof the toxic dinoflagellate G. catenatum are re-evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号